TI TLE2027AMFK

TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
D Outstanding Combination of dc Precision
D
D
and AC Performance:
Unity-Gain Bandwidth . . . 15 MHz Typ
Vn . . . . . 3.3 nV/√Hz at f = 10 Hz Typ,
2.5 nV/√Hz at f = 1 kHz Typ
VIO . . . . 25 μV Max
AVD . . . . 45 V/μV Typ With RL = 2 kΩ,
19 V/μV Typ With RL = 600 Ω
Available in Standard-Pinout Small-Outline
Package
Output Features Saturation Recovery
Circuitry
Macromodels and Statistical information
OFFSET N1
IN −
IN +
VCC −
1
8
2
7
3
6
4
5
OFFSET N2
VCC +
OUT
NC
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
OFFSET N2
NC
D
D, JG, OR P PACKAGE
(TOP VIEW)
description
NC
IN −
NC
IN +
NC
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
VCC +
NC
OUT
NC
NC
VCC −
NC
NC
NC
The TLE20x7 and TLE20x7A contain innovative
circuit design expertise and high-quality process
control techniques to produce a level of ac
performance and dc precision previously unavailable in single operational amplifiers. Manufactured using Texas Instruments state-of-the-art
Excalibur process, these devices allow upgrades
to systems that use lower-precision devices.
In the area of dc precision, the TLE20x7 and
TLE20x7A offer maximum offset voltages of
100 μV and 25 μV, respectively, common-mode
rejection ratio of 131 dB (typ), supply voltage
rejection ratio of 144 dB (typ), and dc gain of
45 V/μV (typ).
AVAILABLE OPTIONS
PACKAGED DEVICES
TA
0°C to 70°C
−40
40°C to 105°C
55°C to 125°C
−55
†
‡
CHIP
FORM‡
(Y)
VIOmax AT
25°C
SMALL
OUTLINE†
(D)
CHIP
CARRIER
(FK)
25 μV
TLE2027ACD
TLE2037ACD
—
—
—
—
TLE2027ACP
TLE2037ACP
TLE2027Y
TLE2037Y
100 μV
TLE2027CD
TLE2037CD
—
—
—
—
TLE2027CP
TLE2037CP
TLE2027Y
TLE2037Y
25 μV
TLE2027AID
TLE2037AID
—
—
—
—
TLE2027AIP
TLE2037AIP
—
100 μV
TLE2027ID
TLE2037ID
—
—
—
—
TLE2027IP
TLE2037IP
—
25 μV
TLE2027AMD
TLE2037AMD
TLE2027AMFK
TLE2037AMFK
TLE2027AMJG
TLE2037AMJG
TLE2027AMP
TLE2037AMP
—
100 μV
TLE2027MD
TLE2037MD
TLE2027MFK
TLE2037MFK
TLE2027MJG
TLE2037MJG
TLE2027MP
TLE2037MP
—
CERAMIC
DIP
(JG)
PLASTIC
DIP
(P)
The D packages are available taped and reeled. Add R suffix to device type (e.g., TLE2027ACDR).
Chip forms are tested at 25°C only.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
All trademarks are the property of their respective owners.
Copyright © 2002−2006, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
www.ti.com
1
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
description (continued)
The ac performance of the TLE2027 and TLE2037 is highlighted by a typical unity-gain bandwidth specification
of 15 MHz, 55° of phase margin, and noise voltage specifications of 3.3 nV/√Hz and 2.5 nV/√Hz at frequencies
of 10 Hz and 1 kHz respectively. The TLE2037 and TLE2037A have been decompensated for faster slew rate
(−7.5 V/μs, typical) and wider bandwidth (50 MHz). To ensure stability, the TLE2037 and TLE2037A should be
operated with a closed-loop gain of 5 or greater.
Both the TLE20x7 and TLE20x7A are available in a wide variety of packages, including the industry-standard
8-pin small-outline version for high-density system applications. The C-suffix devices are characterized for
operation from 0°C to 70°C. The I-suffix devices are characterized for operation from − 40°C to 105°C. The
M-suffix devices are characterized for operation over the full military temperature range of − 55°C to 125°C.
symbol
OFFSET N1
IN +
+
IN −
−
OUT
OFFSET N2
2
•
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
POST OFFICE BOX 1443 HOUSTON, TEXAS 77251−1443
•
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE202xY chip information
This chip, when properly assembled, displays characteristics similar to the TLE202xC. Thermal compression
or ultrasonic bonding may be used on the doped-aluminum bonding pads. The chip may be mounted with
conductive epoxy or a gold-silicon preform.
BONDING PAD ASSIGNMENTS
(6)
(4)
(8)
(7)
(6)
OFFSET N1
IN +
IN −
OFFSET N2
(1)
(3)
(2)
VCC+
(7)
+
(6)
−
OUT
(4)
(8)
VCC −
(5)
90
(3)
(7)
(4)
(2)
CHIP THICKNESS: 15 MILS TYPICAL
BONDING PADS: 4 × 4 MILS MINIMUM
TJmax = 150°C
TOLERANCES ARE ± 10%.
(1)
(2)
(3)
(8)
(1)
ALL DIMENSIONS ARE IN MILS.
PIN (4) IS INTERNALLY CONNECTED
TO BACKSIDE OF CHIP.
73
3
4
IN −
IN +
Q1
Q3
Q2
Q4
OFFSET N1
OFFSET N2
Q6
Q5
Q7
Q8
Q9
equivalent schematic
Q11
R1
Q10
R2
www.ti.com
R3
Q16
Q15
Q12
Q14
Q18
Q17
Q13
R5
R4
Q20
C1
R11
R12
Q29
Q30
Q34
C3
Q33
R14
Q31
R13
Q32
R18
C4
R17
R16
Q37
61
26
1
4
Resistors
epiFET
Capacitors
TLE2027
Transistors
Q38
VCC −
Q35
Q36
R15
4
1
26
61
TLE2037
ACTUAL DEVICE COMPONENT COUNT
R7 R10
Q26
C2
COMPONENT
R6
Q22
Q21
R8
Q25 Q28
Q23 Q24
Q19
Q27
R9
V CC+
R19
Q40
Q41
Q39
R20
Q46
Q45
Q47
Q44
R22
Q43
R21
Q42
R23
R25
Q54
Q57
Q56
Q55
Q60
Q59
Q58
R24 R26
Q52
Q53
Q50
Q51
Q48
Q49
Q62
OUT
Q61
4444
4
44
44
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC+ (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 V
Supply voltage, VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 19 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1.2 V
Input voltage range, VI (any input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VCC±
Input current, II (each Input) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 mA
Output current, IO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 50 mA
Total current into VCC+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Total current out of VCC − . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA
Duration of short-circuit current at (or below) 25°C (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 40°C to 105°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 55°C to 125°C
Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . − 65°C to 150°C
Case temperature for 60 seconds, TC: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D or P package . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package . . . . . . . . . . . . . . . . . . . 300°C
†
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC + and VCC − .
2. Differential voltages are at IN+ with respect to IN −. Excessive current flows if a differential input voltage in excess of approximately
±1.2 V is applied between the inputs unless some limiting resistance is used.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING FACTOR
ABOVE TA = 25°C
TA = 70°C
POWER RATING
TA = 105°C
POWER RATING
TA = 125°C
POWER RATING
D
725 mW
5.8 mW/°C
464 mW
261 mW
145 mW
FK
1375 mW
11.0 mW/°C
880 mW
495 mW
275 mW
JG
1050 mW
8.4 mW/°C
672 mW
378 mW
210 mW
P
1000 mW
8.0 mW/°C
640 mW
360 mW
200 mW
recommended operating conditions
C SUFFIX
Supply voltage, VCC ±
Common mode input voltage,
voltage VIC
Common-mode
TA = 25°C
TA = Full range‡
M SUFFIX
MIN
MAX
MIN
MAX
MIN
MAX
±4
± 19
±4
± 19
±4
± 19
−11
11
−11
11
−11
11
−10.5
10.5
−10.4
10.4
−10.2
10.2
0
70
−40
105
−55
125
Operating free-air temperature, TA
‡
I SUFFIX
UNIT
V
V
°C
Full range is 0°C to 70°C for C-suffix devices, − 40°C to 105°C for I-suffix devices, and − 55°C to 125°C for M-suffix devices.
www.ti.com
5
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7C electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
25°C
VOM +
VOM −
AVD
Common mode input
Common-mode
voltage range
Maximum positive peak
p voltage
g swing
g
output
Maximum negative peak
output voltage swing
Large-signal
Large
signal differential
voltage amplification
RS = 50 Ω
100
1
0.006
1
μV/mo
25°C
6
90
6
90
150
15
25°C
10.5
Full range
10
25°C
12
−10
25°C
− 12
Full range
− 11
Full range
zo
IO = 0
CMRR
Common-mode
Common
mode rejection
ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (ΔVCC ± /ΔVIO)
25°C
Full range
25°C
Full range
5
15
2
−13
to
13
12.9
10.5
12
−13
−10.5
11
−13
−10
−13.5
− 12
− 11
45
10
45
4
38
8
38
19
5
19
2
25°C
50
50
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
92
V/ V
V/μV
2.5
8
25°C
V
−13.5
8
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
V
13.2
25°C
98
nA
12.9
10
13.2
nA
V
−10.5
to
10.5
0.5
100
90
150
−11
to
11
1
25°C
No load
−13
to
13
2
3.5
Full range
0
VO = 0,
90
11
−10.5
Full range
RL = 2 kΩ
Open-loop output
impedance
−11
to
11
Full range
VO = ± 10 V,
150
150
−10.5
to
10.5
25°C
Input capacitance
μV
V
0.006
RL = 2 kΩ
RL = 1 kΩ
70
25°C
VO = ± 11 V,
VO = ± 10 V
V,
25
μV/°C
25°C
RL = 2 kΩ
10
UNIT
1
Full range
RL = 600 Ω
MAX
0.2
RS = 50 Ω
RL = 2 kΩ
TYP
1
25°C
RL = 600 Ω
MIN
0.4
Full range
Ci
Supply current
20
Full range
VO = ± 10 V,
RL = 600 Ω
ICC
MAX
145
Full range
VIC = 0,
TLE20x7AC
TYP
Full range
25°C
VICR
TLE20x7C
MIN
131
117
pF
Ω
131
dB
114
144
110
144
dB
25°C
Full range
106
3.8
5.3
5.6
3.8
5.3
5.6
mA
† Full range is 0°C to 70°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
6
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7C operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
voltEquivalent input noise volt
age (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
curEquivalent input noise cur
rent
THD
Total harmonic distortion
TEST CONDITIONS
TLE20x7C
MIN
TYP
TLE20x7AC
MAX
MIN
TYP
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6
7.5
6
7.5
RL = 2 kΩ,
CL = 100 pF,
TA = 0°C to 70°C,
See Figure 1
TLE2027
1.2
1.2
TLE2037
5
5
MAX
V/μs
RS = 20 Ω,
f = 10 Hz
3.3
8
3.3
4.5
RS = 20 Ω,
f = 1 kHz
2.5
4.5
2.5
3.8
50
250
50
130
f = 0.1 Hz to 10 Hz
UNIT
f = 10 Hz
10
25
10
25
f = 1 kHz
0.8
1.8
0.8
1.8
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity-gain bandwidth
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF
TLE2027
9(6)
13
9(6)
13
GBW
Gain bandwidth product
RL = 2 kΩ,
CL = 100 pF
TLE2037
35
50
35
50
BOM
Maximum output
output-swing
swing
bandwidth
RL = 2 kΩ
φm
Phase margin at unity gain
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF
nV/√Hz
nV
pA/√Hz
MHz
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
NOTE 6: This parameter is not production tested
www.ti.com
7
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7I electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
25°C
VOM +
VOM −
Common mode input
Common-mode
voltage range
Maximum positive peak
p voltage
g swing
g
output
Maximum negative peak
output voltage swing
RS = 50 Ω
Large-signal
Large
signal differential
voltage amplification
RL = 2 kΩ
VO = ± 10 V
V, RL = 1 kΩ
Input capacitance
zo
Open-loop output
impedance
IO = 0
CMRR
Common-mode
Common
mode rejection
ratio
VIC = VICRmin,
RS = 50 Ω
kSVR
Supply voltage rejection
Supply-voltage
ratio (ΔVCC ± /ΔVIO)
25°C
0.006
1
0.006
1
μV/mo
25°C
6
90
6
90
150
15
−11
to
11
Full range
−10.4
to
10.4
25°C
10.5
Full range
10
25°C
12
−10
25°C
− 12
Full range
− 11
Full range
25°C
Full range
25°C
Full range
90
−13
to
13
15
5
12.9
10.5
13.2
12
−13
−10.5
12.9
−13
−10
−13.5
− 12
− 11
45
10
45
3.5
38
8
38
19
5
19
1.1
25°C
50
50
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
90
V/ V
V/μV
2.2
8
25°C
V
−13.5
8
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
V
13.2
25°C
96
nA
11
0.5
100
nA
V
10
1
2
−13
to
13
−10.4
to
10.4
2
3.5
90
150
−11
to
11
11
−10.5
Full range
25°C
150
150
25°C
No load
μV
V
μV/°C
Full range
VO = 0,
0
25
105
UNIT
1
25°C
RL = 2 kΩ
10
MAX
0.2
Full range
RL = 600 Ω
TYP
1
RS = 50 Ω
RL = 600 Ω
MIN
0.4
25°C
Ci
Supply current
100
Full range
VO = ± 10 V
V, RL = 600 Ω
ICC
20
Full range
VO = ± 11 V, RL = 2 kΩ
VO = ± 10 V, RL = 2 kΩ
AVD
MAX
180
Full range
VIC = 0,
TLE20x7AI
TYP
Full range
25°C
VICR
TLE20x7I
MIN
131
117
pF
Ω
131
dB
113
144
110
144
dB
25°C
Full range
†
105
3.8
5.3
5.6
3.8
5.3
5.6
mA
Full range is − 40°C to 105°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
8
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7I operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise
voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise
current
THD
Total harmonic distortion
TLE20x7I
TEST CONDITIONS
MIN
TYP
TLE20x7AI
MAX
MIN
TYP
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6
7.5
6
7.5
RL = 2 kΩ,
CL = 100 pF,
TA = − 40°C to 85°C,
See Figure 1
TLE2027
1.1
1.1
TLE2037
4.7
4.7
MAX
V/μs
RS = 20 Ω,
f = 10 Hz
3.3
8
3.3
4.5
RS = 20 Ω,
f = 1 kHz
2.5
4.5
2.5
3.8
50
250
50
130
f = 0.1 Hz to 10 Hz
UNIT
f = 10 Hz
10
25
10
25
f = 1 kHz
0.8
1,8
0.8
1.8
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity-gain bandwidth
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF
TLE2027
9(6)
13
9(6)
13
GBW
Gain bandwidth product
RL = 2 kΩ,
CL = 100 pF
TLE2037
35
50
35
50
BOM
Maximum output
output-swing
swing
bandwidth
RL = 2 kΩ
φm
Phase margin at unity
gain (see Figure 3)
RL = 2 kΩ ,
CL = 100 pF
nV/√Hz
nV
pA/√Hz
MHz
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
NOTE 6: This parameter is not production tested.
www.ti.com
9
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7M electrical characteristics at specified free-air temperature, VCC± = ±15 V (unless
otherwise noted)
PARAMETER
VIO
Input offset voltage
αVIO
Temperature coefficient of
input offset voltage
Input offset voltage
long-term drift (see Note 4)
IIO
Input offset current
IIB
Input bias current
TEST CONDITIONS
TA†
25°C
VOM +
VOM −
AVD
Common mode input
Common-mode
voltage range
Maximum positive peak
p voltage
g swing
g
output
Maximum negative peak
output voltage swing
Large-signal
L
i
l diff
differential
ti l
voltage amplification
RS = 50 Ω
RL = 2 kΩ
25°C
0.006
1*
0.006
1*
μV/mo
25°C
6
90
6
90
15
−11
to
11
Full range
−10.3
to
10.3
25°C
10.5
Full range
10
25°C
12
−10
25°C
− 12
Full range
− 11
Full range
2.5
25°C
3.5
Full range
1.8
IO = 0
CMRR
Common-mode
Common
mode rejection
ratio
VIC = VICRmin,
RS = 50 Ω
5
2
−13
to
13
−11
to
11
−13
to
13
12.9
10.5
12
−13
−10.5
11
−13
−10
−13.5
− 12
− 11
45
10
45
3.5
38
8
38
94
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
Full range
90
V/μV
2.2
19
5
19
50
25°C
V
−13.5
50
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
V
13.2
25°C
96
nA
12.9
10
13.2
nA
V
−10.4
to
10.4
8
100
90
150
8
25°C
No load
15
25°C
Full range
VO = 0,
0
90
11
−10.5
Full range
25°C
150
150
VO = ± 10 V, RL = 2 kΩ
Open-loop output
impedance
Supply current
150
25°C
zo
μV
V
μV/°C
VO = ± 11 V, RL = 2 kΩ
V, RL = 1 kΩ
VO = ± 10 V
25
105
UNIT
1*
25°C
RL = 2 kΩ
10
MAX
0.2
Full range
RL = 600 Ω
TYP
1*
RS = 50 Ω
RL = 600 Ω
MIN
0.4
25°C
Ci
ICC
100
Full range
Input capacitance
Supply voltage rejection
Supply-voltage
ratio (ΔVCC ± /ΔVIO)
20
Full range
VO = ± 10 V
V, RL = 600 Ω
kSVR
MAX
200
Full range
VIC = 0,
TLE20x7AM
TYP
Full range
25°C
VICR
TLE20x7M
MIN
131
117
pF
Ω
131
dB
113
144
110
144
dB
25°C
Full range
105
3.8
5.3
5.6
3.8
5.3
5.6
mA
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
† Full range is − 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
10
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7M operating characteristics at specified free-air temperature, VCC ± = ±15 V, TA = 25°C
(unless otherwise specified)
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise
voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent
input noise voltage
In
Equivalent input noise
current
THD
Total harmonic distortion
TLE20x7M
TEST CONDITIONS
MIN
TYP
TLE20x7AM
MAX
MIN
TYP
MAX
RL = 2 kΩ,
CL = 100 pF
pF,
See Figure 1
TLE2027
1.7
2.8
1.7
2.8
TLE2037
6*
7.5
6*
7.5
RL = 2 kΩ,
CL = 100 pF,
TA = − 55°C to 125°C,
See Figure 1
TLE2027
1
1
TLE2037
4.4*
4.4*
RS = 20 Ω,
f = 10 Hz
3.3
8*
3.3
8*
RS = 20 Ω,
f = 1 kHz
2.5
4*
2.5
4*
225
375*
225
375*
f = 0.1 Hz to 10 Hz
V/μs
f = 10 Hz
25
25
f = 1 kHz
2.5
2.5
VO = + 10 V,
AVD = 1,
See Note 5
TLE2027
< 0.002%
< 0.002%
VO = + 10 V,
AVD = 5,
See Note 5
TLE2037
< 0.002%
< 0.002%
B1
Unity gain bandwidth
Unity-gain
(see Figure 3)
RL = 2 kΩ,
CL = 100 pF
BOM
Maximum output
output-swing
swing
bandwidth
RL = 2 kΩ
φm
Phase margin at unity
gain (see Figure 3)
RL = 2 kΩ,
CL = 100 pF
UNIT
TLE2027
7*
13
9*
13
TLE2037
35
50
35
50
TLE2027
30
30
TLE2037
80
80
TLE2027
55°
55°
TLE2037
50°
50°
nV/√Hz
nV
pA/√Hz
MHz
kHz
* On products compliant to MIL-PRF-38535, this parameter is not production tested.
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
www.ti.com
11
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7Y electrical characteristics, VCC± = ±15 V, TA = 25°C (unless otherwise noted)
PARAMETER
VIO
TEST CONDITIONS
Input offset voltage
Input offset current
IIB
Input bias current
VIC = 0,
VICR
Common-mode input voltage range
VOM +
Maximum positive peak output voltage swing
VOM −
Maximum negative peak output voltage swing
AVD
MIN
TYP
20
Input offset voltage
long-term drift (see Note 4)
IIO
TLE20x7Y
RS = 50 Ω
UNIT
μV
μV/mo
6
nA
15
nA
RS = 50 Ω
−13
to
13
V
RL = 600 Ω
12.9
RL = 2 kΩ
13.2
−13
RL = 600 Ω
RL = 2 kΩ
Large-signal differential voltage amplification
0.006
MAX
−13.5
VO = ± 11 V,
RL = 2 kΩ
45
VO = ± 10 V,
RL = 1 kΩ
38
VO = ± 10 V,
RL = 600 Ω
19
50
8
V
V
V/μV
Ci
Input capacitance
zo
Open-loop output impedance
IO = 0
CMRR
Common-mode rejection ratio
VIC = VICRmin,
RS = 50 Ω
131
dB
kSVR
Supply-voltage rejection ratio (ΔVCC ±
VCC ± = ± 4 V to ± 18 V,
RS = 50 Ω
144
dB
ICC
Supply current
VO = 0,
3.8
mA
/ΔVIO)
No load
pF
Ω
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
12
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TLE20x7Y operating characteristics at specified free-air temperature, VCC ± = ±15 V
PARAMETER
SR
Slew rate at unity gain
Vn
Equivalent input noise voltage (see Figure 2)
VN(PP)
Peak-to-peak equivalent input noise voltage
In
Equivalent input noise current
THD
Total harmonic distortion
TLE20x7Y
TEST CONDITIONS
RL = 2 kΩ, CL = 100 pF,
See Figure 1
MIN
TYP
TLE2027
2.8
TLE2037
7.5
RS = 20 Ω,
f = 10 Hz
3.3
RS = 20 Ω,
f = 1 kHz
2.5
f = 0.1 Hz to 10 Hz
50
f = 10 Hz
10
f = 1 kHz
0.8
VO = + 10 V, AVD = 1,
See Note 5
TLE2027
< 0.002%
VO = + 10 V, AVD = 5,
See Note 5
TLE2037
< 0.002%
TLE2027
13
TLE2037
50
TLE2027
30
TLE2037
80
TLE2027
55°
TLE2037
50°
B1
Unity gain bandwidth (see Figure 3)
Unity-gain
RL = 2 kΩ
kΩ,
BOM
Maximum output-swing
output swing bandwidth
RL = 2 kΩ
φm
Phase margin at unity gain (see Figure 3)
RL = 2 kΩ
kΩ,
CL = 100 pF
CL = 100 pF
MAX
UNIT
V/ s
V/μs
nV/√Hz
nV
pA/√Hz
MHz
kHz
NOTE 5: Measured distortion of the source used in the analysis was 0.002%.
www.ti.com
13
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
PARAMETER MEASUREMENT INFORMATION
2 kΩ
Rf
15 V
15 V
−
−
VO
VO
RI
+
+
VI
CL =
100 pF
(see Note A)
− 15 V
RL = 2 kΩ
20 Ω
20 Ω
− 15 V
NOTE A: CL includes fixture capacitance.
Figure 1. Slew-Rate Test Circuit
Figure 2. Noise-Voltage Test Circuit
Rf
10 kΩ
VI
100 Ω
15 V
15 V
−
−
VI
+
−15 V
CL =
100 pF
(see Note A)
+
CL =
100 pF
(see Note A)
− 15 V
2 kΩ
NOTE A: CL includes fixture capacitance.
2 kΩ
NOTES: A. CL includes fixture capacitance.
B. For the TLE2037 and TLE2037A,
AVD must be ≥ 5.
Figure 3. Unity-Gain Bandwidth and
Phase-Margin Test Circuit (TLE2027 Only)
14
VO
RI
VO
Figure 4. Small-Signal PulseResponse Test Circuit
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
typical values
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.
initial estimates of parameter distributions
In the ongoing program of improving data sheets and supplying more information to our customers, Texas
Instruments has added an estimate of not only the typical values but also the spread around these values. These
are in the form of distribution bars that show the 95% (upper) points and the 5% (lower) points from the
characterization of the initial wafer lots of this new device type (see Figure 5). The distribution bars are shown
at the points where data was actually collected. The 95% and 5% points are used instead of ± 3 sigma since
some of the distributions are not true Gaussian distributions.
The number of units tested and the number of different wafer lots used are on all of the graphs where distribution
bars are shown. As noted in Figure 5, there were a total of 835 units from two wafer lots. In this case, there is
a good estimate for the within-lot variability and a possibly poor estimate of the lot-to-lot variability. This is always
the case on newly released products since there can only be data available from a few wafer lots.
The distribution bars are not intended to replace the minimum and maximum limits in the electrical tables. Each
distribution bar represents 90% of the total units tested at a specific temperature. While 10% of the units tested
fell outside any given distribution bar, this should not be interpreted to mean that the same individual devices
fell outside every distribution bar.
SUPPLY CURRENT
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
I CC − Supply Current − mA
5
4.5
95% point on the distribution bar
(5% of the devices fell above this point.)
VCC± = ±15 V
VO = 0
No Load
Sample Size = 835 Units
From 2 Water Lots
90% of the devices were within the upper
and lower points on the distribution bar.
5% point on the distribution bar
(5% of the devices fell below this point.)
4
3.5
3
2.5
− 75 − 50 − 25
0
25
50
75
100 125 150
TA − Free-Air Temperature − °C
Figure 5. Sample Graph With Distribution Bars
www.ti.com
15
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
Input offset voltage
Distribution
6, 7
ΔVIO
Input offset voltage change
vs
Time after power on
8, 9
IIO
Input offset current
vs
Free-air temperature
10
IIB
Input bias current
vs
vs
Free-air
Free
air temperature
Common-mode input voltage
11
12
II
Input current
vs
Differential input voltage
VO(PP)
Maximum peak-to-peak output voltage
vs
Frequency
14, 15
VOM
Maximum (positive/negative) peak output
voltage
vs
vs
Load resistance
Free-air temperature
16, 17
18, 19
AVD
Large signal differential voltage amplification
Large-signal
vs
vs
vs
vs
Supply voltage
Load resistance
Frequency
Free-air temperature
20
21
22 − 25
26
zo
Output impedance
vs
Frequency
27
CMRR
Common-mode rejection ratio
vs
Frequency
28
kSVR
Supply-voltage rejection ratio
vs
Frequency
29
IOS
Short-circut
Short
circut output current
vs
vs
vs
Supply voltage
Elapsed time
Free-air temperature
30, 31
32, 33
34, 35
ICC
Supply current
vs
vs
Supply voltage
Free-air temperature
36
37
Voltage follower pulse response
Voltage-follower
Small signal
Large signal
Equivalent input noise voltage
vs
Noise voltage (referred to input)
Over 10-second interval
43
Unity gain bandwidth
Unity-gain
vs
vs
Supply voltage
Load capacitance
44
45
Gain bandwidth product
vs
vs
Supply voltage
Load capacitance
46
47
Slew rate
vs
Free-air temperature
48, 49
Phase margin
vs
vs
vs
Supply voltage
Load capacitance
Free-air temperature
50, 51
52, 53
54, 55
Phase shift
vs
Frequency
22 − 25
Vn
B1
SR
φm
16
www.ti.com
Frequency
13
38, 40
39, 41
42
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
DISTRIBUTION
INPUT OFFSET VOLTAGE
Percentage of Amplifiers − %
14
12
ÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
1568 Amplifiers Tested From 2 Wafer Lots
VCC± = +15 V
TA = 25°C
D Package
10
8
6
4
2
0
− 120 − 90 − 60 − 30
0
30
60
90
120
VIO − Input Offset Voltage − μV
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
AVIO
Δ
VIO − Change in Input Offset Voltage − μV
16
12
10
8
6
ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁ ÎÎÎÎ ÁÁÁÁÁÁ
ÁÁ ÎÎÎÎ
4
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
D Package
2
0
0
10
20
30
40
50
t − Time After Power On − s
Figure 6
Figure 7
INPUT OFFSET CURRENT †
vs
FREE-AIR TEMPERATURE
6
30
5
25
3
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÁÁ
ÎÎÎÎ
ÁÁ ÎÎÎÎ
2
50 Amplifiers Tested From 2 Wafer Lots
VCC± = ±15 V
TA = 25°C
P Package
1
0
0
20
40
60
80
IIO
I IO − Input Offset Current − nA
AVIO
Δ
VIO − Change in Input Offset Voltage − μV
INPUT OFFSET VOLTAGE CHANGE
vs
TIME AFTER POWER ON
4
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC± = ±15 V
VIC = 0
Sample Size = 833 Units
From 2 Wafer Lots
20
15
10
5
0
− 75 − 50 − 25
100 120 140 160 180
t − Time After Power On − s
0
25
50
75
100 125 150
TA − Free-Air Temperature − °C
Figure 8
†
60
Figure 9
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
17
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
INPUT BIAS CURRENT †
vs
FREE-AIR TEMPERATURE
VCC ± = ± 15 V
VIC = 0
Sample Size = 836 Units
From 2 Wafer Lots
IIIB
IB − Input Bias Current − nA
50
40
30
20
10
0
40
35
IIIB
IB − Input Bias Current − nA
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
60
INPUT BIAS CURRENT
vs
COMMON-MODE INPUT VOLTAGE
30
25
20
15
10
−10
5
−20
−75 −50 −25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
0
−12
Figure 10
IIII − Input Current − mA
0.6
0.4
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ± 15 V
VIC = 0
TA = 25°C
0.2
0
− 0.2
− 0.4
− 0.6
− 0.8
−1
− 1.8
− 1.2
− 0.6
0
0.6
1.2
1.8
VID − Differential Input Voltage − V
18
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
30
VCC± = ±15 V
RL = 2 kΩ
25
20
15
TA = 125°C
10
5
TA = − 55°C
0
10 k
100 k
1M
f − Frequency − Hz
Figure 13
Figure 12
†
12
TLE2027
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE †
vs
FREQUENCY
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
0.8
−8
−4
0
4
8
VIC − Common-Mode Input Voltage − V
Figure 11
INPUT CURRENT
vs
DIFFERENTIAL INPUT VOLTAGE
1
VCC± = ± 15 V
TA = 25°C
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
10 M
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
20
ÎÎÎÎ
ÎÎÎÎ
15
TA = 125°C
10
TA = − 55°C
5
0
10 k
100 k
1M
10 M
100 M
f − Frequency − Hz
Figure 14
− 14
− 12
− 10
−8
−6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
ÁÁ
−4
0
100
VCC ± = ± 15 V
TA = 25°C
1k
RL − Load Resistance − Ω
12
10
8
6
4
ÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁ
VCC ± = ± 15 V
TA = 25°C
2
0
100
1k
RL − Load Resistance − Ω
10 k
10 k
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE †
vs
FREE-AIR TEMPERATURE
13.5
13.4
13.3
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎ
VCC± = ± 15 V
RL = 2 kΩ
Sample Size = 832 Units
From 2 Wafer Lots
13.2
13.1
ÁÁ
ÁÁ
ÁÁ
Figure 16
†
14
Figure 15
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
−2
VVOM+
OM + − Maximum Positive Peak Output Voltage − V
VCC ± = ± 15 V
RL = 2 kΩ
25
ÁÁÁ
ÁÁÁ
ÁÁÁ
VVOM−
OM − − Maximum Negative Peak Output Voltage − V
ÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁÁ
ÎÎÎÎÎ
30
MAXIMUM POSITIVE PEAK
OUTPUT VOLTAGE
vs
LOAD RESISTANCE
VVOM+
OM + − Maximum Positive Peak Output Voltage − V
VO(PP)
VO(PP) − Maximum Peak-to-Peak Output Voltage − V
TLE2037
MAXIMUM PEAK-TO-PEAK
OUTPUT VOLTAGE †
vs
FREQUENCY
13
12.9
− 75 − 50 − 25
0
25
50
75
100 125 150
TA − Free-Air Temperature − °C
Figure 17
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
19
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
SUPPLY VOLTAGE
MAXIMUM NEGATIVE PEAK
OUTPUT VOLTAGE †
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
− 13
VCC ± = ± 15 V
RL = 2 kΩ
Sample Size = 831 Units
From 2 Wafer Lots
− 13.2
− 13.4
ÁÁ
ÁÁ
ÁÁ
− 13.6
− 13.8
ÁÁÁ
ÁÁÁ
ÁÁÁ
50
AVD
AVD − Large-Signal differential
Voltage Amplification − V/ μ V
VVOM−
OM − − Maximum Negative Peak Output Voltage − V
TYPICAL CHARACTERISTICS
− 14
− 75 − 50 − 25
25
50
75
100 125 150
TA = 25°C
RL = 2 kΩ
40
RL = 1 kΩ
30
20
RL = 600 Ω
10
0
0
ÎÎÎÎ
4
0
8
12
16
⎟ VCC±⎟ − Supply Voltage − V
TA − Free-Air Temperature − °C
Figure 19
Figure 18
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
50
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
AVD
AVD − Large-Signal differential
Voltage Amplification − V/ μ V
VCC± = ± 15 V
ÁÁ
ÁÁ
ÁÁ
40
TA = 25°C
30
20
10
0
100
200
400
1k
2k
4k
10 k
RL − Load Resistance − Ω
Figure 20
†
20
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
20
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
160
75°
Phase Shift
100°
125°
120
AVD
100
150°
80
175°
60
200°
ÁÁ
ÁÁ
40
0
225°
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
20
250°
100
100 k
f − Frequency − Hz
0.1
Phase Shift
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
140
275°
100 M
Figure 21
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎ
AVD
AVD − Large-Signal Differential
Voltage Amplification − dB
140
Á
Á
Á
Phase Shift
120
AVD
100
80
60
40
20
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
0
0.1
75°
100°
125°
150°
175°
200°
VCC± = ± 15 V
225°
RL = 2 kΩ
CL = 100 pF
TA = 25°C
250°
100
100 k
Phase Shift
160
275°
100 M
f − Frequency − MHz
Figure 22
www.ti.com
21
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
ÁÁ
ÁÁ
ÁÁ
6
100°
3
125°
0
150°
−3
175°
AVD
200°
−6
Phase Shift
225°
−9
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
− 12
− 18
250°
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
− 15
10
20
Phase Shift
AVD
AVD− Large-Signal Differential
Voltage Amplification − dB
TLE2027
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
275°
40
70
300°
100
f − Frequency − MHz
Figure 23
TLE2037
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE SHIFT
vs
FREQUENCY
30
100 °
ÎÎÎ ÎÎÎÎÎ
AVD
20
150 °
15
175 °
10
200 °
5
225 °
ÁÁ
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
0
−5
−10
1
2
250 °
275 °
4
10
20
f − Frequency − MHz
Figure 24
22
125 °
Phase Shift
www.ti.com
40
100
300 °
Phase Shift
AVD
AVD − Large-Signal Differential
Voltage Amplification − dB
25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION †
vs
FREE-AIR TEMPERATURE
OUTPUT IMPEDANCE
vs
FREQUENCY
60
ÁÁÁÁÁ
ÁÁ ÁÁÁÁÁ
ÁÁ
100
ÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
TA = 25°C
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
50
zo
z o − Output Impedance − Ω
AVD
AVD − Large-Signal differential
Voltage Amplification − V/ μ V
VCC ± = ± 15 V
RL = 2 kΩ
RL = 1 kΩ
0
25
50
75
10
100
1k
10 k
100 k
1M
10 M 100 M
Figure 26
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
ÎÎÎÎÎ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎÎ
ÎÎÎÎ
ÁÁÁÁ
VCC ± = ± 15 V
TA = 25°C
120
100
80
60
40
20
100
1k
10 k 100 k 1 M
f − Frequency − Hz
ÎÎÎÎÎÎ
ÁÁÁÁ
ÁÁÁÁ
ÎÎÎÎ
140
KSVR − Supply-Voltage Rejection Ratio − dB
CMRR − Common-Mode Rejection Ratio − dB
−10
f − Frequency − Hz
NOTE A: For this curve, the TLE2027 is AVD = 1 and the
TLE2037 is AVD = 5.
10 M 100 M
Figure 27
†
AVD = 10
Figure 25
140
10
See Note A
1
−100
100 125 150
TA − Free-Air Temperature − °C
0
AVD = 100
ÁÁ
ÁÁ
40
30
−75 −50 −25
10
VCC ± = ± 15 V
TA = 25°C
120
ÎÎÎÎ
100
kSVR −
80
ÎÎÎ
ÎÎÎ
60
kSVR +
40
20
0
10
100
1k
10 k 100 k 1 M
f − Frequency − Hz
10 M 100 M
Figure 28
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
23
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
VID = 100 mV
VO = 0
TA = 25°C
P Package
−40
−38
−36
−34
ÁÁ
ÁÁ
−32
−30
0
2
4
6
8 10 12 14 16
⎟ VCC±⎟ − Supply Voltage − V
18
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
44
IIOS
OS − Short-Circuit Output Current − mA
IIOS
OS − Short-Circuit Output Current − mA
−42
20
VID = − 100 mV
VO = 0
TA = 25°C
P Package
42
40
38
36
34
ÁÁ
ÁÁ
32
30
0
2
4
6
8 10 12 14 16
⎟ VCC±⎟ − Supply Voltage − V
Figure 29
44
VCC ± = ± 15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
− 41
IIOS
OS − Short-Circuit Output Current − mA
IIOS
OS − Short-Circuit Output Current − mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎ
− 43
− 39
ÁÁÁ
ÁÁÁ
ÁÁÁ
− 37
− 35
0
30
60
90
120
t − Elasped Time − s
150
180
ÁÁ
ÁÁ
Figure 31
24
20
Figure 30
SHORT-CIRCUIT OUTPUT CURRENT
vs
ELAPSED TIME
− 45
18
42
40
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎ
ÁÁÁÁÁ
VCC ± = ± 15 V
VID = 100 mV
VO = 0
TA = 25°C
P Package
38
36
34
0
30
60
90
120
t − Elasped Time − s
Figure 32
www.ti.com
150
180
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
− 48
− 44
− 40
− 36
− 32
ÁÁ
ÁÁ
ÁÁ
− 28
− 24
− 75 − 50 − 25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
38
34
ÁÁ
ÁÁ
ÁÁ
30
26
− 75 − 50 − 25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
Figure 34
SUPPLY CURRENT †
vs
FREE-AIR TEMPERATURE
SUPPLY CURRENT †
vs
SUPPLY VOLTAGE
5
VO = 0
No Load
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
TA = 125°C
4
IICC
CC − Supply Current − mA
ICC
I CC − Supply Current − mA
5
ÁÁÁÁ
ÁÁÁÁ
TA = 25°C
3
TA = − 55°C
ÁÁ
ÁÁ
2
0
2
4
6
8 10 12 14 16
⎟ VCC±⎟ − Supply Voltage − V
18
20
Figure 35
†
4.5
4
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
VCC ± = ± 15 V
VO = 0
No Load
Sample Size = 836 Units
From 2 Wafer Lots
3.5
ÁÁ
ÁÁ
1
0
VCC ± = ± 15 V
VID = − 100 mV
VO = 0
P Package
42
Figure 33
6
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
46
VCC ± = ± 15 V
VID = 100 mV
VO = 0
P Package
IIOS
OS − Short-Circuit Output Current − mA
IIOS
OS − Short-Circuit Output Current − mA
SHORT-CIRCUIT OUTPUT CURRENT †
vs
FREE-AIR TEMPERATURE
3
2.5
− 75 − 50 − 25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
Figure 36
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
25
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
TLE2027
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
100
50
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
10
VO − Output Voltage − V
VO − Output Voltage − mV
TLE2027
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
0
− 50
VCC± = ±15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
5
0
−5
− 10
− 100
0
200
400
600
t − Time − ns
800
− 15
1000
0
5
Figure 37
ÎÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
15
50
− 100
V
VO
O − Output Voltage − V
V
VO
O − Output Voltage − mV
10
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁ
ÁÁ
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 4
− 50
0
100
200
300
400
t − Time − ns
Figure 39
26
25
TLE2037
VOLTAGE-FOLLOWER
LARGE-SIGNAL
PULSE RESPONSE
100
ÁÁ
ÁÁ
20
Figure 38
TLE2037
VOLTAGE-FOLLOWER
SMALL-SIGNAL
PULSE RESPONSE
0
10
15
t − Time − μs
5
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 1
0
−5
− 10
− 15
0
2
4
6
t − Time − μs
Figure 40
www.ti.com
8
10
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
Vn
V n − Equivalent Input Noise Voltage − nVHz
nV/ Hz
10
8
6
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
50
VCC ± = ± 15 V
RS = 20 Ω
TA = 25°C
See Figure 2
Sample Size = 100 Units
From 2 Wafer Lots
VCC ± = ± 15 V
40
f = 0.1 to 10 Hz
TA = 25°C
30
Noise Voltage − nV
ÁÁ
ÁÁ
ÁÁ
NOISE VOLTAGE
(REFERRED TO INPUT)
OVER A 10-SECOND INTERVAL
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
4
2
20
10
0
− 10
− 20
− 30
− 40
0
1
10
100
1k
10 k
− 50
100 k
0
2
4
f − Frequency − Hz
Figure 41
Gain-Bandwidth Product − MHz
B1 − Unity-Gain Bandwidth − MHz
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
52
16
14
12
10
2
4
6
8 10 12 14 16 18
| VCC± | − Supply Voltage − V
20
22
f = 100 kHz
RL = 2 kΩ
CL = 100 pF
TA = 25°C
51
50
49
48
0
10
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
18
8
Figure 42
TLE2027
UNITY-GAIN BANDWIDTH
vs
SUPPLY VOLTAGE
20
6
t − Time − s
0
2
4
6
8
10
12
14
16
18
20
⎟ VCC±⎟ − Supply Voltage − V
Figure 44
Figure 43
www.ti.com
27
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
TLE2027
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
12
8
4
0
100
1000
CL − Load Capacitance − pF
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
52
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
Gain-Bandwidth Product − MHz
B1 − Unity-Gain Bandwidth − MHz
16
TLE2037
GAIN-BANDWIDTH PRODUCT
vs
LOAD CAPACITANCE
51
50
49
48
100
10000
1000
Figure 45
Figure 46
TLE2027
SLEW RATE †
vs
FREE-AIR TEMPERATURE
TLE2037
SLEW RATE †
vs
FREE-AIR TEMPERATURE
3
SR − Slew Rate − V/ μ s
SR − Slew Rate − V/ μs
9
2.6
2.2
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC± = ±15 V
AVD = 1
RL = 2 kΩ
CL = 100 pF
See Figure 1
2
− 75 − 50 − 25
0
25
50
75
8
7
5
− 75 − 50 − 25 0
25 50 75 100 125 150
TA − Free-Air Temperature − °C
100 125 150
Figure 47
28
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
See Figure 1
6
TA − Free-Air Temperature − °C
†
ÎÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÎÎÎÎÎÎ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
10
2.8
2.4
10000
CL − Load Capacitance − pF
