HAT1001F Silicon P Channel Power MOS FET Application SOP–8 Power switching Features 8 • • • • 5 7 6 5 6 7 8 D D D D Low on–resistance Capable of 2.5 V gate drive Low drive current High density mounting 3 1 2 4 G Ordering Information ———————————————————— Hitachi Code 4 FP–8D 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 ———————————————————— EIAJ Code SC–527–8A ———————————————————— JEDEC Code — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS –20 V ——————————————————————————————————————————— Gate to source voltage VGSS ±10 V ——————————————————————————————————————————— Drain current ID –3.5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* –15 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR –3.5 A ——————————————————————————————————————————— Channel dissipation Pch** 1.0 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** When using the glass epoxy board (40 x 40 x 1.6 mm) HAT1001F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS –20 — — V ID = –10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±10 — — V IG = ±200 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±6.5 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — –10 µA VDS = –20 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) –0.5 — –1.5 V VDS = –10 V, ID = –1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.05 0.07 Ω ID = –2 A VGS = –4 V * ———————————————————————— — 0.07 0.1 Ω ID = –2 A VGS = –2.5 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 4.0 8.0 — S ID = –2 A VDS = - 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 1170 — pF VDS = - 10 V ———————————————————————————————— Output capacitance Coss — 860 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 310 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — 25 — ns VGS = –4 V, ID = –2 A ———————————————————————————————— Rise time tr — 240 — ns VDD = –10 V ———————————————————————————————— Turn–off delay time td(off) — 360 — ns ———————————————————————————————— Fall time tf — 430 — ns ——————————————————————————————————————————— Body–drain diode forward voltage VDF — –0.9 — V IF = –3.5 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 45 — ns IF = –3.5A, VGS = 0 diF / dt = –20 A / µs ——————————————————————————————————————————— * Pulse Test HAT1001F Power vs. Temperature Derating Maximum Safe Operation Area –100 1.5 I D (A) Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) Drain Current Channel Dissipation Pch (W) 2.0 1.0 0.5 100 µs –30 10 µs –10 1 PW m s = 1 (1 0 m sh s Op –1 ot er ) at Operation in ion –0.3 this area is ** limited by R DS(on) –0.1 –3 DC –0.03 0 50 100 150 Case Temperature 200 Tc (°C) –0.01 Ta = 25 °C –1 –3 –10 –30 –100 –0.1 –0.3 Drain to Source Voltage V DS (V) ** When using the glass epoxy board (40 x 40 x 1.6 mm) Typical Output Characteristics –2.5 V –12 –2 V –8 –4 VGS = –1.5 V 0 V DS = –10 V Pulse Test (A) –5 V –4 V Pulse Test ID –16 –10 V Typical Transfer Characteristics –10 –2 –4 –6 Drain to Source Voltage –8 –10 V DS (V) Drain Current Drain Current I D (A) –20 –8 –6 –4 –2 0 Tc = –25 °C 25 °C 75 °C –1 –2 –3 Gate to Source Voltage –4 –5 V GS (V) HAT1001F –0.4 –0.3 –0.2 –0.1 I D = –2 A –2 –4 –6 Gate to Source Voltage –10 V GS (V) 0.16 0.12 0 –40 0.1 VGS = –2.5 V ID= –0.5, –1, –2 A VGS = –2.5 V –2 A –4 V –4 V 0.01 –0.5 –8 Static Drain to Source on State Resistance vs. Temperature 0.2 Pulse Test 0.04 0.2 0.02 –1 A 0.08 Static Drain to Source on State Resistance vs. Drain Current 1 Pulse Test 0.5 0.05 –0.5 A 0 Static Drain to Source on State Resistance R DS(on) ( Ω) Pulse Test –0.5 A, –1 A 0 40 80 120 160 Case Temperature Tc (°C) –1 –2 –5 –10 –20 Drain Current I D (A) –50 Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |y fs | (S) Drain to Source Saturation Voltage V DS(on) (V) –0.5 Drain to Source On State Resistance R DS(on) ( Ω ) Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 20 Tc = –25 °C 10 25 °C 5 75 °C 2 1 0.5 –0.1 –0.2 V DS = –10 V Pulse Test –0.5 –1 –2 –5 Drain Current I D (A) –10 HAT1001F Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 10000 5000 500 Capacitance C (pF) Reverse Recovery Time trr (ns) 1000 200 100 50 20 V GS V DD = –15 V –10 V –5 V –20 –30 –40 –50 –8 V GS (V) –4 1000 –30 –12 –40 –16 I = –3.5 A –50 D 0 80 20 40 60 Gate Charge Qg (nc) –10 Drain to Source Voltage V DS (V) –20 100 t d(off) 500 Switching Time t (ns) V DS VGS = 0 f = 1 MHz Switching Characteristics 0 Gate to Source Voltage V DS (V) Drain to Source Voltage –20 Crss 0 Dynamic Input Characteristics –10 Coss 500 100 10 –0.1 –0.3 –1 –3 –10 –30 –100 Reverse Drain Current I DR (A) V DD = –5 V –10 V –15 V Ciss 1000 200 di / dt = 20 A / µs VGS = 0, Ta = 25 °C 0 2000 tf 200 tr 100 50 20 10 –0.1 –0.3 V GS = –4 V, V DD = –10 V PW = 5 µs, duty < 1 % t d(on) –1 –3 –10 –30 Drain Current I D (A) –100 HAT1001F Reverse Drain Current vs. Source to Drain Voltage –20 Reverse Drain Current I DR (A) Pulse Test –16 –5 V –3 V –12 V GS = 0, 5 V –8 –4 0 –0.4 –0.8 –1.2 –1.6 Source to Drain Voltage –2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.10 ± 0.10 1.27 0.25 0.60 +– 0.18 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC