PWM Optimized ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 N-Channel Logic Level UltraFET® Trench MOSFETs 30V, 75A, 3.2mΩ General Description Features This device employs a new advanced trench MOSFET technology and features low gate charge while maintaining low on-resistance. • Fast switching Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies. • rDS(ON) = 0.004Ω (Typ), VGS = 4.5V • Qg (Typ) = 61nC, VGS = 5V Applications • Qgd (Typ) = 17nC • DC/DC converters • CISS (Typ) = 7000pF DRAIN (FLANGE) SOURCE DRAIN DRAIN (FLANGE) SOURCE DRAIN • rDS(ON) = 0.0026Ω (Typ), VGS = 10V GATE D GATE G GATE SOURCE TO-220AB TO-263AB DRAIN (FLANGE) S TO-262AB MOSFET Maximum Ratings TC= 25°C unless otherwise noted Symbol VDSS Drain to Source Voltage Parameter Ratings 30 Units V VGS Gate to Source Voltage ±20 V Drain Current ID Continuous (TC = 25oC, VGS = 10V) 75 A Continuous (TC = 100oC, VGS = 4.5V) 75 A Continuous (TC = 25oC, VGS = 10V, RθJA = 43oC/W) 25 A Pulsed Figure 4 PD Power dissipation Derate above TJ, TSTG Operating and Storage Temperature 215 1.43 W W/oC -55 to 175 o C Thermal Characteristics RθJC Thermal Resistance Junction to Case TO-220, TO-262, TO-263 0.7 oC/W RθJA Thermal Resistance Junction to Ambient TO-220, TO-262, TO-263 62 o RθJA Thermal Resistance Junction to Ambient TO-263, 1in2 copper pad area 43 o C/W C/W Package Marking and Ordering Information Device Marking N303AS Device ISL9N303AS3ST Package TO-263AB Reel Size 330mm Tape Width 24mm Quantity 800 units N303AP ISL9N303AP3 TO-220AB Tube N/A 50 units N303AS ISL9N303AS3 TO-262AA Tube N/A 50 units ©2002 Fairchild Semiconductor Corporation ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 September 2002 Symbol Parameter Test Conditions Min Typ Max Units 30 - - - V - 1 - - 250 µA VGS = ±20V - - ±100 nA - 3 V Off Characteristics BVDSS Drain to Source Breakdown Voltage IDSS Zero Gate Voltage Drain Current IGSS Gate to Source Leakage Current ID = 250µA, VGS = 0V VDS = 25V VGS = 0V TC = 150o On Characteristics VGS(TH) rDS(ON) Gate to Source Threshold Voltage Drain to Source On Resistance VGS = VDS, ID = 250µA 1 ID = 75A, VGS = 10V - 0.0026 0.0032 ID = 75A, VGS = 4.5V - 0.004 0.005 - 7000 - pF - 1350 - pF - 570 - pF 115 172 nC Ω Dynamic Characteristics CISS Input Capacitance COSS Output Capacitance CRSS Reverse Transfer Capacitance Qg(TOT) Total Gate Charge at 10V VGS = 0V to 10V VGS = 0V to 5V V = 15V DD VGS = 0V to 1V ID = 75A Ig = 1.0mA Qg(5) Total Gate Charge at 5V Qg(TH) Threshold Gate Charge Qgs Gate to Source Gate Charge Qgd Gate to Drain “Miller” Charge Switching Characteristics VDS = 15V, VGS = 0V, f = 1MHz - 61 92 nC - 6.5 9.8 nC - 14 - nC - 17 - nC (VGS = 4.5V) tON Turn-On Time - - 155 ns td(ON) Turn-On Delay Time - 22 - ns tr Rise Time - 80 - ns td(OFF) Turn-Off Delay Time - 35 - ns tf Fall Time - 25 - ns tOFF Turn-Off Time - - 90 ns Switching Characteristics VDD = 15V, ID = 24A VGS = 4.5V, RG = 