Figure 48
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
TLE2027
PHASE MARGIN
vs
SUPPLY VOLTAGE
56°
φ m − Phase Margin
54°
52°
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
52°
RL = 2 kΩ
CL = 100 pF
TA = 25°C
See Figure 3
50°
φ m − Phase Margin
58°
TLE2037
PHASE MARGIN
vs
SUPPLY VOLTAGE
50°
ÁÁ
ÁÁ
48°
46°
AVD = 5
RL = 2 kΩ
CL = 100 pF
TA = 25°C
46°
44°
42°
40°
44°
42°
48°
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
38°
0
2
4
6
8
10
12
14
16
18
20
22
0
| VCC± | − Supply Voltage − V
ÁÁ
ÁÁ
30°
20°
12
14
16
18
20
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
50°
40°
30°
20°
10°
10°
0°
10
60°
φ m − Phase Margin
φ m − Phase Margin
40°
8
TLE2037
PHASE MARGIN
vs
LOAD CAPACITANCE
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
50°
6
Figure 50
TLE2027
PHASE MARGIN
vs
LOAD CAPACITANCE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
4
⎟ VCC±⎟ − Supply Voltage − V
Figure 49
60°
2
100
0°
100
1000
CL − Load Capacitance − pF
1000
10000
CL − Load Capacitance − pF
Figure 51
Figure 52
www.ti.com
29
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
TYPICAL CHARACTERISTICS
TLE2027
PHASE MARGIN †
vs
FREE-AIR TEMPERATURE
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
65°
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
VCC ± = ± 15 V
AVD = 5
RL = 2 kΩ
CL = 100 pF
53°
55°
φ m − Phase Margin
φ m − Phase Margin
60°
ÁÁ
ÁÁ
55°
VCC± = ±15 V
RL = 2 kΩ
TA = 25°C
See Figure 3
TLE2037
PHASE MARGIN †
vs
FREE-AIR TEMPERATURE
50°
45°
51°
49°
47°
40°
35°
0
25
50
75 100
− 75 − 50 − 25
TA − Free-Air Temperature − °C
125
150
45°
− 75 − 50 − 25
30
25
50
75
100 125 150
TA − Free-Air Temperature − °C
Figure 53
†
0
Figure 54
Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
www.ti.com
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
APPLICATION INFORMATION
input offset voltage nulling
The TLE2027 and TLE2037 series offers external null pins that can be used to further reduce the input offset
voltage. The circuits of Figure 55 can be connected as shown if the feature is desired. If external nulling is not
needed, the null pins may be left disconnected.
1 kΩ
10 kΩ
VCC +
4.7 kΩ
VCC +
4.7 kΩ
IN −
−
−
IN −
OUT
OUT
IN +
+
+
IN +
VCC −
VCC −
(a) STANDARD ADJUSTMENT
(b) ADJUSTMENT WITH IMPROVED SENSITIVITY
Figure 55. Input Offset Voltage Nulling Circuits
voltage-follower applications
The TLE2027 circuitry includes input-protection diodes to limit the voltage across the input transistors; however,
no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur
when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It
is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent
degradation of the device. Also, this feedback resistor forms a pole with the input capacitance of the device.
For feedback resistor values greater than 10 kΩ, this pole degrades the amplifier phase margin. This problem
can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 56).
CF = 20 to 50 pF
IF ≤ 1 mA
RF
VCC
−
VO
VI
+
VCC −
Figure 56. Voltage Follower
www.ti.com
31
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using Microsim Parts™, the model generation software used
with Microsim PSpice ™. The Boyle macromodel (see Note 6) and subcircuit in Figure 57, Figure 58, and
Figure 59 were generated using the TLE20x7 typical electrical and operating characteristics at 25°C. Using this
information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most
cases):
•
•
•
•
•
•
•
•
•
•
•
•
Maximum positive output voltage swing
Maximum negative output voltage swing
Slew rate
Quiescent power dissipation
Input bias current
Open-loop voltage amplification
Gain-bandwidth product
Common-mode rejection ratio
Phase margin
DC output resistance
AC output resistance
Short-circuit output current limit
NOTE 6: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, “Macromodeling of Integrated Circuit Operational Amplifiers”, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
3
VCC +
IN +
IN −
1
rp
rc1
c1
dp
+
13
14
ree
cee
re2
10
lee
4
−
ve
53
dc
−
ro2
vb
r2
gcm
90
hlim
C2
6
ga
7
+
vlim
8
−
5
+
OUT
PSpice and Parts are trademarks of MicroSim Corporation.
www.ti.com
+ dip
−
ro1
54 de
Figure 57. Boyle Macromodel
32
dln
− fb
−
+
vc
Q2
re1
VCC −
rc2
12
11
Q1
2
9 egnd
99
+
91
+
vip
−
92
−
+
vin
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
APPLICATION INFORMATION
macromodel information (continued)
q2
12
1
14 qx
r2
6
9
100.0E3
rc1
3
11
530.5
rc2
3
12
530.5
re1
13
10
−393.2
re2
14
10
−393.2
ree
10
99
3.571E6
ro1
8
5
25
ro2
7
99
25
rp
3
4
8.013E3
vb
9
0
dc 0
vc
3
53
dc 2.400
ve
54
4
dc 2.100
vlim
7
8
dc 0
vlp
91
0
dc 40
vln
0
92
dc 40
.modeldx D(Is=800.0E-18)
.modelqx NPN(Is=800.0E-18
Bf=7.000E3)
.ends
.subckt TLE2027 1 2 3 4 5
*
c1
11
12
4.003E-12
c2
6
7
20.00E-12
dc
5
53
dz
de
54
5
dz
dlp
90
91
dz
dln
92
90
dx
dp
4
3
dz
egnd
99
0
poly(2) (3,0)
(4,0) 0 5 .5
fb
7
99
poly(5) vb vc
ve vlp vln 0 954.8E6 −1E9 1E9 1E9
−1E9
ga
6
0
11 12
2.062E-3
gcm
0
6
10 99
531.3E-12
iee
10
4
dc 56.01E-6
hlim
90
0
vlim 1K
q1
11
2
13 qx
Figure 58. TLE2027 Macromodel Subcircuit
.subckt TLE2037 1 2 3 4 5
*
c1
11
12
4.003E−12
c2
6
7
7.500E−12
dc
5
53
dz
de
54
5
dz
dlp
90
91
dz
dln
92
90
dx
dp
4
3
dz
egnd
99
0
poly(2) (3,0)
(4,0) 0 .5 .5
fb
7
99
poly(5) vb vc
ve vip vln 0 923.4E6 A800E6
800E6 800E6 A800E6
ga
6
0
11 12 2.121E−3
gcm
0
6
10 99 597.7E−12
iee
10
4
dc 56.26E−6
hlim
90
0
vlim 1K
q1
11
2
13 qx
q2
12
1
14 qz
r2
6
9
100.0E3
rc1
3
11
471.5
rc2
3
12
471.5
re1
13
10
A448
re2
14
10
A448
ree
10
99
3.555E6
ro1
8
5
25
ro2
7
99
25
rp
3
4
8.013E3
vb
9
0
dc 0
vc
3
53
dc 2.400
ve
54
4
dc 2.100
vlim
7
8
dc 0
vlp
91
0
dc 40
vln
0
92
dc 40
.model
dxD(Is=800.0E−18)
.model
qxNPN(Is=800.0E−18
Bf=7.031E3)
.ends
