HAT2002F Silicon N Channel Power MOS FET Application SOP–8 Power switching Synchronously Rectifier 8 5 7 6 Features • • • • 3 1 2 5 6 7 8 D D D D Low on–resistance Capable of 4V gate drive Low drive current High density mounting 4 G Ordering Information 1, 2, 3 Source 4 Gate 5, 6, 7, 8 Drain S S S 1 2 3 ———————————————————— Hitachi Code 4 FP–8D ———————————————————— EIAJ Code SC–527–8A ———————————————————— JEDEC Code — ———————————————————— Table 1 Absolute Maximum Ratings (Ta = 25°C) Item Symbol Ratings Unit ——————————————————————————————————————————— Drain to source voltage VDSS 30 V ——————————————————————————————————————————— Gate to source voltage VGSS ±20 V ——————————————————————————————————————————— Drain current ID 5 A ——————————————————————————————————————————— Drain peak current ID(pulse)* 20 A ——————————————————————————————————————————— Body–drain diode reverse drain current IDR 5 A ——————————————————————————————————————————— Channel dissipation Pch** 1 W ——————————————————————————————————————————— Channel temperature Tch 150 °C ——————————————————————————————————————————— Storage temperature Tstg –55 to +150 °C ——————————————————————————————————————————— * PW ≤ 10 µs, duty cycle ≤ 1 % ** When using the glass epoxy board (40 x 40 x 1.6 mm) HAT2002F Table 2 Electrical Characteristics (Ta = 25°C) Item Symbol Min Typ Max Unit Test conditions ——————————————————————————————————————————— Drain to source breakdown voltage V(BR)DSS 30 — — V ID = 10 mA, VGS = 0 ——————————————————————————————————————————— Gate to source breakdown voltage V(BR)GSS ±20 — — V IG = ±100 µA, VDS = 0 ——————————————————————————————————————————— Gate to source leak current IGSS — — ±10 µA VGS = ±16 V, VDS = 0 ——————————————————————————————————————————— Zero gate voltage drain current IDSS — — 10 µA VDS = 30 V, VGS = 0 ——————————————————————————————————————————— Gate to source cutoff voltage VGS(off) 1.0 — 2.5 V VDS = 10 V, ID = 1 mA ——————————————————————————————————————————— Static drain to source on state resistance RDS(on) — 0.03 0.04 Ω ID = 3 A VGS = 10V * ———————————————————————— — 0.05 0.06 Ω ID = 3 A VGS = 4 V * ——————————————————————————————————————————— Forward transfer admittance |yfs| 4.0 8.0 — S ID = 3 A VDS = 10 V * ——————————————————————————————————————————— Input capacitance Ciss — 860 — pF VDS = 10 V ———————————————————————————————— Output capacitance Coss — 560 — pF VGS = 0 ———————————————————————————————— Reverse transfer capacitance Crss — 150 — pF f = 1 MHz ——————————————————————————————————————————— Turn–on delay time td(on) — 30 — ns VGS = 4 V, ID = 3 A ———————————————————————————————— Rise time tr — 190 — ns VDD = 10 V ———————————————————————————————— Turn–off delay time td(off) — 75 — ns ———————————————————————————————— Fall time tf — 90 — ns ——————————————————————————————————————————— Body–drain diode forward voltage VDF — 0.8 — V IF = 5 A, VGS = 0 ——————————————————————————————————————————— Body–drain diode reverse recovery time trr — 45 — ns IF = 5A, VGS = 0 diF / dt = 20 A / µs ——————————————————————————————————————————— * Pulse Test HAT2002F Power vs. Temperature Derating Test Condition : When using the glass epoxy board (40 x 40 x 1.6 mm) 1.5 100 µs 30 I D (A) Pch (W) Maximum Safe Operation Area 100 2.0 s PW = (1 10 m sh s 1 ot Op ) Operation in er ati 0.3 this area is on ** limited by R DS(on) 0.1 Drain Current Channel Dissipation 0.5 1m 10 3 1.0 10 µs DC 0.03 0 50 100 Case Temperature 150 200 0.01 0.1 Tc (°C) Ta = 25 °C 0.3 1 3 10 30 100 Drain to Source Voltage V DS (V) ** When using the glass epoxy board (40 x 40 x 1.6 mm) Typical Output Characteristics Typical Transfer Characteristics 20 Pulse Test 12 3V 8 2.5 V 4 (A) 4V V DS = 10 V Pulse Test ID 16 3.5 V Drain Current Drain Current I D (A) 10 V 20 16 12 8 Tc = 75°C 25°C –25°C 4 VGS = 2 V 0 2 4 6 Drain to Source Voltage 8 10 V DS (V) 0 1 2 3 Gate to Source Voltage 5 4 V GS (V) HAT2002F Static Drain to Source on State Resistance vs. Drain Current 1 0.3 Drain to Source On State Resistance R DS(on) ( Ω ) V DS(on) (V) 0.5 Drain to Source Voltage Drain to Source Saturation Voltage vs. Gate to Source Voltage Pulse Test 0.4 0.2 Pulse Test 0.5 0.2 0.1 VGS = 4 V 0.05 ID=3A 0.1 2A 1A 10 V 0.02 0.01 2 4 6 Gate to Source Voltage 8 V GS (V) Static Drain to Source on State Resistance R DS(on) ( Ω) Static Drain to Source on State Resistance vs. Temperature 0.10 Pulse Test 0.08 0.06 I D = 1 A, 2 A, 3 A 4V 0.04 1 A, 2 A, 3 A 0.02 0 –40 0.1 0.2 10 V GS = 10 V 0 40 80 120 160 Case Temperature Tc (°C) 0.5 1 2 5 Drain Current Forward Transfer Admittance |yfs| (S) 0 50 10 20 50 100 I D (A) Forward Transfer Admittance vs. Drain Current 20 Tc = –25 °C 10 75 °C 5 25 °C 2 1 0.5 0.1 V DS = 10 V Pulse Test 0.3 1 3 10 Drain Current I D (A) 30 100 HAT2002F Typical Capacitance vs. Drain to Source Voltage Body–Drain Diode Reverse Recovery Time 5000 VGS = 0 f = 1 MHz 500 Capacitance C (pF) Reverse Recovery Time trr (ns) 1000 200 100 50 10 0.2 Coss 200 0 V DD = 5 V 10 V 20 V 60 V GS 12 ID=5A 40 16 8 V DS V DD = 20 V 10 V 5V 8 16 24 32 Gate Charge Qg (nc) 4 0 40 10 20 30 40 50 Drain to Source Voltage V DS (V) Switching Characteristics V GS = 4 V, V DD = 10 V 500 PW = 3 µs, duty < 1 % Switching Time t (ns) 80 Crss 1000 V GS (V) 20 Gate to Source Voltage V DS (V) Drain to Source Voltage 500 50 Dynamic Input Characteristics 0 Ciss 0.5 1 2 5 10 20 Reverse Drain Current I DR (A) 100 20 1000 100 di/dt = 20 A/µs V GS = 0, Ta = 25°C 20 2000 200 tf 100 50 tr t d(off) t d(on) 20 10 0.2 0.5 1 2 Drain Current 5 10 I D (A) 20 HAT2002F Reverse Drain Current vs. Souece to Drain Voltage 20 Reverse Drain Current I DR (A) Pulse Test 16 12 V GS = 0, –5 V 8 5V 4 0 0.4 0.8 1.2 Source to Drain Voltage 1.6 2.0 V SD (V) Package Dimensions Unit : mm • SOP–8 0.75 Max 6.8 Max + 0.05 4 0.20 – 0.02 1 2.03 Max 5 2.00 Max 8 4.55 Max 5.25 Max 0 – 10 ° 0.40 + 0.10 – 0.05 0.25 0.60 +– 0.18 0.10 ± 0.10 1.27 0.1 0.12 M FP–8D Hitachi Code SC–527–8A EIAJ — JEDEC