2.4Ω (VGS = 10V) tON Turn-On Time - - 123 ns td(ON) Turn-On Delay Time - 12 - ns tr Rise Time - 69 - ns td(OFF) Turn-Off Delay Time - 51 - ns tf Fall Time - 21 - ns tOFF Turn-Off Time - - 107 ns 275 - - µs V VDD = 15V, ID = 24A VGS = 10V, RG = 2.4Ω Unclamped Inductive Switching tAV Avalanche Time ID = 4.1A L = 3.0 mH Drain-Source Diode Characteristics ISD = 75A - - 1.25 ISD = 35A - - 1.0 V Reverse Recovery Time ISD = 75A, dISD/dt = 100A/µs - - 31 ns Reverse Recovered Charge ISD = 75A, dISD/dt = 100A/µs - - 20 nC VSD Source to Drain Diode Voltage trr QRR ©2002 Fairchild Semiconductor Corporation ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Electrical Characteristics TC = 25°C unless otherwise noted POWER DISSIPATION MULTIPLIER 1.2 80 1 ID, DRAIN CURRENT (A) VGS = 10V 0.8 0.6 0.4 60 VGS = 4.5V 40 20 0.2 0 0 0 25 50 75 100 150 125 25 175 50 75 TC , CASE TEMPERATURE (oC) 100 125 150 175 TC, CASE TEMPERATURE (oC) Figure 1. Normalized Power Dissipation vs Ambient Temperature Figure 2. Maximum Continuous Drain Current vs Case Temperature 2 DUTY CYCLE - DESCENDING ORDER 0.5 0.2 0.1 0.05 0.02 0.01 ZθJC, NORMALIZED THERMAL IMPEDANCE 1 PDM 0.1 t1 t2 NOTES: DUTY FACTOR: D = t1/t2 PEAK TJ = PDM x ZθJC x RθJC + TC SINGLE PULSE 0.01 10-5 10-4 10-3 10-2 10-1 100 101 t, RECTANGULAR PULSE DURATION (s) Figure 3. Normalized Maximum Transient Thermal Impedance IDM, PEAK CURRENT (A) 3000 TC = 25oC FOR TEMPERATURES ABOVE 25oC DERATE PEAK CURRENT AS FOLLOWS: 1000 VGS = 10V 175 - TC I = I25 150 VGS = 5V 100 TRANSCONDUCTANCE MAY LIMIT CURRENT IN THIS REGION 50 10-5 10-4 10-3 10-2 10-1 10-0 101 t, PULSE WIDTH (s) Figure 4. Peak Current Capability ©2002 Fairchild Semiconductor Corporation ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Typical Characteristics 150 150 VGS = 10V PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX VDD = 15V 120 90 TJ = 175oC 60 TJ = -55oC TJ = 25oC 30 VGS = 4.5V ID, DRAIN CURRENT (A) ID , DRAIN CURRENT (A) 120 VGS = 3.5V 90 60 VGS = 3V TC = 25oC 30 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 0 0 1.5 2 2.5 3 0 3.5 0.2 VGS , GATE TO SOURCE VOLTAGE (V) Figure 5. Transfer Characteristics 0.6 0.8 1 Figure 6. Saturation Characteristics 10 2 NORMALIZED DRAIN TO SOURCE ON RESISTANCE PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX rDS(ON), DRAIN TO SOURCE ON RESISTANCE (mΩ) 0.4 VDS , DRAIN TO SOURCE VOLTAGE (V) 8 ID = 75A 6 ID = 24A 4 PULSE DURATION = 80µs DUTY CYCLE = 0.5% MAX 1.5 1 VGS = 10V, ID =75A 0.5 2 2 4 6 8 -80 10 -40 Figure 7. Drain to Source On Resistance vs Gate Voltage and Drain Current 40 80 120 160 200 Figure 8. Normalized Drain to Source On Resistance vs Junction Temperature 1.4 1.2 ID = 250µA NORMALIZED DRAIN TO SOURCE BREAKDOWN VOLTAGE VGS = VDS, ID = 250µA 1.2 NORMALIZED GATE THRESHOLD VOLTAGE 0 TJ, JUNCTION TEMPERATURE (oC) VGS, GATE TO SOURCE VOLTAGE (V) 1 0.8 0.6 0.4 1.1 1.0 0.9 0.2 -80 -40 0 40 80 120 160 200 TJ, JUNCTION TEMPERATURE (oC) Figure 9. Normalized Gate Threshold Voltage vs Junction Temperature ©2002 Fairchild Semiconductor Corporation -80 -40 0 40 80 120 160 200 TJ , JUNCTION TEMPERATURE (oC) Figure 10. Normalized Drain to Source Breakdown Voltage vs Junction Temperature ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Typical Characteristics 10 VGS , GATE TO SOURCE VOLTAGE (V) 10000 C, CAPACITANCE (pF) CISS = CGS + CGD COSS ≅ CDS + CGD CRSS = CGD 1000 VGS = 0V, f = 1MHz 300 0.1 VDD = 15V 8 6 4 WAVEFORMS IN DESCENDING ORDER: ID = 75A ID = 10A 2 0 1 10 30 0 50 100 Qg, GATE CHARGE (nC) VDS , DRAIN TO SOURCE VOLTAGE (V) Figure 11. Capacitance vs Drain to Source Voltage Figure 12. Gate Charge Waveforms for Constant Gate Currents 800 500 VGS = 10V, VDD = 15V, ID = 24A VGS = 4.5V, VDD = 15V, ID = 24A 400 tr SWITCHING TIME (ns) SWITCHING TIME (ns) 150 td(OFF) 300 tf 200 td(ON) 600 td(OFF) 400 tf 200 tr 100 td(ON) 0 0 0 10 20 30 40 0 50 RGS, GATE TO SOURCE RESISTANCE (Ω) 10 20 30 40 50 RGS, GATE TO SOURCE RESISTANCE (Ω) Figure 13. Switching Time vs Gate Resistance Figure 14. Switching Time vs Gate Resistance Test Circuits and Waveforms VDS BVDSS tP VDS L IAS VDD VARY tP TO OBTAIN REQUIRED PEAK IAS + RG VDD - VGS DUT tP 0V IAS 0 0.01Ω tAV Figure 15. Unclamped Energy Test Circuit ©2002 Fairchild Semiconductor Corporation Figure 16. Unclamped Energy Waveforms ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Typical Characteristics VDS VDD Qg(TOT) RL VDS VGS = 10V VGS Qg(5) + VDD VGS = 5V VGS - VGS = 1V DUT 0 Ig(REF) Qg(TH) Qgs Qgd Ig(REF) 0 Figure 17. Gate Charge Test Circuit Figure 18. Gate Charge Waveforms VDS tON tOFF td(ON) td(OFF) tr RL VDS tf 90% 90% + VGS VDD - 10% 0 10% DUT 90% RGS VGS 50% 50% PULSE WIDTH VGS 0 Figure 19. Switching Time Test Circuit ©2002 Fairchild Semiconductor Corporation 10% Figure 20. Switching Time Waveforms ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Test Circuits and Waveforms (Continued) P DM (T –T ) JM A = ----------------------------Z θJA (EQ. 1) In using surface mount devices such as the TO-263 package, the environment in which it is applied will have a significant influence on the part’s current and maximum power dissipation ratings. Precise determination of PDM is complex and influenced by many factors: 1. Mounting pad area onto which the device is attached and whether there is copper on one side or both sides of the board. 80 RθJA = 26.51+ 19.84/(0.262+Area) 60 RθJA (oC/W) The maximum rated junction temperature, TJM, and the thermal resistance of the heat dissipating path determines the maximum allowable device power dissipation, PDM, in an application. Therefore the application’s ambient temperature, TA (oC), and thermal resistance RθJA (oC/W) must be reviewed to ensure that TJM is never exceeded. Equation 1 mathematically represents the relationship and serves as the basis for establishing the rating of the part. 40 20 0.1 1 10 AREA, TOP COPPER AREA (in2) Figure 21. Thermal Resistance vs Mounting Pad Area 2. The number of copper layers and the thickness of the board. 3. The use of external heat sinks. 4. The use of thermal vias. 5. Air flow and board orientation. 6. For non steady state applications, the pulse width, the duty cycle and the transient thermal response of the part, the board and the environment they are in. Fairchild provides thermal information to assist the designer’s preliminary application evaluation. Figure 21 defines the RθJA for the device as a function of the top copper (component side) area. This is for a horizontally positioned FR-4 board with 1oz copper after 1000 seconds of steady state power with no air flow. This graph provides the necessary information for calculation of the steady state junction temperature or power dissipation. Pulse applications can be evaluated using the Fairchild device Spice thermal model or manually utilizing the normalized maximum transient thermal impedance curve. Displayed on the curve are RθJA values listed in the Electrical Specifications table. The points were chosen to depict the compromise between the copper board area, the thermal resistance and ultimately the power dissipation, PDM. Thermal resistances corresponding to other copper areas can be obtained from Figure 21 or by calculation using Equation 2. RθJA is defined as the natural log of the area times a coefficient added to a constant. The area, in square inches is the top copper area including the gate and source pads. 19.84 ( 0.262 + Area ) R θ JA = 26.51 + ------------------------------------- ©2002 Fairchild Semiconductor Corporation (EQ. 2) ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 Thermal Resistance vs. Mounting Pad Area rev May 2001 LDRAIN DPLCAP 10 Dbody 7 5 DbodyMOD Dbreak 5 11 DbreakMOD Dplcap 10 5 DplcapMOD RSLC2 5 51 - Lgate 1 9 5.618e-9 Ldrain 2 5 1.0e-9 Lsource 3 7 1.98e-9 RLDRAIN RSLC1 51 Ebreak 11 7 17 18 30.6 Eds 14 8 5 8 1 Egs 13 8 6 8 1 Esg 6 10 6 8 1 Evthres 6 21 19 8 1 Evtemp 20 6 18 22 1 It 8 17 1 DRAIN 2 5 EVTHRES + 19 8 + LGATE GATE 1 ESLC 11 + 17 EBREAK 18 - 50 RDRAIN 6 8 ESG DBREAK + .SUBCKT ISL9N303AP3 2 1 3 ; Ca 12 8 6.3e-9 Cb 15 14 3.8e-9 Cin 6 8 6.7e-9 EVTEMP RGATE + 18 22 9 20 21 16 DBODY MWEAK 6 MMED MSTRO RLGATE LSOURCE CIN 8 SOURCE 3 7 RSOURCE RLSOURCE RLgate 1 9 56.1 RLdrain 2 5 15 RLsource 3 7 19.8 Mmed 16 6 8 8 MmedMOD Mstro 16 6 8 8 MstroMOD Mweak 16 21 8 8 MweakMOD S1A 12 S2A 13 8 14 13 S1B CA 15 17 18 RVTEMP S2B 13 CB 19 6 8 VBAT 5 8 EDS - IT 14 + + EGS Rbreak 17 18 RbreakMOD 1 Rdrain 50 16 RdrainMOD 0.9e-3 Rgate 9 20 0.639 RSLC1 5 51 RSLCMOD 1e-6 RSLC2 5 50 1e3 Rsource 8 7 RsourceMOD 1.8e-3 Rvthres 22 8 RvthresMOD 1 Rvtemp 18 19 RvtempMOD 1 S1a 6 12 13 8 S1AMOD S1b 13 12 13 8 S1BMOD S2a 6 15 14 13 S2AMOD S2b 13 15 14 13 S2BMOD RBREAK - + 8 22 RVTHRES Vbat 22 19 DC 1 ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),3))} .MODEL