Figure 59. TLE2037 Macromodel Subcircuit
www.ti.com
33
TLE2027, TLE2037, TLE2027A, TLE2037A, TLE2027Y, TLE2037Y
EXCALIBUR LOW-NOISE HIGH-SPEED
PRECISION OPERATIONAL AMPLIFIERS
SLOS192C − FEBRUARY 1997 − REVISED APRIL 2010
REVISION HISTORY
Changes from Revision B (October 2006) to Revision C
•
34
Changed values of Vn, VN(PP), and In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . 11
www.ti.com
PACKAGE OPTION ADDENDUM
www.ti.com
27-Apr-2012
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
Eco Plan
(2)
Lead/
Ball Finish
MSL Peak Temp
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Call TI
5962-9089601MPA
ACTIVE
CDIP
JG
8
1
TBD
Call TI
Call TI
5962-9089602MPA
OBSOLETE
CDIP
JG
8
TBD
Call TI
Call TI
5962-9089603Q2A
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Call TI
5962-9089603QPA
ACTIVE
CDIP
JG
8
1
TBD
Call TI
Call TI
TLE2027ACD
OBSOLETE
SOIC
D
8
TBD
Call TI
Call TI
TLE2027ACP
OBSOLETE
PDIP
P
8
TBD
Call TI
Call TI
TLE2027AID
OBSOLETE
SOIC
D
8
TBD
Call TI
Call TI
TLE2027AIP
OBSOLETE
PDIP
P
8
TBD
Call TI
Call TI
TLE2027AMD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027AMDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027AMFKB
ACTIVE
LCCC
FK
20
1
TBD
TLE2027AMJG
ACTIVE
CDIP
JG
8
1
TBD
TLE2027AMJGB
ACTIVE
CDIP
JG
8
1
TBD
TLE2027CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027CP
OBSOLETE
PDIP
P
8
TLE2027ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
Addendum-Page 1
POST-PLATE N / A for Pkg Type
A42
N / A for Pkg Type
A42
N / A for Pkg Type
Call TI
Samples
(Requires Login)
5962-9089601M2A
TBD
(3)
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
27-Apr-2012
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
2500
Eco Plan
(2)
Green (RoHS
& no Sb/Br)
Lead/
Ball Finish
MSL Peak Temp
ACTIVE
SOIC
D
8
CU NIPDAU Level-1-260C-UNLIM
TLE2027IP
OBSOLETE
PDIP
P
8
TLE2027MD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2027MFKB
ACTIVE
LCCC
FK
20
1
TBD
Call TI
Call TI
POST-PLATE N / A for Pkg Type
TLE2027MJG
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
TLE2027MJGB
ACTIVE
CDIP
JG
8
1
TBD
A42
N / A for Pkg Type
TLE2037ACD
OBSOLETE
SOIC
D
8
TBD
Call TI
Call TI
TLE2037ACP
OBSOLETE
PDIP
P
8
TBD
Call TI
Call TI
TLE2037AID
OBSOLETE
SOIC
D
8
TBD
Call TI
Call TI
Call TI
Call TI
TBD
TLE2037AIP
OBSOLETE
PDIP
P
8
TLE2037AMD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037AMDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037AMJGB
OBSOLETE
CDIP
JG
8
TLE2037CD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037CDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037CDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037CDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037CP
OBSOLETE
PDIP
P
8
TLE2037ID
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037IDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037IDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TBD
TBD
Addendum-Page 2
Call TI
Call TI
Samples
(Requires Login)
TLE2027IDRG4
TBD
(3)
Call TI
Call TI
PACKAGE OPTION ADDENDUM
www.ti.com
27-Apr-2012
Orderable Device
Status
(1)
Package Type Package
Drawing
Pins
Package Qty
2500
Eco Plan
(2)
Green (RoHS
& no Sb/Br)
Lead/
Ball Finish
MSL Peak Temp
Samples
(Requires Login)
TLE2037IDRG4
ACTIVE
SOIC
D
8
TLE2037IP
OBSOLETE
PDIP
P
8
TLE2037MD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037MDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU Level-1-260C-UNLIM
TLE2037MFKB
OBSOLETE
LCCC
FK
20
TBD
Call TI
Call TI
TLE2037MJGB
OBSOLETE
CDIP
JG
8
TBD
Call TI
Call TI
TBD
(3)
CU NIPDAU Level-1-260C-UNLIM
Call TI
Call TI
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3)
MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLE2027, TLE2027A, TLE2027AM, TLE2027M, TLE2037, TLE2037A :
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
27-Apr-2012
• Catalog: TLE2027A, TLE2027
• Automotive: TLE2037-Q1, TLE2037A-Q1
• Enhanced Product: TLE2027-EP, TLE2027-EP
• Military: TLE2027M, TLE2027AM
NOTE: Qualified Version Definitions:
• Catalog - TI's standard catalog product
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
• Enhanced Product - Supports Defense, Aerospace and Medical Applications
• Military - QML certified for Military and Defense Applications
Addendum-Page 4
PACKAGE MATERIALS INFORMATION
www.ti.com
23-Sep-2010
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
W
Pin1
(mm) Quadrant
TLE2027CDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2027IDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2037CDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
TLE2037IDR
SOIC
D
8
2500
330.0
12.4
6.4
5.2
2.1
8.0
12.0
Q1
Pack Materials-Page 1
PACKAGE MATERIALS INFORMATION
www.ti.com
23-Sep-2010
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
TLE2027CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2027IDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2037CDR
SOIC
D
8
2500
340.5
338.1
20.6
TLE2037IDR
SOIC
D
8
2500
340.5
338.1
20.6
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUARY 1997
JG (R-GDIP-T8)
CERAMIC DUAL-IN-LINE
0.400 (10,16)
0.355 (9,00)
8
5
0.280 (7,11)
0.245 (6,22)
1
0.063 (1,60)
0.015 (0,38)
4
0.065 (1,65)
0.045 (1,14)
0.310 (7,87)
0.290 (7,37)
0.020 (0,51) MIN
0.200 (5,08) MAX
Seating Plane
0.130 (3,30) MIN
0.023 (0,58)
0.015 (0,38)
0°–15°
0.100 (2,54)
0.014 (0,36)
0.008 (0,20)
4040107/C 08/96
NOTES: A.
B.
C.
D.
E.
All linear dimensions are in inches (millimeters).
This drawing is subject to change without notice.
This package can be hermetically sealed with a ceramic lid using glass frit.
Index point is provided on cap for terminal identification.
Falls within MIL STD 1835 GDIP1-T8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated