ETC HAT2001F

HAT2001F
Silicon N Channel Power MOS FET
Application
SOP–8
Power switching
Features
•
•
•
•
8
Low on–resistance
Capable of2.5V gate drive
Low drive current
High density mounting
5
7 6
5 6 7 8
D D D D
3
1 2
4
G
1, 2, 3
Source
4
Gate
5, 6, 7, 8 Drain
Ordering Information
————————————————————
Hitachi Code
S S S
1 2 3
FP–8D
————————————————————
EIAJ Code
4
SC–527–8A
————————————————————
JEDEC Code
—
————————————————————
Table 1 Absolute Maximum Ratings (Ta = 25°C)
Item
Symbol
Ratings
Unit
———————————————————————————————————————————
Drain to source voltage
VDSS
30
V
———————————————————————————————————————————
Gate to source voltage
VGSS
±10
V
———————————————————————————————————————————
Drain current
ID
5
A
———————————————————————————————————————————
Drain peak current
ID(pulse)*
20
A
———————————————————————————————————————————
Body–drain diode reverse drain current
IDR
5
A
———————————————————————————————————————————
Channel dissipation
Pch**
1
W
———————————————————————————————————————————
Channel temperature
Tch
150
°C
———————————————————————————————————————————
Storage temperature
Tstg
–55 to +150
°C
———————————————————————————————————————————
*
PW ≤ 10 µs, duty cycle ≤ 1 %
** When using the glass epoxy board (40 x 40 x 1.6 mm)
HAT2001F
Table 2 Electrical Characteristics (Ta = 25°C)
Item
Symbol
Min
Typ
Max
Unit
Test conditions
———————————————————————————————————————————
Drain to source breakdown
voltage
V(BR)DSS
30
—
—
V
ID = 10 mA, VGS = 0
———————————————————————————————————————————
Gate to source breakdown
voltage
V(BR)GSS
±10
—
—
V
IG = ±200 µA, VDS = 0
———————————————————————————————————————————
Gate to source leak current
IGSS
—
—
±10
µA
VGS = ±6.5 V, VDS = 0
———————————————————————————————————————————
Zero gate voltage drain current
IDSS
—
—
10
µA
VDS = 30 V, VGS = 0
———————————————————————————————————————————
Gate to source cutoff voltage
VGS(off)
0.4
—
1.4
V
VDS = 10 V, ID = 1 mA
———————————————————————————————————————————
Static drain to source on state
resistance
RDS(on)
—
0.035
0.045
Ω
ID = 3 A
VGS = 4V *
————————————————————————
—
0.045
0.06
Ω
ID = 3 A
VGS = 2.5 V *
———————————————————————————————————————————
Forward transfer admittance
|yfs|
7
12
—
S
ID = 3 A
VDS = 10 V *
———————————————————————————————————————————
Input capacitance
Ciss
—
1250
—
pF
VDS = 10 V
————————————————————————————————
Output capacitance
Coss
—
540
—
pF
VGS = 0
————————————————————————————————
Reverse transfer capacitance
Crss
—
120
—
pF
f = 1 MHz
———————————————————————————————————————————
Turn–on delay time
td(on)
—
20
—
ns
VGS = 4 V, ID = 3 A
————————————————————————————————
Rise time
tr
—
100
—
ns
VDD = 10 V
————————————————————————————————
Turn–off delay time
td(off)
—
210
—
ns
————————————————————————————————
Fall time
tf
—
130
—
ns
———————————————————————————————————————————
Body–drain diode forward
voltage
VDF
—
0.8
—
V
IF = 5A, VGS = 0
———————————————————————————————————————————
Body–drain diode reverse
