FAIRCHILD FDD068AN03L

FDD068AN03L / FDU068AN03L
N-Channel PowerTrench® MOSFET
30V, 35A, 6.8mΩ
Features
Applications
• rDS(ON) = 5.7mΩ (Typ.), VGS = 4.5V, ID = 35A
• 12V Automotive Load Control
• Qg(5) = 24nC (Typ.), VGS = 5V
• Starter / Alternator Systems
• Low Miller Charge
• Electronic Power Steering Systems
• Low QRR Body Diode
• ABS
• UIS Capability (Single Pulse and Repetitive Pulse)
• DC-DC Converters
• Qualified to AEC Q101
D
D
G
S
D-PAK
TO-252
(TO-252)
I-PAK
(TO-251AA)
G
G D S
S
MOSFET Maximum Ratings TC = 25°C unless otherwise noted
Symbol
VDSS
Drain to Source Voltage
Parameter
Ratings
30
Units
V
VGS
Gate to Source Voltage
±20
V
Continuous (TC < 154oC, VGS = 10V)
35
A
Continuous (TC < 150oC, VGS = 4.5V)
35
A
Continuous (Tamb = 25oC, VGS = 10V, with RθJA = 52oC/W)
17
A
Drain Current
ID
Pulsed
EAS
PD
TJ, TSTG
Single Pulse Avalanche Energy (Note 1)
Power dissipation
Derate above 25oC
Operating and Storage Temperature
Figure 4
A
168
mJ
80
W
0.53
W/oC
-55 to 175
oC
Thermal Characteristics
RθJC
Thermal Resistance Junction to Case TO-252, TO-251
1.88
o
C/W
RθJA
Thermal Resistance Junction to Ambient TO-252, TO-251
100
o
C/W
RθJA
Thermal Resistance Junction to Ambient TO-252, 1in2 copper pad area
52
oC/W
This product has been designed to meet the extreme test conditions and environment demanded by the automotive industry. For a
copy of the requirements, see AEC Q101 at: http://www.aecouncil.com/
Reliability data can be found at: http://www.fairchildsemi.com/products/discrete/reliability/index.html.
All Fairchild Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems
certification.
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
December 2003
Device Marking
FDD068AN03L
Device
FDD068AN03L
Package
TO-252AA
Reel Size
13”
Tape Width
12mm
Quantity
2500 units
FDU068AN03L
FDU068AN03L
TO-251AA
Tube
N/A
75 units
Electrical Characteristics TC = 25°C unless otherwise noted
Symbol
Parameter
Test Conditions
Min
Typ
Max
Units
30
-
-
-
V
-
1
-
-
250
-
-
±100
nA
-
2.5
V
Off Characteristics
BVDSS
Drain to Source Breakdown Voltage
IDSS
Zero Gate Voltage Drain Current
IGSS
Gate to Source Leakage Current
ID = 250µA, VGS = 0V
VDS = 25V
VGS = 0V
TC = 150oC
VGS = ±20V
µA
On Characteristics
VGS(TH)
rDS(ON)
Gate to Source Threshold Voltage
Drain to Source On Resistance
VGS = VDS, ID = 250µA
1.2
ID = 35A, VGS = 10V
-
0.0047 0.0057
ID = 35A, VGS = 4.5V
-
0.0057 0.0068
ID = 35A, VGS = 10V,
TJ = 175oC
-
0.0075 0.0092
Ω
Dynamic Characteristics
CISS
Input Capacitance
COSS
Output Capacitance
CRSS
Reverse Transfer Capacitance
VDS = 15V, VGS = 0V,
f = 1MHz
-
2525
-
-
490
-
pF
pF
-
300
-
pF
RG
Gate Resistance
VGS = 0.5V, f = 1MHz
-
2.1
-
Ω
Qg(TOT)
Total Gate Charge at 10V
VGS = 0V to 10V
-
46
60
nC
Qg(5)
Total Gate Charge at 5V
VGS = 0V to 5V
Qg(TH)
Threshold Gate Charge
VGS = 0V to 1V
Qgs
Gate to Source Gate Charge
Qgs2
Gate Charge Threshold to Plateau
Qgd
Gate to Drain “Miller” Charge
Switching Characteristics
VDD = 15V
ID = 35A
Ig = 1.0mA
-
24
32
nC
-
2.3
3.0
nC
-
6.9
-
nC
-
4.6
-
nC
-
9.8
-
nC
(VGS = 4.5V)
tON
Turn-On Time
-
-
283
ns
td(ON)
Turn-On Delay Time
-
18
-
ns
tr
Rise Time
td(OFF)
Turn-Off Delay Time
tf
tOFF
-
171
-
ns
-
31
-
ns
Fall Time
-
61
-
ns
Turn-Off Time
-
-
137
ns
ISD = 35A
-
-
1.25
V
ISD = 15A
-
-
1.0
V
VDD = 15V, ID = 35A
VGS = 4.5V, RGS = 6.2Ω
Drain-Source Diode Characteristics
VSD
Source to Drain Diode Voltage
trr
Reverse Recovery Time
ISD = 35A, dISD/dt = 100A/µs
-
-
27
ns
QRR
Reverse Recovered Charge
ISD = 35A, dISD/dt = 100A/µs
-
-
12
nC
Notes:
1: Starting TJ = 25°C, L = 0.43mH, IAS = 28A.
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Package Marking and Ordering Information
1.2
125
POWER DISSIPATION MULTIPLIER
1.0
ID, DRAIN CURRENT (A)
100
0.8
0.6
0.4
CURRENT LIMITED
BY PACKAGE
75
50
25
0.2
0
0
0
25
50
75
100
150
125
175
25
50
75
TC , CASE TEMPERATURE (oC)
100
125
150
175
TC, CASE TEMPERATURE (oC)
Figure 1. Normalized Power Dissipation vs
Ambient Temperature
Figure 2. Maximum Continuous Drain Current vs
Case Temperature
2
ZθJC, NORMALIZED
THERMAL IMPEDANCE
1
DUTY CYCLE - DESCENDING ORDER
0.5
0.2
0.1
0.05
0.02
0.01
PDM
0.1
t1
t2
NOTES:
DUTY FACTOR: D = t1/t2
PEAK TJ = PDM x ZθJC x RθJC + TC
SINGLE PULSE
0.01
10-5
10-4
10-3
10-2
10-1
100
101
t, RECTANGULAR PULSE DURATION (s)
Figure 3. Normalized Maximum Transient Thermal Impedance
IDM, PEAK CURRENT (A)
1000
TC = 25oC
FOR TEMPERATURES
TRANSCONDUCTANCE
MAY LIMIT CURRENT
IN THIS REGION
ABOVE 25oC DERATE PEAK
CURRENT AS FOLLOWS:
VGS = 5V
175 - TC
I = I25
150
100
30
10-5
10-4
10-3
10-2
10-1
100
101
t, PULSE WIDTH (s)
Figure 4. Peak Current Capability
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Typical Characteristics TC = 25°C unless otherwise noted
1000
500
IAS, AVALANCHE CURRENT (A)
ID, DRAIN CURRENT (A)
10µs
100
100µs
10
OPERATION IN THIS
AREA MAY BE
LIMITED BY rDS(ON)
1ms
1
10ms
SINGLE PULSE
TJ = MAX RATED
TC = 25oC
100
STARTING TJ = 25oC
10
DC
STARTING TJ = 150oC
1
0.01
0.1
1
60
10
VDS, DRAIN TO SOURCE VOLTAGE (V)
100
Figure 6. Unclamped Inductive Switching
Capability
100
100
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
VDD = 15V
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
60
TJ = 25oC
40
VGS = 4V
TC = 25oC
80
ID, DRAIN CURRENT (A)
80
ID , DRAIN CURRENT (A)
0.1
1
10
tAV, TIME IN AVALANCHE (ms)
NOTE: Refer to Fairchild Application Notes AN7514 and AN7515
Figure 5. Forward Bias Safe Operating Area
VGS = 5V
VGS = 3V
60
VGS = 10V
40
20
20
TJ = 175oC
VGS = 2.5V
TJ = -55oC
0
0
1.5
2.0
2.5
3.0
VGS , GATE TO SOURCE VOLTAGE (V)
0
3.5
0.2
0.4
0.6
0.8
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 7. Transfer Characteristics
Figure 8. Saturation Characteristics
1.6
14
NORMALIZED DRAIN TO SOURCE
