2SJ332 L , 2SJ332 S Silicon P Channel MOS FET Application DPAK–2 High speed power switching 4 Features 4 12 • • • • Low on–resistance High speed switching Low drive current 4 V Gate drive device can be driven from 5 V Source • Suitable for Switching regulator, DC – DC converter 2, 4 12 3 3 1. Gate 2. Drain 3. Source 4. Drain 1 3 Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS –20 V ——————————————————————————————————————————— Gate to source voltage VGSS ±20 V ——————————————————————————————————————————— Drain current ID –10 A ——————————————————————————————————————————— Drain peak current ID(pulse)* –40 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR –10 A ——————————————————————————————————————————— Channel dissipation Pch** 20 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** Value at Tc = 25°C 2SJ332 L , 2SJ332 S Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS –20 — — V ID = –10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — –100 µA VDS = –16 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) –1.0 — –2.5 V ID = –1 mA, VDS = –10 V ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.05 0.08 Ω ID = –5 A VGS = –10 V * ———————————————————————— — 0.09 0.14 Ω ID = –5 A VGS = –4 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 6 9 — S ID = –5 A VDS = –10 V * ——————————————————————————————————————————— Input capacitance Ciss — 730 — pF VDS = –10 V ———————————————————————————————— Output capacitance Coss — 680 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 260 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — 13 — ns ID = –5 A ———————————————————————————————— Rise time tr — 110 — ns ———————————————————————————————— Turn–off delay time td(off) — 90 — ns VGS = –10 V RL = 2 Ω ———————————————————————————————— Fall time tf — 110 — ns ——————————————————————————————————————————— Body–drain diode forward voltage VDF — –1.2 — V IF = –10 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 50 — µs IF = –10 A, VGS = 0, diF / dt = 50 A / µs ——————————————————————————————————————————— * Pulse Test 2SJ332 L , 2SJ332 S Maximum Safe Operation Area Power vs. Temperature Derating –100 10 µs I D (A) 1 10 5 –3 –1 Ta = 25 °C 50 100 150 Case Temperature 200 Ta (°C) (A) ID –12 –3 V –8 –4 0 Typical Tranfer Characteristics Pulse Test –3.5 V VGS = –2.5 V –2 –4 –6 Drain to Source Voltage –8 –10 V DS (V) PW = 10 ms (1shot) –20 Drain Current I D (A) –16 –10 V –6 V –4 V D (T .C c Op = 25 era °C tio ) n –0.1 –0.1 –0.3 –1 –3 –10 –30 –100 Drain to Source Voltage V DS (V) Typical Output Characteristics –20 Drain Current s –0.3 0 m –10 O Ar pe e by a rat R is ion D Lim in S( on ite Th d is ) 15 100 µs –30 Drain Current Channel Dissipation Pch (W) 20 –16 V DS = –10 V Pulse Test –12 –8 75 °C Tc = 25 °C –25 °C –4 0 –1 –2 –3 Gate to Source Voltage –4 –5 V GS (V) 2SJ332 L , 2SJ332 S Static Drain to Source on State Resistance vs. Drain Current 1 –0.8 I D = –10 A –0.4 Static Drain to Source on State Resistance R DS(on) ( Ω) 0 –2 A –2 –4 –6 Gate to Source Voltage 0.12 0.08 –10 V GS (V) V GS = –10 V 0 –40 –2 A –10 A 0.04 0.2 VGS = –4 V 0.1 –10 V 0.01 –0.5 –1 –8 I D = –10 A –5 A V GS = –4 V Pulse Test 0.02 Static Drain to Source on State Resistance vs. Temperature 0.20 Pulse Test 0.16 0.5 0.05 –5 A –0.2 Drain to Source On State Resistance R DS(on) ( Ω ) –0.6 Pulse Test –5 A –2 A 0 40 80 120 160 Case Temperature Tc (°C) –2 –5 –10 –20 Drain Current I D (A) –50 Forward Transfer Admittance vs. Drain Current Forward Transfer Admittance |y fs | (S) V DS(on) (V) –1.0 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 20 –25 °C 10 5 Tc = 25 °C 75 °C 2 1 0.5 –0.2 V DS = –10 V Pulse Test –0.5 –1 –2 –5 –10 –20 Drain Current I D (A) 2SJ332 L , 2SJ332 S Body–Drain Diode Reverse Recovery Time Typical Capacitance vs. Drain to Source Voltage 10000 200 Capacitance C (pF) Reverse Recovery Time trr (ns) 500 100 50 di / dt = 20 A / µs VGS = 0, Pulse Test 20 Ciss 1000 Coss Crss 100 10 VGS = 0 f = 1 MHz 5 –0.1 –0.2 –0.5 –1.0 –2 –5 –10 Reverse Drain Current I DR (A) 10 0 –4 V DS V DD = –5 V –10 V –20 V –30 –40 V GS (V) –16 I D = –10 A –50 0 –8 –12 V GS 8 16 24 32 Gate Charge Qg (nc) –20 –20 40 500 Switching Time t (ns) –20 –4 Gate to Source Voltage V DS (V) Drain to Source Voltage –10 –16 Switching Characteristics 0 V DD = –5 V –10 V –20 V –12 Drain to Source Voltage V DS (V) Dynamic Input Characteristics 0 –8 200 100 V GS = –10 V, V DD = –10 V PW = 2 µs, duty < 1 % tf t d(off) 50 tr 20 t d(on) 10 5 –0.1 –0.2 –0.5 –1 –2 –5 Drain Current I D (A) –10 2SJ332 L , 2SJ332 S Reverse Drain Current vs. Source to Drain Voltage –20 –16 –12 –10 V –8 –5 V –4 V GS = 0, 5 V 0 –0.4 –0.8 –1.2 Drain to Source Voltage –1.6 –20 V DS (V) Normalized Transient Thermal Impedance vs. Pulse Width 3 Normalized Transient Thermal Impedance γ s (t) Reverse Drain Current I DR (A) Pulse Test Tc = 25°C 1 0.3 0.1 0.03 D=1 0.5 0.2 0.1 0.05 θ ch – c(t) = γ s (t) • θ ch – c θ ch – c = 6.25 °C/W, Tc = 25 °C 0.02 1 0.0 t ho lse PDM Pu 1s D= PW T PW T 0.01 10 µ 100 µ 1m 10 m Pulse Width 100 m PW (S) 1 10 2SJ332 L , 2SJ332 S Switching Time Test Circuit Waveforms Vout Monitor Vin Monitor Vin 10% D.U.T. RL 90% Vin 10 V 50Ω V DD = 30 V 90% 90% Vout td(on) 10% 10% tr td(off) tf