INTERSIL CA3094AE

CA3094, CA3094A, CA3094B
Data Sheet
April 1999
File Number
30MHz, High Output Current Operational
Transconductance Amplifier (OTA)
Features
The CA3094 is a differential input power control
switch/amplifier with auxiliary circuit features for ease of
programmability. For example, an error or unbalance signal
can be amplified by the CA3094 to provide an on-off signal or
proportional control output signal up to 100mA. This signal is
sufficient to directly drive high current thyristors, relays, DC
loads, or power transistors. The CA3094 has the generic
characteristics of the CA3080 operational amplifier directly
coupled to an integral Darlington power transistor capable of
sinking or driving currents up to 100mA.
• CA3094AT, E, M for Operation Up to 36V
The gain of the differential input stage is proportional to the
amplifier bias current (IABC), permitting programmable
variation of the integrated circuit sensitivity with either digital
and/or analog programming signals. For example, at an IABC
of 100µA, a 1mV change at the input will change the output
from 0 to 100µA (typical).
The CA3094 is intended for operation up to 24V and is
especially useful for timing circuits, in automotive equipment,
and in other applications where operation up to 24V is a
primary design requirement (see Figures 28, 29 and 30 in
Typical Applications text). The CA3094A and CA3094B are
like the CA3094 but are intended for operation up to 36V and
44V, respectively (single or dual supply).
TEMP.
RANGE (oC)
• CA3094E, M for Operation Up to 24V
• CA3094BT, M for Operation Up to 44V
• Designed for Single or Dual Power Supply
• Programmable: Strobing, Gating, Squelching, AGC
Capabilities
• Can Deliver 3W (Average) or 10W (Peak) to External Load
(in Switching Mode)
• High Power, Single Ended Class A Amplifier will Deliver
Power Output of 0.6W (1.6W Device Dissipation)
• Total Harmonic Distortion (THD) at 0.6W in Class A
Operation 1.4% (Typ)
Applications
• Error Signal Detector: Temperature Control with
Thermistor Sensor; Speed Control for Shunt Wound DC
Motor
• Over Current, Over Voltage, Over Temperature Protectors
• Dual Tracking Power Supply with CA3085
• Wide Frequency Range Oscillator
• Analog Timer
• Level Detector
Ordering Information
PART NUMBER
(BRAND)
598.7
PACKAGE
PKG.
NO.
• Alarm Systems
• Voltage Follower
CA3094AT, BT
-55 to 125
8 Pin Metal Can
T8.C
• Ramp Voltage Generator
CA3094E, AE
-55 to 125
8 Ld PDIP
E8.3
• High Power Comparator
CA3094M, BM
-55 to 125
8 Ld SOIC
M8.15
• Ground Fault Interrupter (GFI) Circuits
Pinouts
CA3094 (PDIP, SOIC)
TOP VIEW
EXT. FREQUENCY
COMPENSATION
OR INHIBIT INPUT
DIFFERENTIAL
VOLTAGE INPUTS
GND (V- IN DUAL
SUPPLY OPERATION)
1
8
CA3094 (METAL CAN)
TOP VIEW
SINK OUTPUT
(COLLECTOR)
7
V+
3
6
DRIVE OUTPUT
(EMITTER)
4
5
IABC CURRENT
2
SINK OUTPUT
(COLLECTOR)
EXT. FREQUENCY
COMPENSATION OR
INHIBIT INPUT
8
1
TAB
7
2
PROGRAMMABLE
INPUT
(STROBE OR AGC)
DIFFERENTIAL
VOLTAGE INPUTS
V+
6
5
3
4
GND (V- IN DUAL
SUPPLY OPERATION)
DRIVE OUTPUT
(EMITTER)
IABC CURRENT
PROGRAMMABLE INPUT
(STROBE OR AGC)
NOTE: Pin 4 is connected to case.
3-12
CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures.
1-888-INTERSIL or 321-724-7143 | Copyright © Intersil Corporation 1999
CA3094, CA3094A, CA3094B
Absolute Maximum Ratings
Thermal Information
Supply Voltage (Between V+ and V- Terminals)
CA3094 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V
CA3094A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V
CA3094B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V
Differential Input Voltage (Terminals 2 and 3, Note 1) . . . . . . . . . 5V
DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to VInput Current (Terminals 2 and 3) . . . . . . . . . . . . . . . . . . . . . . ±1mA
Amplifier Bias Current (Terminal 5) . . . . . . . . . . . . . . . . . . . . . . 2mA
Average Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA
Peak Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA
Thermal Resistance (Typical, Note 2)
θJA (oC/W) θJC (oC/W)
PDIP Package . . . . . . . . . . . . . . . . . . .
130
N/A
SOIC Package . . . . . . . . . . . . . . . . . . .
170
N/A
Metal Can Package . . . . . . . . . . . . . . .
175
100
Maximum Junction Temperature (Metal Can Package) . . . . . . .175oC
Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC
Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC
Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC
(SOIC - Lead Tips Only)
Operating Conditions
Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.
NOTES:
1. Exceeding this voltage rating will not damage the device unless the peak input signal current (1mA) is also exceeded.
2. θJA is measured with the component mounted on an evaluation PC board in free air.
Electrical Specifications
TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = ±15V, IABC = 100µA Unless
Otherwise Specified
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
TA = 25oC
-
0.4
5.0
mV
TA = 0oC to 70oC
-
-
7.0
mV
Change in VIO between IABC = 100µA
and IABC = 5µA
-
1
8.0
mV
TA = 25oC
-
0.02
0.2
µA
TA = 0oC to 70oC
TA = 25oC
TA = 0oC to 70oC
-
-
0.3
µA
-
0.2
0.50
µA
-
-
0.70
µA
IOUT = 0mA
8
10
12
mW
INPUT PARAMETERS
Input Offset Voltage
VIO
Input Offset Voltage Change
|∆VIO|
Input Offset Current
IIO
Input Bias Current
II
Device Dissipation
PD
Common Mode Rejection Ratio
Common Mode Input Voltage Range
Unity Gain Bandwidth
Open Loop Bandwidth at -3dB Point
CMRR
VICR
70
110
-
dB
V+ = 30V (High)
27
28.8
-
V
V- = 0V (Low)
1.0
0.5
-
V
V+ = 15V
12
13.8
-
V
V- = -15V
-14
-14.5
-
V
fT
IC = 7.5mA, VCE = 15V, IABC = 500µA
-
30
-
MHz
BWOL
IC = 7.5mA, VCE = 15V, IABC = 500µA
-
4
-
kHz
PD = 220mW
-
0.4
-
%
PD = 600mW
Total Harmonic Distortion
(Class A Operation)
THD
-
1.4
-
%
Amplifier Bias Voltage
(Terminal 5 to Terminal 4)
VABC
-
0.68
-
V
Input Offset Voltage Temperature
Coefficient
∆VIO/∆T
-
4
-
µV/oC
Power Supply Rejection
∆VIO/∆V
-
15
150
µV/V
1/F Noise Voltage
EN
f = 10Hz, IABC = 50µA
-
18
-
nV/ Hz
1/F Noise Current
IN
f = 10Hz, IABC = 50µA
-
1.8
-
pA/ Hz
Differential Input Resistance
RI
IABC = 20µA
0.50
1.0
-
MΩ
Differential Input Capacitance
CI
f = 1MHz, V+ = 30V
-
2.6
-
pF
3-13
CA3094, CA3094A, CA3094B
Electrical Specifications
TA = 25oC for Equipment Design. Single Supply V+ = 30V, Dual Supply VSUPPLY = ±15V, IABC = 100µA Unless
Otherwise Specified (Continued)
PARAMETER
SYMBOL
TEST CONDITIONS
MIN
TYP
MAX
UNITS
26
27
-
V
-
0.01
0.05
V
OUTPUT PARAMETERS (Differential Input Voltage = 1V)
Peak Output Voltage
(Terminal 6)
With Q13 “ON”
VOM+
With Q13 “OFF”
VOM-
Peak Output Voltage
(Terminal 6)
Positive
VOM+
Negative
VOM-
Peak Output Voltage
(Terminal 8)
With Q13 “OFF”
VOM+
With Q13 “ON”
VOM-
Peak Output Voltage
(Terminal 8)
Positive
VOM+
Negative
VOM-
Collector-to-Emitter Saturation Voltage
(Terminal 8)
V+ = 30V, RL = 2kΩ to GND
V+ = 15V, V- = -15V, RL = 2kΩ to -15V
11
12
-
V
-
-14.99
-14.95
V
29.95
29.99
-
V
-
0.040
-
V
14.95
14.99
-
V
-
-14.96
-
V
V+ = 30V, IC = 50mA, Terminal 6
Grounded
-
0.17
0.80
V
V+ = 30V
-
2
10
µA
16,000
100,000
-
V+ = 30V, RL = 2kΩ to 30V
V+ = 15V, V- = -15V,
RL = 2kΩ to 15V
VCE(SAT)
Output Leakage Current
(Terminal 6 to Terminal 4)
Composite Small Signal Current Transfer
Ratio (Beta) (Q12 and Q13)
hFE
V+ = 30V, VCE = 5V, IC = 50mA
Output Capacitance
CO
f = 1MHz, All Remaining Terminals Tied
to Terminal 4
-
5.5
-
pF
-
17
-
pF
V+ = 30V, IABC = 100µA, ∆VOUT = 20V,
RL = 2kΩ
20,000
100,000
-
V/V
86
100
-
dB
1650
2200
2750
µS
IABC = 500µA, RL = 2kΩ
-
500
-
V/µs
-
50
-
V/µs
IABC = 500µA, RL = 2kΩ
-
0.70
-
V/µs
Terminal 6
Terminal 8
TRANSFER PARAMETERS
Voltage Gain
A
Forward Transconductance to
Terminal 1
gM
Slew Rate (Open
Loop)
SR
Positive Slope
Negative Slope
Unity Gain (Non-Inverting Compensated)
Schematic Diagram
EXTERNAL FREQUENCY
COMPENSATION OR INHIBIT INPUT
D3
1
V+
7
OUTPUT
MODE
D5
Q4
Q7
Q6
D2
INPUTS
R1
2kΩ
D4
Q8
Q5
Q9
DIFFERENTIAL
VOLTAGE 2
INPUT
DIFFERENTIAL
VOLTAGE
INPUT
AMPLIFIER
BIAS INPUT 5
IABC
8
Q1
Q2
Q12
3
Q13
Q10
Q3
Q11
R2
47kΩ
D6
D1
6
4
3-14
“SINK”
OUTPUT
V-
“SOURCE”
(DRIVE)
OUTPUT
OUTPUT
TERM
INV
NONINV
“Source”
6
2
3
“Sink”
8
3
2
CA3094, CA3094A, CA3094B
Operating Considerations
1/F Noise Measurement Circuit
The “Sink” Output (Terminal 8) and the “Drive” Output
(Terminal 6) of the CA3094 are not inherently current (or
power) limited. Therefore, if a load is connected between
Terminal 6 and Terminal 4 (V- or Ground), it is important to
connect a current limiting resistor between Terminal 8 and
Terminal 7 (V+) to protect transistor Q13 under shorted load
conditions. Similarly, if a load is connected between Terminal
8 and Terminal 7 (V+), the current limiting resistor should be
connected between Terminal 6 and Terminal 4 or ground. In
circuit applications where the emitter of the output transistor
is not connected to the most negative potential in the
system, it is recommended that a 100Ω current limiting
resistor be inserted between Terminal 7 and the V+ supply.
When using the CA3094, A, or B audio amplifier circuits, it is
frequently necessary to consider the noise performance of the
device. Noise measurements are made in the circuit shown in
Figure 20. This circuit is a 30dB, non-inverting amplifier with
emitter follower output and phase compensation from
Terminal 2 to ground. Source resistors (RS) are set to 0Ω or
1MΩ for E noise and I noise measurements, respectively.
These measurements are made at frequencies of 10Hz,
100Hz and 1kHz with a 1Hz measurement bandwidth. Typical
values for 1/f noise at 10Hz and 50µA IABC are:
E N = 18nV ⁄ Hz and I N = 1.8pA ⁄ Hz .
Test Circuits
NOTES:
30V
E OUT
3. Input Offset Voltage: V IO = ----------------- .
100
4. For Power Supply Rejection Test: (1) vary V+ by -2V; then (2)
vary V- by +2V.
300kΩ
7
9.9kΩ
5
5. Equations:
E 0 OUT – E 1 OUT
(1) V+ Rejection = -----------------------------------------------200
2
CA3094
6
3
1
10kΩ
8
100Ω
1kΩ
4
EOUT
100Ω
E 0 OUT – E 2 OUT
(2) V- Rejection = -----------------------------------------------200
1
6. Power Supply Rejection: ( dB ) = 20 log --------------------------------------------- .
V
REJECTION †
† Maximum Reading of Step 1 or Step 2
100pF
30V
15V
FIGURE 1. INPUT OFFSET VOLTAGE AND POWER SUPPLY REJECTION TEST CIRCUIT
30V
30V
RABC
7
5
1MΩ
8
2
300kΩ
7
CA3094
6
5
3
1
-
3
+
150kΩ
220Ω
4
2
CA3094A
EOUT
1MΩ
15V
0.001µF
4
15V
NOTES:
7. PDISSIPATION = (V+)(I)
E OUT
8. I OS = -------------------------------VOLTS
10 6 --------------------AMPS
FIGURE 2. INPUT OFFSET CURRENT TEST CIRCUIT
3-15
I
NOTE: I I = --2
FIGURE 3. INPUT BIAS CURRENT TEST CIRCUIT
CA3094, CA3094A, CA3094B
Test Circuits
(Continued)
4.7kΩ
30V
10kΩ
7
100Ω
8
NOTES:
-
2
CA3094
+
3
9.
6
100Ω
4
VCMR
10. Input Voltage Range for CMRR = 1V to 27V.
10kΩ
0.8V TO 27.2V
9.9kΩ
1
EOUT
11.
1kΩ
200Ω
100 × 26V
CMRR = -------------------------------------------.
E 2OUT – E 1OUT
100pF
100 × 26V
CMRR (dB) = 20 log -------------------------------------------.
E 2OUT – E 1OUT
15V
FIGURE 4. COMMON MODE RANGE AND REJECTION RATIO TEST CIRCUIT
+15V
+15V
-15V
10kΩ
+15V
IABC
RS
500Ω
IABC 5
10kΩ
3.6kΩ
7
5
RS
(NOTE)
8
-
2
91Ω
3
+
6
+
6
100Ω
3kΩ
1
10Ω
OUTPUT
(RMS)
4
120Ω
RS
(NOTE)
CA3094A
10Ω
CA3094A
3
8
-
2
7
OUTPUT
4
RL = 2kΩ
CC
-15V
IABC
(µA)
CCOMP
(pF)
5
0
NOTE:
RS = 1MΩ
(1/F Noise Current Test).
RS = 0Ω
(1/F Noise Voltage Test).
50
50
500
500
FIGURE 5. 1/F NOISE TEST CIRCUIT
RS
(Ω)
IABC
(µA)
56K
500
560K
50
56M
5
-15V
FIGURE 6. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT
+15V
+15V
IABC
56kΩ
5
5
7
2V
0V
7
8
2
CA3094A
13kΩ
3
±10V
6
3
+
4
15kΩ
2kΩ
6
CA3094A
10kΩ
+
EOUT
10kΩ
8
-
2
-
4
2kΩ
EOUT
1
220Ω
-15V
0.001µF
-15V
FIGURE 7. OPEN LOOP SLEW RATE vs IABC TEST CIRCUIT
3-16
FIGURE 8. SLEW RATE vs NON-INVERTING UNITY GAIN
TEST CIRCUIT
CA3094, CA3094A, CA3094B
Test Circuits
(Continued)
120VAC
RLOAD
V+ = 30V
+15V
R5
7
R1
R2
R3
R4
S2
56kΩ
8
EOUT
5
5
3
7
R2
S1
R3
8
R6
(NOTE 12)
-
2
3
2
6
4
+
6
R7
MT1
R8
C1
OUTPUT
4
2kΩ
1
51Ω
MT2
CA3094A
D1
CA3094A
R1
+
COMMON
RC
CC
NOTES:
-15V
CLOSED
LOOP GAIN
(dB)
R1
(kΩ)
R2
(kΩ)
R3
(kΩ)
0
10
∞
10
20
10
1
10
40
1
0.1
10
FIGURE 9. PHASE COMPENSATION TEST CIRCUIT
S1
12. C1 = 0.5µF
D1 = 1N914
R1 = 0.51MΩ = 3 min.
R2 = 5.1MΩ = 30 min.
R3 = 22MΩ = 2 hrs.
R4 = 44MΩ = 4 hrs.
R5 = 1.5kΩ
R6 = 50kΩ
R7 = 5.1kΩ
R8 = 1.5kΩ
3
29V
3V
0
27V
6
0
Time = 1 hr.
S2 Set to R4
13. Potentiometer required for initial time set to permit device interconnecting. Time variation with temperature <0.3%/oC.
FIGURE 10. PRESETTABLE ANALOG TIMER
Application Information
For additional application information, refer to
Application Note AN6048, “Some Applications of a
Programmable Power/Switch Amplifier IC” and AN6077
“An IC Operational Transconductance Amplifier (OTA)
with Power Capability”.
Design Considerations
The selection of the optimum amplifier bias current (IABC)
depends on:
1. The Desired Sensitivity - The higher the IABC, the higher
the sensitivity, i.e., a greater drive current capability at the
output for a specific voltage change at the input.
2. Required Input Resistance - The lower the IABC, the higher the input resistance.
3-17
If the desired sensitivity and required input resistance are
not known and are to be experimentally determined, or the
anticipated equipment design is sufficiently flexible to
tolerate a wide range of these parameters, it is
recommended that the equipment designer begin his
calculations with an IABC of 100µA, since the CA3094 is
characterized at this value of amplifier bias current.
The CA3094 is extremely versatile and can be used in a
wide variety of applications.
CA3094, CA3094A, CA3094B
Typical Applications
Z2
Z1
+
EIN
EIN
EOUT
(NOTE)
CA3094
+
EOUT
CA3094
(NOTE)
Where EOUT = EIN
E OUT
 Z 2
here ----------------- = f  ------- depends on the characteristics of Z1 and Z2
E IN
 Z 1
NOTE: In single-ended output operation, the CA3094 may require a pull up or pull down resistor.
FIGURE 11A. INVERTING OP AMP
FIGURE 11B. NON-INVERTING MODE, AS A FOLLOWER
FIGURE 11. APPLICATION OF THE CA3094
V+ = 18V
S1
Problem: To calculate the maximum value of R required to
switch a 100mA output current comparator
18V
2kΩ
Given: I ABC = 5µA, R ABC = 3.6MΩ ≈ ----------PULL UP
5µA
RABC
220kΩ
VOLTAGE A
2/3V+
0
R1
100kΩ
R
+18
II = 500nA at IABC = 100µA (from Figure 3)
5
II = 5µA can be determined by drawing a line on Figure 3 through
IABC = 100µA and IB = 500nA parallel to the typical TA = 25oC
curve.
7
II
8
0
VOLTAGE AT
TERMINAL 8
+
2
A
1N914
CA3094
Then: II = 33nA at IABC = 5µA
EOUT
-
3
12V
C
o
18V – 12V
R MAX = ---------------------------- = 180MΩ at T A = 25 C
33nA
6
4
R2
220kΩ
o
R MAX = 180MΩ × 2 ⁄ 3 † = 120MΩ at T A = – 55 C
†
TIME DELAY (s) = RC (APPROX.)
Ratio of II at TA = 25oC to II at TA = -55oC for any given value
of IABC
FIGURE 12. RC TIMER
V+
A
0
0
V+
100
kΩ
270
kΩ
0.01µF
INPUT
A
B
R1
1MΩ
B
100
kΩ
220kΩ
D
R2
2.2MΩ
3
100
kΩ
100
kΩ
5
+
CA3094
2
12VDC
C1
0.5µF
8
V+
E 0
EOUT
4
R3
1MΩ
6
3/ V+
4
D 0
7
E
C
1N914
C 0
RLOAD
2kΩ
On a negative going transient at input (A), a negative
pulse at C will turn “on” the CA3094, and the output (E)
will go from a low to a high level.
At the end of the time constant determined by C1, R1,
R2, R3, the CA3094 will return to the “off” state and the
output will be pulled low by RLOAD. This condition will
be independent of the interval when input (A) returns
to a high level.
FIGURE 13. RC TIMER TRIGGERED BY EXTERNAL NEGATIVE PULSE
3-18
CA3094, CA3094A, CA3094B
Typical Applications
(Continued)
+
+15V
MIN
R 10kΩ
1MΩ MAX
7
2.7MΩ
510Ω
TYPE
1N914
5
1kΩ
47kΩ
8
5VDC
8
CA3094
2
330kΩ
C
-
EOUT
2
+
3
-
20kΩ
+
EOUT
6
C1
0.01µF
7
100kΩ
-
3
4
OUTPUT
CA3094
6
1N914
4
2ms
NOTES:
120s
14. R = 1MΩ, C = 1µF.
CURRENT INPUT
15. Time Constant: t ≈ RC x 120.
16. Pulse Width: ω ≈ K(C1/C).
LINE
5
C
47kΩ
PAPER OR
MYLAR™
FIGURE 14. FREE RUNNING PULSE GENERATOR
OR
R
VOLTAGE INPUT
FIGURE 15. CURRENT OR VOLTAGE CONTROLLED OSCILLATOR
15V
1kΩ
300kΩ
R2
51kΩ
OUTPUT
30V
fOUT ≈ 5kHz
5
R
100kΩ
7
8
510Ω
27kΩ
300kΩ
100kΩ
LED
50kΩ
RP
R
100kΩ
5
2
+
3
-
CA3094A
R1
4.3kΩ
C
6
1000pF
4
7
8
2
27kΩ
-15V
+
CA3094A
3
C
6
560pF
4
FIGURE 16. SINGLE SUPPLY ASTABLE MULTIVIBRATOR
3-19
1
NOTE: f OUT = -------------------------------------------------- 2R 1

( 2RC ) ln  ----------- + 1
 R2

1
If: R2 = 3.08R1, f OUT = --------RC
FIGURE 17. DUAL SUPPLY ASTABLE MULTIVIBRATOR
Mylar™ is a trademark of E.I. Dupont de Nemours
CA3094, CA3094A, CA3094B
Typical Applications
(Continued)
+15V
150kΩ
5
+15V
2kΩ
7
8
51kΩ
300kΩ
2kΩ
RA
200kΩ
CA3094
5
2
+
7
R (NOTE 17)
51kΩ
8
4
R1
100kΩ
CA3094A
2
6
RB
200kΩ
OUTPUT
-
3
INPUT
OUTPUT
-
3
INPUT
+
R1
100kΩ
6
-15V
NOTES:
4
R2
100kΩ
19.
RB
Upper Threshold = [ V+ ] ------------------------------------------ .
 R1 RA 
 --------------------- + R B
 R 1 + R A
NOTES:
17.
18.
R1 R2
R = --------------------- .
R1 + R2
R1
± Threshold = [ ± Supply ] --------------------- .
R1 + R2
20.
R1 RB
--------------------R1 + RB
Lower Threshold = [ V+ ] ------------------------------------------ .
 R1 RB 
 --------------------- + R A
 R 1 + R B
FIGURE 18A. DUAL SUPPLY
FIGURE 18B. SINGLE SUPPLY
FIGURE 18. COMPARATORS (THRESHOLD DETECTORS) DUAL AND SINGLE SUPPLY TYPES
1.5MΩ
TYPE
D1201F
HEATER
PTC TEMP.
SENSOR
10Ω
117V
60Hz
+
-
330kΩ
1.5kΩ
7
68kΩ
50µF
50V
1N914
MT2
5
26V
60Hz
75kΩ
10kΩ
TEMP.
SET
8
2
1N914
CA3094
6
G
3
R
75kΩ
4
75kΩ
FOR NTC SENSOR, INTERCHANGE POSITION OF SENSOR AND R .
NOTE: All Resistors are 1/2W.
FIGURE 19. TEMPERATURE CONTROLLER
3-20
MT1
1kΩ
0.01µF
CA3094, CA3094A, CA3094B
Typical Applications
2
V+ INPUT
(NOTE 21)
(Continued)
NOTE 23
1
CA3085A
VOLTAGE REG.
5.6Ω
3
+15V REG.
OUTPUT
8
6
4
7
R
5kΩ
REF.
1.6V
0.01µF
10kΩ
NOTES:
21. V+ Input Range = 19V to 30V for 15V output.
0.0056µF
1.5kΩ
22. V- Input Range = -16V to -30V for -15V output.
COMMON
RETURN
23. Max IOUT = ±100mA.
24. Regulation:
200kΩ
100Ω
∆V OUT
Max Line = ----------------------------------------------------------- × 100 = 0.075% ⁄ V
[ V OUT ( Initial ) ]∆V IN
1
5
0.03µF
7
5.1kΩ
2
+
3
-
∆V OUT
Max Load = --------------------------------------- × 100 = 0.075% V OUT
V OUT ( Initial )
(IL from 1mA to 50mA)
CA3094A
8
6
-15V REG.
OUTPUT
4
10kΩ
±1%
V- INPUT
(NOTE 22)
10kΩ
±1%
FIGURE 20. DUAL VOLTAGE TRACKING REGULATOR
CIRCUIT TRIPS ON POSITIVE
PEAKS WILL SWITCH WITHIN
1.5 CYCLES
36V
1mA
ILOAD
VOLTAGE BETWEEN
TERMINALS 2 AND 4
3
33kΩ
RTRIP
200mV
RANGE
IABC
10µA
200
Ω
IA
20µA
3.3MΩ
60mV
TYPICAL
100Ω
3.3
kΩ
VOLTAGE BETWEEN
TERMINALS 3 AND 4
(ADJUSTABLE WITH
RTRIP)
VOLTS
+3V
GROUND FAULT
SIGNAL 60Hz
5
R
47kΩ
100kΩ
2
NOTES:
-
3
(NOTE 27)
L
C
0.02µF
t
7
47kΩ
CA3094B
+
6
C2
0.1µF
(NOTE 28)
4
8
CIRCUIT
BREAKER
CONTROL
SOLENOID
25. Differential current sensor provides 60mV signal ≈ 5mA of
unbalance (Trip) current.
26. All Resistors are 1/2 Watt, ±10%.
27. RC selected for 3dB point at 200Hz.
28. C2 = AC bypass.
29. Offset adj. included in RTRIP .
30. Input impedance from 2 to 3 = 800kΩ.
1kΩ
0.001µF
31. With no input signal Terminal 8 (output) at 36V.
FIGURE 21. GROUND FAULT INTERRUPTER (GFI) AND WAVEFORMS PERTINENT TO GROUND FAULT DETECTOR
3-21
CA3094, CA3094A, CA3094B
Typical Applications
(Continued)
TREBLE
“BOOST”
(CW) 15kΩ
D1 - D4 1N5391
“CUT”
(CCW)
0.01µF
820Ω
V+
+
0.12µF
1800Ω
220Ω
1W
68Ω
0.001µF
5600Ω
5µF
+
Q2
V-
2N6292
2N6292
+
30Ω †
7
R1
(NOTES
32, 33)
Q1
6.8pF
1
VOLUME
C1
+
2
27Ω
Q3
D3
STANCOR
NO. P-8609
OR EQUIVALENT
(120VAC TO
26.8VCT AT 1A)
D4
3µH
0.47Ω
330Ω
22Ω
8
CA3094B
-
4700
µF
0.47Ω
2N6107
3
120V
60Hz
D2
15µF
+
220Ω
1W
0.001µF
INPUT
D1
4700µF
6
8 LEAD
TO-5
4
5
THERMAL
COMPENSATION
NETWORK †
47Ω
1Ω
RL
8Ω
R2
1.8MΩ
(NOTES 32, 33)
0.47
µF
680
kΩ
† OPTIONAL THERMAL
COMPENSATION
NETWORK
0.2µF
25µF
+
0.02µF
1kΩ
“BOOST” 100kΩ
(CW)
“CUT”
(CCW)
C2
0.47µF
1N5391
10kΩ
BASS
8.2Ω
JUMPER (NOTES 32, 33)
TYPICAL PERFORMANCE DATA FOR 12W AUDIO AMPLIFIER CIRCUIT
Power Output (8Ω load, Tone Control Set at “Flat”)
Music (at 5% THD, Regulated Supply). . . . . . . . . . . . . . . . . . 15W
Continuous (at 0.2% IMD, 60Hz and 2kHz
Mixed in a 4:1 Ratio, Unregulated Supply)
See Figure 8 in AN6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W
Total Harmonic Distortion
At 1W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . . .0.05%
At 12W, Unregulated Supply . . . . . . . . . . . . . . . . . . . . . . . .0.57%
Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40dB
Hum and Noise (Below Continuous Power Output) . . . . . . . . . .83dB
Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .250kΩ
Tone Control Range. . . . . . . . . . . . . . . . . . .See Figure 9 in AN6048
NOTES:
32. For standard input: Short C2; R1 = 250kΩ, C1 = 0.047µF; remove
R2.
33. For ceramic cartridge input: C1 = 0.0047µF, R1 = 2.5MΩ, remove
jumper from C2; leave R2 .
FIGURE 22. 12W AUDIO AMPLIFIER CIRCUIT FEATURING TRUE COMPLEMENTARY SYMMETRY OUTPUT STAGE WITH CA3094 IN
DRIVER STAGE
3-22
CA3094, CA3094A, CA3094B
Typical Performance Curves
5
103
V+ = +15V, V- = -15V
125oC
90oC
3
2
INPUT OFFSET CURRENT (nA)
INPUT OFFSET VOLTAGE (mV)
4
25oC
-55oC
1
0
70oC
25oC
-55oC
-1
-2
70oC
90oC
125oC
-3
-4
-5
-6
V+ = +15V, V- = -15V
102
101
1
-55oC
25oC
125oC
0.1
-7
-8
0.1
1
10
100
AMPLIFIER BIAS CURRENT (µA)
FIGURE 23. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS
CURRENT (IABC, TERMINAL 5)
105
V+ = +15V, V- = -15V
103
102
125oC
25oC
-55oC
101
3
1.0
1.0
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 24. INPUT OFFSET CURRENT vs AMPLIFIER BIAS
CURRENT (IABC, TERMINAL 5)
DEVICE DISSIPATION (µW)
INPUT BIAS CURRENT (nA)
104
0.01
0.1
1000
TA = 25oC
104
103
V+ = +15V, V- = -15V
V+ = +6V, V- = -6V
V+ = +3V, V- = -3V
102
101
0.88µA
0.1
0.1
1
10
100
1
0.1
1000
1.0
10
100
AMPLIFIER BIAS CURRENT (µA)
AMPLIFIER BIAS CURRENT (µA)
FIGURE 25. INPUT BIAS CURRENT vs AMPLIFIER BIAS
