ETC 2SJ408S

2SJ408 L , 2SJ408 S
Silicon P-Channel MOS FET
Application
HDPAK
4
High speed power switching
4
Features
•
•
•
•
Low on–resistance
High speed switching
Low drive current
4 V gate drive device can be driven from
5 V source
• Suitable for Switching regulator, DC – DC
converter
• Avalanche Ratings
1 2
3
1
2
3
1. Gate
2. Drain
3. Source
4. Drain
2, 4
1
3
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
–60
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±20
V
———————————————————————————————————————————
Drain current
ID
–50
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
–200
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
–50
A
———————————————————————————————————————————
Avalanche current
IAP***
–50
A
———————————————————————————————————————————
Avalanche energy
EAR***
214
mJ
———————————————————————————————————————————
Channel dissipation
Pch**
100
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** Value at Tc = 25 °C
*** Value at Tch = 25 °C, Rg ≥ 50 Ω
2SJ408 L , 2SJ408 S
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————–
Drain to source breakdown
voltage
V(BR)DSS
–60
—
—
V
ID = –10 mA, VGS = 0
———————————————————————————————————————————–
Gate to source breakdown
voltage
V(BR)GSS
±20
—
—
V
IG = ±100 µA, VDS = 0
———————————————————————————————————————————–
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±16 V, VDS = 0
———————————————————————————————————————————–
Zero gate voltage drain current
IDSS
—
—
–250
µA
VDS = –50 V, VGS = 0
———————————————————————————————————————————–
Gate to source cutoff voltage
VGS(off)
–1.0
—
–2.25
V
ID = –1 mA, VDS = –10 V
———————————————————————————————————————————–
Static drain to source on state
resistance
RDS(on)
—
0.015
0.02
Ω
ID = –25 A
VGS = –10 V *
————————————————————————–
—
0.02
0.028
Ω
ID = –25 A
VGS = –4 V *
———————————————————————————————————————————–
Forward transfer admittance
|yfs|
30
50
—
S
ID = –25 A
VDS = –10 V *
———————————————————————————————————————————–
Input capacitance
Ciss
—
8200
—
pF
VDS = –10 V
————————————————————————————————
Output capacitance
Coss
—
3650
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
750
—
pF
f = 1 MHz
———————————————————————————————————————————–
Turn–on delay time
td(on)
—
55
—
ns
ID = –25 A
————————————————————————————————
Rise time
tr
—
340
—
ns
————————————————————————————————
Turn–off delay time
td(off)
—
1150
—
ns
VGS = –10 V
RL = 1.2 Ω
————————————————————————————————
Fall time
tf
—
620
—
ns
———————————————————————————————————————————–
Body–drain diode forward
voltage
VDF
—
–1.0
—
V
IF = –50 A, VGS = 0
———————————————————————————————————————————–
Body–drain diode reverse
recovery time
trr
—
250
—
ns
IF = –50 A, VGS = 0,
diF / dt = 50 A / µs
———————————————————————————————————————————–
* Pulse Test
2SJ408 L , 2SJ408 S
Power vs. Temperature Derating
–1000
I D (A)
150
100
50
–30
–10
50
100
150
Case Temperature
200
Tc (°C)
Typical Output Characteristics
3V
–40
–20
0
(A)
ID
–60
VGS = 2.5 V
–2
–4
–6
Drain to Source Voltage
–8
–10
V DS (V)
Op
10
1m
µs
s
m
s
er
(1
Operation in
at
sh
ion
this area is
ot
(T
)
c=
limited by R DS(on)
25
°C
)
Typical Transfer Characteristics
Pulse Test
3.5 V
DC
=
µs
–50
Drain Current
I D (A)
Drain Current
–80
PW
0
–1 Ta = 25 °C
–0.5 –1 –2
–5 –10 –20 –50 –100
Drain to Source Voltage V DS (V)
–100
10 V
6V
4V
10
10
–100
–3
0
Maximum Safe Operation Area
–300
Drain Current
Channel Dissipation
Pch (W)
200
–40
V DS = –10 V
Pulse Test
–30
–20
Tc = 75°C
25°C
–25°C
–10
0
–1
–2
–3
Gate to Source Voltage
–4
–5
V GS (V)
2SJ408 L , 2SJ408 S
Pulse Test
–1.6
–1.2
I D = –50 A
–0.8
–20 A
–0.4
–10 A
Static Drain to Source on State Resistance
R DS(on) ( Ω)
0
–4
–2
–6
Gate to Source Voltage
–8
–10
V GS (V)
Static Drain to Source on State Resistance
vs. Temperature
50
Pulse Test
40
I D = –50 A
30
V GS = –4 V
–10 A
–20 A
20
10
0
–40
–10 V
Drain to Source On State Resistance
R DS(on) ( Ω )
–2.0
–10 A
–20 A
–50 A
0
40
80
120
160
Case Temperature Tc (°C)
Static Drain to Source on State Resistance
vs. Drain Current
100
50
VGS = –4 V
20
–10 V
10
5
2
1
–1
Pulse Test
–3
–10 –30 –100 –300 –1000
Drain Current I D (A)
Forward Transfer Admittance vs.
Drain Current
Forward Transfer Admittance |yfs| (S)
Drain to Source Voltage
V DS(on) (V)
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
100
50
20
Tc = –25 °C
25 °C
10
75 °C
5
2
1
0.5
–0.1 –0.3
V DS = –10 V
Pulse Test
–1
–3
–10 –30
Drain Current I D (A)
–100
2SJ408 L , 2SJ408 S
Typical Capacitance vs.
Drain to Source Voltage
1000
100000
500
30000
Capacitance C (pF)
Reverse Recovery Time trr (ns)
Body–Drain Diode Reverse
Recovery Time
200
100
50
20
10
–1
10000
Ciss
3000
Coss
1000
Crss
300
di / dt = 50 A / µs
V GS = 0, Ta = 25 °C
100
0
–50 –100
–2
–5 –10 –20
Reverse Drain Current I DR (A)
–40
–60
–80
–100
0
–4
–8
V DS
V DD = –50 V
–25 V
–10 V
V GS
–12
–16
I D = –50 A
–20
200
400
600
800 1000
Gate Charge Qg (nc)
–20
–30
–40
–50
Switching Characteristics
V GS = –10 V, V DD = –30 V
PW = 5 µs, duty < 1 %
Switching Time t (ns)
–20
V GS (V)
V DD = –10 V
–25 V
–50 V
5000
Gate to Source Voltage
V DS (V)
Drain to Source Voltage
0
–10
Drain to Source Voltage V DS (V)
Dynamic Input Characteristics
0
VGS = 0
f = 1 MHz
2000
t d(off)
1000
tf
500
tr
200
100
t d(on)
50
–1
–2
–5 –10 –20
–50 –100
Drain Current I D (A)
2SJ408 L , 2SJ408 S
Reverse Drain Current vs.
Source to Drain Voltage
Maximun Avalanche Energy vs.
Channel Temperature Derating
Repetive Avalanche Energy E AR (mJ)
–100
Reverse Drain Current I DR (A)
Pulse Test
–80
–60
–10 V
V GS = 0
–5 V
–40
–20
0
–0.4
–0.8
–1.2
Source to Drain Voltage
–1.6
250
I AP = –50 A
V DD = –25 V
duty < 0.1 %
Rg > 50 Ω
200
150
100
50
–2.0
V SD (V)
0
25
50
75
100
125
150
Channel Temperature Tch (°C)
Avalanche Test Circuit and Waveform
V DS
Monitor
EAR =
L
1
2
• L • I AP •
2
I AP
Monitor
VDSS
VDSS – V DD
V (BR)DSS
I AP
Rg
D. U. T
V DS
VDD
ID
Vin
–15 V
50Ω
0
VDD
2SJ408 L , 2SJ408 S
Normalized Transient Thermal Impedance vs. Pulse Width
Normalized Transient Thermal Impedance
γ s (t)
3
1
0.3
0.1
0.03
0.01
10 µ
Tc = 25°C
D=1
0.5
0.2
0.1
θ ch – c(t) = γ s (t) • θ ch – c
θ ch – c = 1.25 °C/W, Tc = 25 °C
0.05
0.02
PDM
1
0.0 lse
u
tp
ho
1s
100 µ
D=
PW
T
PW
T
1m
10 m
Pulse Width
100 m
PW (S)
1
10