ON RESISTANCE
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
ID = 35A
rDS(ON), DRAIN TO SOURCE
ON RESISTANCE (mΩ)
If R = 0
tAV = (L)(IAS)/(1.3*RATED BVDSS - VDD)
If R ≠ 0
tAV = (L/R)ln[(IAS*R)/(1.3*RATED BVDSS - VDD) +1]
12
10
8
6
ID = 1A
PULSE DURATION = 80µs
DUTY CYCLE = 0.5% MAX
1.4
1.2
1.0
0.8
VGS = 5V, ID = 35A
4
2
4
6
8
10
VGS, GATE TO SOURCE VOLTAGE (V)
Figure 9. Drain to Source On Resistance vs Gate
Voltage and Drain Current
©2003 Fairchild Semiconductor Corporation
0.6
-80
-40
0
40
80
120
TJ, JUNCTION TEMPERATURE (oC)
160
200
Figure 10. Normalized Drain to Source On
Resistance vs Junction Temperature
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Typical Characteristics TC = 25°C unless otherwise noted
1.2
1.2
ID = 250µA
NORMALIZED DRAIN TO SOURCE
BREAKDOWN VOLTAGE
NORMALIZED GATE
THRESHOLD VOLTAGE
VGS = VDS, ID = 250µA
1.0
0.8
0.6
0.4
-80
-40
0
40
80
120
160
1.1
1.0
0.9
-80
200
-40
TJ, JUNCTION TEMPERATURE (oC)
Figure 11. Normalized Gate Threshold Voltage vs
Junction Temperature
80
120
160
200
10
VGS , GATE TO SOURCE VOLTAGE (V)
CISS = CGS + CGD
C, CAPACITANCE (pF)
40
Figure 12. Normalized Drain to Source
Breakdown Voltage vs Junction Temperature
5000
COSS ≅ CDS + CGD
1000
CRSS = CGD
VDD = 15V
8
6
4
WAVEFORMS IN
DESCENDING ORDER:
ID = 35A
ID = 5A
2
VGS = 0V, f = 1MHz
100
0.1
0
TJ , JUNCTION TEMPERATURE (oC)
0
1
10
VDS , DRAIN TO SOURCE VOLTAGE (V)
Figure 13. Capacitance vs Drain to Source
Voltage
©2003 Fairchild Semiconductor Corporation
30
0
10
20
30
Qg, GATE CHARGE (nC)
40
50
Figure 14. Gate Charge Waveforms for Constant
Gate Current
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Typical Characteristics TC = 25°C unless otherwise noted
VDS
BVDSS
tP
L
VDS
VARY tP TO OBTAIN
IAS
+
RG
REQUIRED PEAK IAS
VDD
VDD
-
VGS
DUT
tP
IAS
0V
0
0.01Ω
tAV
Figure 15. Unclamped Energy Test Circuit
Figure 16. Unclamped Energy Waveforms
VDS
VDD
Qg(TOT)
VDS
L
VGS
VGS = 10V
VGS
Qg(5)
+
Qgs2
VDD
VGS = 5V
DUT
VGS = 1V
Ig(REF)
0
Qg(TH)
Qgs
Qgd
Ig(REF)
0
Figure 18. Gate Charge Waveforms
Figure 17. Gate Charge Test Circuit
VDS
tON
tOFF
td(ON)
td(OFF)
RL
tf
tr
VDS
90%
90%
+
VGS
VDD
-
10%
10%
0
DUT
90%
RGS
VGS
VGS
0
Figure 19. Switching Time Test Circuit
©2003 Fairchild Semiconductor Corporation
50%
10%
50%
PULSE WIDTH
Figure 20. Switching Time Waveforms
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Test Circuits and Waveforms
P
DM
(T
–T )
JM
A
= ----------------------------RθJA
(EQ. 1)
In using surface mount devices such as the TO-252
package, the environment in which it is applied will have a
significant influence on the part’s current and maximum
power dissipation ratings. Precise determination of PDM is
complex and influenced by many factors:
1. Mounting pad area onto which the device is attached and
whether there is copper on one side or both sides of the
board.
125
RθJA = 33.32+ 23.84/(0.268+Area) EQ.2
RθJA = 33.32+ 154/(1.73+Area) EQ.3
100
RθJA (oC/W)
The maximum rated junction temperature, TJM, and the
thermal resistance of the heat dissipating path determines
the maximum allowable device power dissipation, PDM, in an
application.
Therefore the application’s ambient
temperature, TA (oC), and thermal resistance RθJA (oC/W)
must be reviewed to ensure that TJM is never exceeded.
Equation 1 mathematically represents the relationship and
serves as the basis for establishing the rating of the part.
75
50
25
0.01
(0.0645)
0.1
(0.645)
1
(6.45)
10
(64.5)
AREA, TOP COPPER AREA in2 (cm2)
Figure 21. Thermal Resistance vs Mounting
Pad Area
2. The number of copper layers and the thickness of the
board.
3. The use of external heat sinks.
4. The use of thermal vias.
5. Air flow and board orientation.
6. For non steady state applications, the pulse width, the
duty cycle and the transient thermal response of the part,
the board and the environment they are in.
Fairchild provides thermal information to assist the
designer’s preliminary application evaluation. Figure 21
defines the RθJA for the device as a function of the top
copper (component side) area. This is for a horizontally
positioned FR-4 board with 1oz copper after 1000 seconds
of steady state power with no air flow. This graph provides
the necessary information for calculation of the steady state
junction temperature or power dissipation. Pulse
applications can be evaluated using the Fairchild device
Spice thermal model or manually utilizing the normalized
maximum transient thermal impedance curve.
Thermal resistances corresponding to other copper areas
can be obtained from Figure 21 or by calculation using
Equation 2 or 3. Equation 2 is used for copper area defined
in inches square and equation 3 is for area in centimeters
square. The area, in square inches or square centimeters is
the top copper area including the gate and source pads.
23.84
( 0.268 + Area )
R θ JA = 33.32 + -------------------------------------
(EQ. 2)
Area in Inches Squared
154
( 1.73 + Area )
R θ JA = 33.32 + ----------------------------------
(EQ. 3)
Area in Centimeters Squared
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
Thermal Resistance vs. Mounting Pad Area
.SUBCKT FDD068AN03L 2 1 3 ; rev December 2003
Ca 12 8 2.3e-9
Cb 15 14 2.3e-9
Cin 6 8 2.3e-9
LDRAIN
DPLCAP
10
RSLC2
5
51
EVTHRES
+ 19 8
+
LGATE
GATE
1
EVTEMP
RGATE + 18 22
9
20
11
+
17
EBREAK 18
-
21
16
DBODY
MWEAK
6
MMED
MSTRO
RLGATE
LSOURCE
CIN
Lgate 1 9 4.6e-9
Ldrain 2 5 1.0e-9
Lsource 3 7 1.7e-9
8
7
SOURCE
3
RSOURCE
RLSOURCE
S1A
RLgate 1 9 46
RLdrain 2 5 10
RLsource 3 7 17
Mmed 16 6 8 8 MmedMOD
Mstro 16 6 8 8 MstroMOD
Mweak 16 21 8 8 MweakMOD
ESLC
50
RDRAIN
6
8
ESG
DBREAK
+
It 8 17 1
RLDRAIN
RSLC1
51
Dbody 7 5 DbodyMOD
Dbreak 5 11 DbreakMOD
Dplcap 10 5 DplcapMOD
Ebreak 11 7 17 18 32.6
Eds 14 8 5 8 1
Egs 13 8 6 8 1
Esg 6 10 6 8 1
Evthres 6 21 19 8 1
Evtemp 20 6 18 22 1
DRAIN
2
5
12
S2A
13
8
15
14
13
S1B
CA
RBREAK
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
VBAT
5
8
EDS
-
IT
14
+
+
-
Rbreak 17 18 RbreakMOD 1
Rdrain 50 16 RdrainMOD 2.2e-3
Rgate 9 20 2.1
RSLC1 5 51 RSLCMOD 1e-6
RSLC2 5 50 1e3
Rsource 8 7 RsourceMOD 2e-3
Rvthres 22 8 RvthresMOD 1
Rvtemp 18 19 RvtempMOD 1
S1a 6 12 13 8 S1AMOD
S1b 13 12 13 8 S1BMOD
S2a 6 15 14 13 S2AMOD
S2b 13 15 14 13 S2BMOD
+
8
22
RVTHRES
Vbat 22 19 DC 1
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}
.MODEL DbodyMOD D (IS=5E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7
+ CJO=8.8e-10 M=0.57 TT=1e-16 XTI=0.9)
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)
.MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)
.MODEL MmedMOD NMOS (VTO=1.85 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25)
.MODEL MstroMOD NMOS (VTO=2.34 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)
.MODEL MweakMOD NMOS (VTO=1.55 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)
.MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6)
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)
.MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6)
.MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8.8e-6)
.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)
.ENDS
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank
Wheatley.
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
PSPICE Electrical Model
rev December 2003
template FDD068AN03L n2,n1,n3 =m_temp
electrical n2,n1,n3
number m_temp=25
{
var i iscl
dp..model dbodymod = (isl=5e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=0.9)
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)
dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4)
m..model mmedmod = (type=_n,vto=1.85,kp=10,is=1e-30, tox=1)
m..model mstrongmod = (type=_n,vto=2.34,kp=350,is=1e-30, tox=1)
m..model mweakmod = (type=_n,vto=1.55,kp=0.05,is=1e-30, tox=1,rs=0.1)
LDRAIN
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)
DPLCAP 5
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)
10
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)
RLDRAIN
RSLC1
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)
51
c.ca n12 n8 = 2.3e-9
RSLC2
c.cb n15 n14 = 2.3e-9
ISCL
c.cin n6 n8 = 2.3e-9
spe.ebreak n11 n7 n17 n18 = 32.6 GATE
spe.eds n14 n8 n5 n8 = 1
1
spe.egs n13 n8 n6 n8 = 1
spe.esg n6 n10 n6 n8 = 1
spe.evthres n6 n21 n19 n8 = 1
spe.evtemp n20 n6 n18 n22 = 1
RDRAIN
6
8
ESG
EVTHRES
+ 19 8
+
LGATE
DBREAK
50
-
dp.dbody n7 n5 = model=dbodymod
dp.dbreak n5 n11 = model=dbreakmod
dp.dplcap n10 n5 = model=dplcapmod
EVTEMP
RGATE + 18 22
9
20
21
11
DBODY
16
MWEAK
6
EBREAK
+
17
18
-
MMED
MSTRO
RLGATE
CIN
DRAIN
2
8
LSOURCE
7
SOURCE
3
RSOURCE
RLSOURCE
i.it n8 n17 = 1
S1A
12
l.lgate n1 n9 = 4.6e-9
l.ldrain n2 n5 = 1.0e-9
l.lsource n3 n7 = 1.7e-9
13
8
14
13
S1B
CA
res.rlgate n1 n9 = 46
res.rldrain n2 n5 = 10
res.rlsource n3 n7 = 17
S2A
RBREAK
15
17
18
RVTEMP
S2B
13
CB
6
8
EGS
19
-
IT
14
+
+
VBAT
5
8
EDS
-
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp
+
8
22
RVTHRES
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7
res.rdrain n50 n16 = 2.2e-3, tc1=1e-4,tc2=8e-6
res.rgate n9 n20 = 2.1
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6
res.rslc2 n5 n50 = 1e3
res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6
res.rvthres n22 n8 = 1, tc1=-1.7e-3,tc2=-8.8e-6
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod
v.vbat n22 n19 = dc=1
equations {
i (n51->n50) +=iscl
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))
}
}
©2003 Fairchild Semiconductor Corporation
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
SABER Electrical Model
th
JUNCTION
REV 23 December 2003
FDD068AN03LT
CTHERM1 TH 6 9e-4
CTHERM2 6 5 1e-3
CTHERM3 5 4 2e-3
CTHERM4 4 3 3e-3
CTHERM5 3 2 7e-3
CTHERM6 2 TL 8e-2
RTHERM1
CTHERM1
6
RTHERM1 TH 6 3.0e-2
RTHERM2 6 5 1.0e-1
RTHERM3 5 4 1.8e-1
RTHERM4 4 3 2.8e-1
RTHERM5 3 2 4.5e-1
RTHERM6 2 TL 4.6e-1
CTHERM2
RTHERM2
5
SABER Thermal Model
SABER thermal model FDD068AN03LT
template thermal_model th tl
thermal_c th, tl
{
ctherm.ctherm1 th 6 =9e-4
ctherm.ctherm2 6 5 =1e-3
ctherm.ctherm3 5 4 =2e-3
ctherm.ctherm4 4 3 =3e-3
ctherm.ctherm5 3 2 =7e-3
ctherm.ctherm6 2 tl =8e-2
rtherm.rtherm1 th 6 =3.0e-2
rtherm.rtherm2 6 5 =1.0e-1
rtherm.rtherm3 5 4 =1.8e-1
rtherm.rtherm4 4 3 =2.8e-1
rtherm.rtherm5 3 2 =4.5e-1
rtherm.rtherm6 2 tl =4.6e-1
}
RTHERM3
CTHERM3
4
RTHERM4
CTHERM4
3
RTHERM5
CTHERM5
2
RTHERM6
CTHERM6
tl
©2003 Fairchild Semiconductor Corporation
CASE
FDD068AN03L / FDU068AN03L Rev. B1
FDD068AN03L / FDU068AN03L
PSPICE Thermal Model
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not
intended to be an exhaustive list of all such trademarks.
ACEx™
FACT Quiet Series™
ActiveArray™
FAST®
FASTr™
Bottomless™
FRFET™
CoolFET™
CROSSVOLT™ GlobalOptoisolator™
GTO™
DOME™
HiSeC™
EcoSPARK™
I2C™
E2CMOS™
EnSigna™
ImpliedDisconnect™
FACT™
ISOPLANAR™
Across the board. Around the world.™
The Power Franchise™
Programmable Active Droop™
LittleFET™
MICROCOUPLER™
MicroFET™
MicroPak™
MICROWIRE™
MSX™
MSXPro™
OCX™
OCXPro™
OPTOLOGIC®
OPTOPLANAR™
PACMAN™
POP™
Power247™
PowerTrench®
QFET®
QS™
QT Optoelectronics™
Quiet Series™
RapidConfigure™
RapidConnect™
SILENT SWITCHER®
SMART START™
SPM™
Stealth™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic®
TINYOPTO™
TruTranslation™
UHC™
UltraFET®
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY
PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY
LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN;
NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR
CORPORATION.
As used herein:
1. Life support devices or systems are devices or systems
which, (a) are intended for surgical implant into the body,
or (b) support or sustain life, or (c) whose failure to perform
when properly used in accordance with instructions for use
provided in the labeling, can be reasonably expected to
result in significant injury to the user.
2. A critical component is any component of a life support
device or system whose failure to perform can be
reasonably expected to cause the failure of the life support
device or system, or to affect its safety or effectiveness.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or In
Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. I5