CURRENT (IABC, TERMINAL 5)
FIGURE 26. DEVICE DISSIPATION vs AMPLIFIER BIAS
CURRENT (IABC, TERMINAL 5)
15.0
V+ = +15V, V- = -15V
TA = 125oC
25oC
103
COMMON MODE INPUT VOLTAGE (V)
AMPLIFIER SUPPLY CURRENT (µA)
104
-55oC
102
101
1.0
0.1
0.1
125oC
25oC
-55oC
1.0
10
100
1000
AMPLIFIER BIAS CURRENT (µA)
FIGURE 27. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER
BIAS CURRENT (IABC, TERMINAL 5)
3-23
1000
14.5
V+ = +15V, V- = -15V
TA = 25oC
14.0
V+CMR
13.5
13.0
0
-13.0
-13.5
-14.0
-14.5
-15.0
0.1
V-CMR
1.0
10
100
AMPLIFIER BIAS CURRENT (µA)
1000
FIGURE 28. COMMON MODE INPUT VOLTAGE vs AMPLIFIER
BIAS CURRENT (IABC, TERMINAL 5)
CA3094, CA3094A, CA3094B
Typical Performance Curves
1/F NOISE VOLTAGE (nV/√Hz)
45
100
V+ = +15V, V- = -15V
RS = 0Ω, TA = 25oC
FOR TEST CIRCUIT, SEE FIGURE 20
1/F NOISE CURRENT (pA/√Hz)
50
(Continued)
40
35
30
IABC = 5µA
25
500µA
20
50µA
V+ = +15V, V- = -15V
RS = 1MΩ, TA = 25oC
FOR TEST CIRCUIT, SEE FIGURE 20
10
IABC = 500µA
50µA
1.0
5µA
15
10
101
102
FREQUENCY (Hz)
0.1
101
103
FIGURE 29. 1/F NOISE VOLTAGE vs FREQUENCY
1000
FORCED BETA = 10
TA = 25oC
1000
100
10
1
1
10
100
COLLECTOR CURRENT (mA)
1000
FIGURE 31. COLLECTOR EMITTER SATURATION VOLTAGE vs
COLLECTOR CURRENT OF OUTPUT
TRANSISTOR (Q13)
1
105
90
50µA
5µA
70
0
PHASE ANGLE
(IABC = 500µA)
-50
50
-100
40
-150
30
-200
20
V+ = +15V, V- = -15V, RL = 2kΩ
(TERMINAL 6 TO V-), TA = 25oC
FOR TEST CIRCUIT, SEE FIGURE 21
10
0
-10
1
101
102
103
104
105
106
107
FREQUENCY (Hz)
FIGURE 33. OPEN LOOP VOLTAGE GAIN vs FREQUENCY
3-24
FORWARD TRANSCONDUCTANCE (µS)
IABC = 500µA
PHASE ANGLE (DEGREES)
OPEN LOOP VOLTAGE GAIN (dB)
100
10
100
COLLECTOR CURRENT (mA)
1000
FIGURE 32. COMPOSITE DC BETA vs COLLECTOR CURRENT
OF DARLINGTON CONNECTED OUTPUT
TRANSISTORS (Q12, Q13)
110
60
V+ = 20V, VCE = 10V
TA = 25oC
100
10
80
103
FIGURE 30. 1/F NOISE CURRENT vs FREQUENCY
COMPOSITE DC BETA (Q12, Q13)
COLLECTOR-TO-EMITTER
SATURATION VOLTAGE (mV)
10000
102
FREQUENCY (Hz)
V+ = +15V, V- = -15V
104
103
102
101
1
0.1
-55oC
25oC
125oC
1.0
10
100
AMPLIFIER BIAS CURRENT (µA)
FIGURE 34. FORWARD TRANSCONDUCTANCE vs
AMPLIFIER BIAS CURRENT
1000
CA3094, CA3094A, CA3094B
100
SLEW RATE (V/µs)
V+ = +15V, V- = -15V, TA = 25oC
FOR TEST CIRCUIT, SEE FIGURE 22
10
1.0
0.1
1
10
100
V+ = +15V, V- = -15V, IABC = 500µA, TA = 25oC
FOR TEST CIRCUIT, SEE FIGURE 23
10
1.0
0.1
1000
0
20
AMPLIFIER BIAS CURRENT (µA)
40
60
80
1000
FIGURE 36. SLEW RATE vs CLOSED LOOP VOLTAGE GAIN
V+ = +15V, V- = -15V, IABC = 500mA, TA = 25oC
100mV OUTPUT SIGNAL WITH
10% OVERSHOOT
FOR PHASE COMPENSATION
TEST CIRCUIT, SEE FIGURE 24
100
80
60
40
CC
1000
20
800
10
RC
8
6
4
600
400
200
2
1
0
10
20
30
40
50
60
70
CLOSED LOOP VOLTAGE GAIN (dB)
FIGURE 37. PHASE COMPENSATION CAPACITANCE AND RESISTANCE vs CLOSED LOOP VOLTAGE GAIN
3-25
100
CLOSED LOOP VOLTAGE GAIN (dB)
FIGURE 35. SLEW RATE vs AMPLIFIER BIAS CURRENT
PHASE COMPENSATION CAPACITANCE (pF)
SLEW RATE (V/µs)
100
(Continued)
PHASE COMPENSATION RESISTANCE (Ω)
Typical Performance Curves