recovery time
trr
—
50
—
ns
IF = 5A, VGS = 0
diF / dt = 20 A / µs
———————————————————————————————————————————
* Pulse Test
HAT2001F
Power vs. Temperature Derating
100
1.5
Maximum Safe Operation Area
10 µs
30
I D (A)
Test Condition :
When using the glass epoxy board
(40 x 40 x 1.6 mm)
PW
3
1.0
0.5
0
50
100
150
Ambient Temperature
200
Ta (°C)
100 µs
10
Drain Current
Channel Dissipation
Pch (W)
2.0
DC
1
1
=
10
Op
er
m
s
m
s
at
Operation in
ion
0.3 this area is
**
limited by R DS(on)
0.1
0.03 Ta = 25 °C
0.01 1 shot Pulse
0.1 0.3
1
3
10
30
100
Drain to Source Voltage V DS (V)
** When using the glass epoxy board
(40 x 40 x 1.6 mm)
Typical Output Characteristics
12
8
4
0
(A)
2V
ID
16
10 V
5V
4V
2.5 V
Typical Transfer Characteristics
20
VGS = 1.5 V
2
4
6
Drain to Source Voltage
8
10
V DS (V)
Drain Current
Drain Current
I D (A)
20
V DS = 10 V
Pulse Test
16
12
8
Tc = 75°C
25°C
4
0
–25°C
1
2
3
Gate to Source Voltage
5
4
V GS (V)
HAT2001F
Static Drain to Source on State Resistance
vs. Drain Current
1
Drain to Source On State Resistance
R DS(on) ( Ω )
0.3
Pulse Test
0.4
0.2
ID=5A
0.1
0
8
Static Drain to Source on State Resistance
R DS(on) ( Ω)
VGS = 2.5 V
4V
V GS (V)
0.08
I D = 1 A, 2 A, 5 A
0.06
2.5 V
0.04
1 A, 2 A, 5 A
0
–40
0.1
0.01
0.2
10
Static Drain to Source on State Resistance
vs. Temperature
0.10
Pulse Test
0.02
0.2
0.02
2A
1A
2
4
6
Gate to Source Voltage
Pulse Test
0.5
0.05
V GS = 4 V
0
40
80
120
160
Case Temperature Tc (°C)
Forward Transfer Admittance |yfs| (S)
V DS(on) (V)
0.5
Drain to Source Voltage
Drain to Source Saturation Voltage vs.
Gate to Source Voltage
50
0.5
1
2
Drain Current
5
10
I D (A)
20
Forward Transfer Admittance vs.
Drain Current
Tc = –25 °C
20
10
25 °C
5
75 °C
2
1
0.5
0.2
V DS = 10 V
Pulse Test
0.5
1
2
5
Drain Current I D (A)
10
20
HAT2001F
Typical Capacitance vs.
Drain to Source Voltage
Body–Drain Diode Reverse
Recovery Time
10000
di/dt = 20 A/µs
V GS = 0, Ta = 25°C
500
Capacitance C (pF)
Reverse Recovery Time trr (ns)
1000
200
100
50
Coss
300
10
0
0.5
1
2
5
10 20
Reverse Drain Current I DR (A)
40
V DD = 5 V
10 V
25 V
8
30 V
DS
6
V GS
20
10
0
4
V DD = 25 V
10 V
5V
8
16
24
32
Gate Charge Qg (nc)
2
0
40
1000
20
30
40
50
Switching Characteristics
V GS = 4 V, V DD = 10 V
500 PW = 3 µs, duty < 1 %
Switching Time t (ns)
I D= 5 A
10
Drain to Source Voltage V DS (V)
V GS (V)
10
Crss
100
10
0.2
Gate to Source Voltage
V DS (V)
Ciss
1000
30
Dynamic Input Characteristics
Drain to Source Voltage
3000
20
50
VGS = 0
f = 1 MHz
t d(off)
200
tf
100
50
tr
t d(on)
20
10
0.2
0.5
1
2
Drain Current
5
10
I D (A)
20
HAT2001F
Reverse Drain Current vs.
Souece to Drain Voltage
Reverse Drain Current I DR (A)
20
Pulse Test
16
12
V GS = 0, –5 V
8
5V
4
0
0.4
0.8
1.2
Source to Drain Voltage
1.6
2.0
V SD (V)
Package Dimensions
Unit : mm
• SOP–8
0.75 Max
6.8 Max
+ 0.05
4
0.20 – 0.02
1
2.03 Max
5
2.00 Max
8
4.55 Max
5.25 Max
0 – 10 °
0.40
+ 0.10
– 0.05
0.25
0.60 +– 0.18
0.10 ± 0.10
1.27
0.1
0.12 M
FP–8D
Hitachi Code
SC–527–8A
EIAJ
—
JEDEC