DbodyMOD D (IS=8e-11 N=1.06 RS=2.3e-3 TRS1=1.1e-3 TRS2=3e-6 + CJO=2.6e-9 M=0.43 TT=3e-10 XTI=0.1) .MODEL DbreakMOD D (RS=0.3 TRS1=1.8e-3 TRS2=-8.9e-6) .MODEL DplcapMOD D (CJO=2.05e-9 IS=1e-30 N=10 M=0.46) .MODEL MstroMOD NMOS (VTO=2.16 KP=270 IS=1e-30 N=10 TOX=1 L=1u W=1u) .MODEL MmedMOD NMOS (VTO=1.65 KP=20 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=0.639) .MODEL MweakMOD NMOS (VTO=1.29 KP=0.1 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=6.39 RS=0.1) .MODEL RbreakMOD RES (TC1=1.05e-3 TC2=-7e-7) .MODEL RdrainMOD RES (TC1=1e-2 TC2=1.8e-5) .MODEL RSLCMOD RES (TC1=3.5e-4 TC2=5e-6) .MODEL RsourceMOD RES (TC1=1e-3 TC2=1e-6) .MODEL RvthresMOD RES (TC1=-3e-3 TC2=-11e-6) .MODEL RvtempMOD RES (TC1=-1.5e-3 TC2=1.4e-6) .MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-5 VOFF=-4) .MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-5) .MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.9 VOFF=0.2) .MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=0.2 VOFF=-0.9) .ENDS Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley. ©2002 Fairchild Semiconductor Corporation ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 PSPICE Electrical Model REV May 20011 template ISL9N303AP3 n2,n1,n3 electrical n2,n1,n3 { var i iscl dp..model dbodymod = (isl=8e-11,nl=1.06,rs=2.3e-3,trs1=1.1e-3,trs2=3e-6,cjo=2.6e-9,m=0.43,tt=3e-10,xti=0.1) dp..model dbreakmod = (rs=0.3,trs1=1.8e-3,trs2=-8.9e-6) dp..model dplcapmod = (cjo=2.05e-9,isl=10e-30,nl=10,m=0.46) m..model mstrongmod = (type=_n,vto=2.16,kp=270,is=1e-30, tox=1) m..model mmedmod = (type=_n,vto=1.65,kp=20,is=1e-30, tox=1) m..model mweakmod = (type=_n,vto=1.29,kp=0.1,is=1e-30, tox=1,rs=0.1) sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-5,voff=-4) DPLCAP 5 sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-4,voff=-5) 10 sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-0.9,voff=0.2) RSLC1 sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=0.2,voff=-0.9) 51 c.ca n12 n8 = 6.3e-9 RSLC2 c.cb n15 n14 = 3.8e-9 ISCL c.cin n6 n8 = 6.7e-9 spe.ebreak n11 n7 n17 n18 = 30.6 spe.eds n14 n8 n5 n8 = 1 spe.egs n13 n8 n6 n8 = 1 spe.esg n6 n10 n6 n8 = 1 spe.evthres n6 n21 n19 n8 = 1 spe.evtemp n20 n6 n18 n22 = 1 RDRAIN 6 8 ESG EVTHRES + 19 8 + LGATE GATE 1 EVTEMP RGATE + 18 22 9 20 21 11 DBODY MWEAK EBREAK + 17 18 - MMED MSTRO CIN RLDRAIN 16 6 RLGATE DRAIN 2 DBREAK 50 - dp.dbody n7 n5 = model=dbodymod dp.dbreak n5 n11 = model=dbreakmod dp.dplcap n10 n5 = model=dplcapmod LDRAIN 8 LSOURCE 7 SOURCE 3 RSOURCE RLSOURCE i.it n8 n17 = 1 S1A 12 l.lgate n1 n9 = 5.618e-9 l.ldrain n2 n5 = 1.0e-9 l.lsource n3 n7 = 1.98e-9 S2A 13 8 14 13 S1B CA res.rlgate n1 n9 = 56.1 res.rldrain n2 n5 = 15 res.rlsource n3 n7 = 19.8 RBREAK 15 17 18 RVTEMP S2B 13 CB 6 8 EGS - 19 IT 14 + + VBAT 5 8 EDS - m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u + 8 22 RVTHRES res.rbreak n17 n18 = 1, tc1=1.05e-3,tc2=-7e-7 res.rdrain n50 n16 = 0.9e-3, tc1=1e-2,tc2=1.8e-5 res.rgate n9 n20 = 0.639 res.rslc1 n5 n51 = 1e-6, tc1=3.5e-4,tc2=5e-6 res.rslc2 n5 n50 = 1e3 res.rsource n8 n7 = 1.8e-3, tc1=1e-3,tc2=1e-6 res.rvthres n22 n8 = 1, tc1=-3e-3,tc2=-11e-6 res.rvtemp n18 n19 = 1, tc1=-1.5e-3,tc2=1.4e-6 sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod v.vbat n22 n19 = dc=1 equations { i (n51->n50) +=iscl iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 3)) } ©2002 Fairchild Semiconductor Corporation ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 SABER Electrical Model th JUNCTION REV May 2001 ISL9N303AP3 CTHERM1 TH 6 3.9e-3 CTHERM2 6 5 7.1e-3 CTHERM3 5 4 8.7e-3 CTHERM4 4 3 9.6e-3 CTHERM5 3 2 1e-2 CTHERM6 2 TL 2.4e-2 RTHERM1 CTHERM1 6 RTHERM1 TH 6 3.9e-5 RTHERM2 6 5 7.5e-4 RTHERM3 5 4 4.8e-3 RTHERM4 4 3 2.7e-2 RTHERM5 3 2 1.6e-1 RTHERM6 2 TL 3.7e-1 CTHERM2 RTHERM2 5 SABER Thermal Model SABER thermal model ISL9N303AP3 template thermal_model th tl thermal_c th, tl { ctherm.ctherm1 th 6 =3.9e-3 ctherm.ctherm2 6 5 =7.1e-3 ctherm.ctherm3 5 4 =8.7e-3 ctherm.ctherm4 4 3 =9.6e-3 ctherm.ctherm5 3 2 =1e-2 ctherm.ctherm6 2 tl =2.4e-2 rtherm.rtherm1 th 6 =3.9e-5 rtherm.rtherm2 6 5 =7.5e-4 rtherm.rtherm3 5 4 =4.8e-3 rtherm.rtherm4 4 3 =2.7e-2 rtherm.rtherm5 3 2 =1.6e-1 rtherm.rtherm6 2 tl =3.7e-1 } RTHERM3 CTHERM3 4 RTHERM4 CTHERM4 3 RTHERM5 CTHERM5 2 RTHERM6 CTHERM6 tl ©2002 Fairchild Semiconductor Corporation CASE ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3, Rev. C1 ISL9N303AP3 / ISL9N303AS3ST / ISL9N303AS3 SPICE Thermal Model TRADEMARKS The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. ACEx™ FACT™ ActiveArray™ FACT Quiet Series™ Bottomless™ FAST® CoolFET™ FASTr™ CROSSVOLT™ FRFET™ DOME™ GlobalOptoisolator™ EcoSPARK™ GTO™ E2CMOS™ HiSeC™ EnSigna™ I2C™ Across the board. Around the world.™ The Power Franchise™ Programmable Active Droop™ ImpliedDisconnect™ ISOPLANAR™ LittleFET™ MicroFET™ MicroPak™ MICROWIRE™ MSX™ MSXPro™ OCX™ OCXPro™ OPTOLOGIC® OPTOPLANAR™ PACMAN™ POP™ Power247™ PowerTrench® QFET™ QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ RapidConnect™ SILENT SWITCHER® SMART START™ SPM™ Stealth™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SyncFET™ TinyLogic™ TruTranslation™ UHC™ UltraFET® VCX™ DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. LIFE SUPPORT POLICY FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user. 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. PRODUCT STATUS DEFINITIONS Definition of Terms Datasheet Identification Product Status Definition Advance Information Formative or In Design This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. Preliminary First Production This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. No Identification Needed Full Production This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. Obsolete Not In Production This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. Rev. I1