ETC HAT1001F

HAT1001F
Silicon P Channel Power MOS FET
Application
SOP–8
Power switching
Features
8
•
•
•
•
5
7 6
5 6 7 8
D D D D
Low on–resistance
Capable of 2.5 V gate drive
Low drive current
High density mounting
3
1 2
4
G
Ordering Information
————————————————————
Hitachi Code
4
FP–8D
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
S S S
1 2 3
————————————————————
EIAJ Code
SC–527–8A
————————————————————
JEDEC Code
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–20
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±10
V
———————————————————————————————————————————
Drain current
ID
–3.5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–15
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–3.5
A
———————————————————————————————————————————
Channel dissipation
Pch**
1.0
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT1001F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
–20
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±10
—
—
V
IG = ±200 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±6.5 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
–10
µA
VDS = –20 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
–0.5
—
–1.5
V
VDS = –10 V, ID = –1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.05
0.07
Ω
ID = –2 A
VGS = –4 V *
————————————————————————
—
0.07
0.1
Ω
ID = –2 A
VGS = –2.5 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
4.0
8.0
—
S
ID = –2 A
VDS = - 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
1170
—
pF
VDS = - 10 V
————————————————————————————————
Output capacitance
Coss
—
860
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
310
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
25
—
ns
VGS = –4 V, ID = –2 A
————————————————————————————————
Rise time
tr
—
240
—
ns
VDD = –10 V
————————————————————————————————
Turn–off delay time
td(off)
—
360
—
ns
————————————————————————————————
Fall time
tf
—
430
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
–0.9
—
V
IF = –3.5 A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
45
—
ns
IF = –3.5A, VGS = 0
diF / dt = –20 A / µs
———————————————————————————————————————————
* Pulse Test
HAT1001F
Power vs. Temperature Derating
Maximum Safe Operation Area
–100
1.5
I D (A)
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
Drain Current
Channel Dissipation
Pch (W)
2.0
1.0
0.5
100 µs
–30
10 µs
–10
1
PW
m
s
=
1
(1 0 m
sh s
Op
–1
ot
er
)
at
Operation in
ion
–0.3 this area is
**
limited by R DS(on)
–0.1
–3
DC
–0.03
0
50
100
150
Case Temperature
200
Tc (°C)
–0.01 Ta = 25 °C
–1
–3
–10 –30 –100
–0.1 –0.3
Drain to Source Voltage V DS (V)
** When using the glass epoxy board
(40 x 40 x 1.6 mm)
Typical Output Characteristics
–2.5 V
–12
–2 V
–8
–4
VGS = –1.5 V
0
V DS = –10 V
Pulse Test
(A)
–5 V
–4 V
Pulse Test
ID
–16
–10 V
Typical Transfer Characteristics
–10
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
Drain Current
Drain Current
I D (A)
–20
–8
–6
–4
–2
0
Tc = –25 °C
25 °C
75 °C
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
HAT1001F
–0.4
–0.3
–0.2
–0.1
I D = –2 A
–2
–4
–6
Gate to Source Voltage
–10
V GS (V)
0.16
0.12
0
–40
0.1
VGS = –2.5 V
ID=
–0.5, –1, –2 A
VGS = –2.5 V
–2 A
–4 V
–4 V
0.01
–0.5
–8
Static Drain to Source on State Resistance
vs. Temperature
0.2
Pulse Test
0.04
0.2
0.02
–1 A
0.08
Static Drain to Source on State Resistance
vs. Drain Current
1
Pulse Test
0.5
0.05
–0.5 A
0
Static Drain to Source on State Resistance
R DS(on) ( Ω)
Pulse Test
–0.5 A, –1 A
0
40
80
120
160
Case Temperature Tc (°C)
–1
–2
–5 –10 –20
Drain Current I D (A)
–50
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |y fs | (S)
Drain to Source Saturation Voltage
V DS(on) (V)
–0.5
Drain to Source On State Resistance
R DS(on) ( Ω )
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
20
Tc = –25 °C
10
25 °C
5
75 °C
2
1
0.5
–0.1 –0.2
V DS = –10 V
Pulse Test
–0.5 –1 –2
–5
Drain Current I D (A)
–10
HAT1001F
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
5000
500
Capacitance C (pF)
Reverse Recovery Time trr (ns)
1000
200
100
50
20
V GS
V DD = –15 V
–10 V
–5 V
–20
–30
–40
–50
–8
V GS (V)
–4
1000
–30
–12
–40
–16
I = –3.5 A
–50 D
0
80
20
40
60
Gate Charge Qg (nc)
–10
Drain to Source Voltage V DS (V)
–20
100
t d(off)
500
Switching Time t (ns)
V DS
VGS = 0
f = 1 MHz
Switching Characteristics
0
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
–20
Crss
0
Dynamic Input Characteristics
–10
Coss
500
100
10
–0.1 –0.3
–1
–3
–10 –30 –100
Reverse Drain Current I DR (A)
V DD = –5 V
–10 V
–15 V
Ciss
1000
200
di / dt = 20 A / µs
VGS = 0, Ta = 25 °C
0
2000
tf
200
tr
100
50
20
10
–0.1 –0.3
V GS = –4 V, V DD = –10 V
PW = 5 µs, duty < 1 %
t d(on)
–1
–3
–10 –30
Drain Current I D (A)
–100
HAT1001F
Reverse Drain Current vs.
Source to Drain Voltage
–20
Reverse Drain Current I DR (A)
Pulse Test
–16
–5 V
–3 V
–12
V GS = 0, 5 V
–8
–4
0
–0.4
–0.8
–1.2
–1.6
Source to Drain Voltage
–2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.10 ± 0.10
1.27
0.25
0.60 +– 0.18
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC