HAT2001F Silicon N Channel Power MOS FET Application SOP–8 Power switching Features • • • • 8 Low on–resistance Capable of2.5V gate drive Low drive current High density mounting 5 7 6 5 6 7 8 D D D D 3 1 2 4 G 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain Ordering Information ———————————————————— Hitachi Code S S S 1 2 3 FP–8D ———————————————————— EIAJ Code 4 SC–527–8A ———————————————————— JEDEC Code — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS 30 V ——————————————————————————————————————————— Gate to source voltage VGSS ±10 V ——————————————————————————————————————————— Drain current ID 5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* 20 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR 5 A ——————————————————————————————————————————— Channel dissipation Pch** 1 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** When using the glass epoxy board (40 x 40 x 1.6 mm) HAT2001F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS 30 — — V ID = 10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±10 — — V IG = ±200 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±6.5 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — 10 µA VDS = 30 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) 0.4 — 1.4 V VDS = 10 V, ID = 1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.035 0.045 Ω ID = 3 A VGS = 4V * ———————————————————————— — 0.045 0.06 Ω ID = 3 A VGS = 2.5 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 7 12 — S ID = 3 A VDS = 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 1250 — pF VDS = 10 V ———————————————————————————————— Output capacitance Coss — 540 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 120 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — 20 — ns VGS = 4 V, ID = 3 A ———————————————————————————————— Rise time tr — 100 — ns VDD = 10 V ———————————————————————————————— Turn–off delay time td(off) — 210 — ns ———————————————————————————————— Fall time tf — 130 — ns ——————————————————————————————————————————— Body–drain diode forward voltage VDF — 0.8 — V IF = 5A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 50 — ns IF = 5A, VGS = 0 diF / dt = 20 A / µs ——————————————————————————————————————————— * Pulse Test HAT2001F Power vs. Temperature Derating 100 1.5 Maximum Safe Operation Area 10 µs 30 I D (A) Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) PW 3 1.0 0.5 0 50 100 150 Ambient Temperature 200 Ta (°C) 100 µs 10 Drain Current Channel Dissipation Pch (W) 2.0 DC 1 1 = 10 Op er m s m s at Operation in ion 0.3 this area is ** limited by R DS(on) 0.1 0.03 Ta = 25 °C 0.01 1 shot Pulse 0.1 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) ** When using the glass epoxy board (40 x 40 x 1.6 mm) Typical Output Characteristics 12 8 4 0 (A) 2V ID 16 10 V 5V 4V 2.5 V Typical Transfer Characteristics 20 VGS = 1.5 V 2 4 6 Drain to Source Voltage 8 10 V DS (V) Drain Current Drain Current I D (A) 20 V DS = 10 V Pulse Test 16 12 8 Tc = 75°C 25°C 4 0 –25°C 1 2 3 Gate to Source Voltage 5 4 V GS (V) HAT2001F Static Drain to Source on State Resistance vs. Drain Current 1 Drain to Source On State Resistance R DS(on) ( Ω ) 0.3 Pulse Test 0.4 0.2 ID=5A 0.1 0 8 Static Drain to Source on State Resistance R DS(on) ( Ω) VGS = 2.5 V 4V V GS (V) 0.08 I D = 1 A, 2 A, 5 A 0.06 2.5 V 0.04 1 A, 2 A, 5 A 0 –40 0.1 0.01 0.2 10 Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 0.02 0.2 0.02 2A 1A 2 4 6 Gate to Source Voltage Pulse Test 0.5 0.05 V GS = 4 V 0 40 80 120 160 Case Temperature Tc (°C) Forward Transfer Admittance |yfs| (S) V DS(on) (V) 0.5 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage 50 0.5 1 2 Drain Current 5 10 I D (A) 20 Forward Transfer Admittance vs. Drain Current Tc = –25 °C 20 10 25 °C 5 75 °C 2 1 0.5 0.2 V DS = 10 V Pulse Test 0.5 1 2 5 Drain Current I D (A) 10 20 HAT2001F Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 10000 di/dt = 20 A/µs V GS = 0, Ta = 25°C 500 Capacitance C (pF) Reverse Recovery Time trr (ns) 1000 200 100 50 Coss 300 10 0 0.5 1 2 5 10 20 Reverse Drain Current I DR (A) 40 V DD = 5 V 10 V 25 V 8 30 V DS 6 V GS 20 10 0 4 V DD = 25 V 10 V 5V 8 16 24 32 Gate Charge Qg (nc) 2 0 40 1000 20 30 40 50 Switching Characteristics V GS = 4 V, V DD = 10 V 500 PW = 3 µs, duty < 1 % Switching Time t (ns) I D= 5 A 10 Drain to Source Voltage V DS (V) V GS (V) 10 Crss 100 10 0.2 Gate to Source Voltage V DS (V) Ciss 1000 30 Dynamic Input Characteristics Drain to Source Voltage 3000 20 50 VGS = 0 f = 1 MHz t d(off) 200 tf 100 50 tr t d(on) 20 10 0.2 0.5 1 2 Drain Current 5 10 I D (A) 20 HAT2001F Reverse Drain Current vs. Souece to Drain Voltage Reverse Drain Current I DR (A) 20 Pulse Test 16 12 V GS = 0, –5 V 8 5V 4 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.25 0.60 +– 0.18 0.10 ± 0.10 1.27 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC