HFA1112 September 1998 850MHz, Low Distortion Programmable Gain Buffer Amplifier The HFA1112 is a closed loop Buffer featuring user programmable gain and ultra high speed performance. Manufactured on Intersil’s proprietary complementary bipolar UHF-1 process, the HFA1112 offers a wide -3dB bandwidth of 850MHz, very fast slew rate, excellent gain flatness, low distortion and high output current. A unique feature of the pinout allows the user to select a voltage gain of +1, -1, or +2, without the use of any external components. Gain selection is accomplished via connections to the inputs, as described in the “Application Information” section. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space. Compatibility with existing op amp pinouts provides flexibility to upgrade low gain amplifiers, while decreasing component count. Unlike most buffers, the standard pinout provides an upgrade path should a higher closed loop gain be needed at a future date. File Number 2992.5 Features • User Programmable for Closed-Loop Gains of +1, -1 or +2 without Use of External Resistors • Wide -3dB Bandwidth. . . . . . . . . . . . . . . . . . . . . . 850MHz • Very Fast Slew Rate . . . . . . . . . . . . . . . . . . . . . . 2400V/µs • Fast Settling Time (0.1%) . . . . . . . . . . . . . . . . . . . . . 11ns • High Output Current . . . . . . . . . . . . . . . . . . . . . . . . . 60mA • Excellent Gain Accuracy . . . . . . . . . . . . . . . . . . . 0.99V/V • Overdrive Recovery . . . . . . . . . . . . . . . . . . . . . . . . <10ns • Standard Operational Amplifier Pinout Applications • RF/IF Processors • Driving Flash A/D Converters • High-Speed Communications • Impedance Transformation • Line Driving This amplifier is available with programmable output limiting as the HFA1113. For applications requiring a standard buffer pinout, please refer to the HFA1110 datasheet. For Military product, refer to the HFA1112/883 data sheet. Pinout 300 1 - • Medical Imaging Systems Ordering Information PART NUMBER (BRAND) 8 NC 300 -IN 2 +IN 3 6 OUT V- 4 5 NC + • Radar Systems • Related Literature - AN9507, Video Cable Drivers Save Board Space HFA1112 (PDIP, SOIC) TOP VIEW NC • Video Switching and Routing 7 V+ TEMP. RANGE (oC) PACKAGE PKG. NO. HFA1112IP -40 to 85 8 Ld PDIP E8.3 HFA1112IB (H1112I) -40 to 85 8 Ld SOIC M8.15 HFA11XXEVAL High Speed Op Amp DIP Evaluation Board Pin Description NAME PIN NUMBER NC 1, 5, 8 No Connection -IN 2 Inverting Input +IN 3 Non-Inverting Input V- 4 Negative Supply OUT 6 Output V+ 7 Positive Supply DESCRIPTION 1 CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. http://www.intersil.com or 407-727-9207 | Copyright © Intersil Corporation 1999 HFA1112 Absolute Maximum Ratings Thermal Information Voltage Between V+ and V- . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12V Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VSUPPLY Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60mA Thermal Resistance (Typical, Note 1) θJA (oC/W) θJC (oC/W) PDIP Package . . . . . . . . . . . . . . . . . . . 98 N/A SOIC Package . . . . . . . . . . . . . . . . . . . 170 N/A Maximum Junction Temperature (Plastic Package) . . . . . . . .150oC Maximum Storage Temperature Range . . . . . . . . . . -65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range . . . . . . . . . . . . . . . . . . . . . . . . . . -40oC to 85oC CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. θJA is measured with the component mounted on an evaluation PC board in free air. Electrical Specifications VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified TEMP (oC) MIN TYP MAX UNITS 25 - 8 25 mV Full - - 35 mV Output Offset Voltage Drift Full - 10 - µV/oC PSRR 25 39 45 - dB Full 35 - - dB PARAMETER TEST CONDITIONS INPUT CHARACTERISTICS Output Offset Voltage Input Noise Voltage (Note 3) 100kHz 25 - 9 - nV/√Hz Non-Inverting Input Noise Current (Note 3) 100kHz 25 - 37 - pA/√Hz 25 - 25 40 µA Full - - 65 µA Non-Inverting Input Resistance 25 25 50 - kΩ Inverting Input Resistance (Note 2) 25 240 300 360 Ω Input Capacitance 25 - 2 - pF Input Common Mode Range Full ±2.5 ±2.8 - V 25 0.980 0.990 1.02 V/V Full 0.975 - 1.025 V/V 25 1.96 1.98 2.04 V/V Full 1.95 - 2.05 V/V AV = +2, ±2V Full Scale 25 - 0.02 - % AV = -1 25 ±3.0 ±3.3 - V Full ±2.5 ±3.0 - V 25, 85 50 60 - mA -40 35 50 - mA 25 - 0.3 - Ω Supply Voltage Range Full ±4.5 - ±5.5 V Supply Current (Note 3) 25 - 21 26 mA Full - - 33 mA Non-Inverting Input Bias Current TRANSFER CHARACTERISTICS Gain AV = +1, VIN = +2V Gain AV = +2, VIN = +1V DC Non-Linearity (Note 3) OUTPUT CHARACTERISTICS Output Voltage (Note 3) Output Current (Note 3) RL = 50Ω Closed Loop Output Impedance DC, AV = +2 POWER SUPPLY CHARACTERISTICS 2 HFA1112 Electrical Specifications VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Continued) TEMP (oC) MIN TYP MAX UNITS AV = -1 25 450 800 - MHz AV = +1 25 500 850 - MHz AV = +2 25 350 550 - MHz AV = -1 25 1500 2400 - V/µs AV = +1 25 800 1500 - V/µs AV = +2 25 1100 1900 - V/µs AV = -1 25 - 300 - MHz AV = +1 25 - 150 - MHz AV = +2 25 - 220 - MHz AV = -1 25 - ±0.02 - dB AV = +1 25 - ±0.1 - dB AV = +2 25 - ±0.015 ±0.04 dB AV = -1 25 - ±0.05 - dB AV = +1 25 - ±0.2 - dB AV = +2 25 - ±0.036 ±0.08 dB Gain Flatness (to 100MHz, Notes 2, 3) AV = -1 25 - ±0.10 - dB AV = +2 25 - ±0.07 ±0.22 dB Linear Phase Deviation (to 100MHz, Note 3) AV = -1 25 - ±0.13 - Degrees AV = +1 25 - ±0.83 - Degrees AV = +2 25 - ±0.05 - Degrees AV = -1 25 - -52 - dBc AV = +1 25 - -57 - dBc AV = +2 25 - -52 -45 dBc AV = -1 25 - -71 - dBc AV = +1 25 - -73 - dBc AV = +2 25 - -72 -65 dBc AV = -1 25 - -47 - dBc AV = +1 25 - -53 - dBc AV = +2 25 - -47 -40 dBc AV = -1 25 - -63 - dBc AV = +1 25 - -68 - dBc AV = +2 25 - -65 -55 dBc AV = -1 25 - -41 - dBc AV = +1 25 - -50 - dBc AV = +2 25 - -42 -35 dBc AV = -1 25 - -55 - dBc AV = +1 25 - -49 - dBc AV = +2 25 - -62 -45 dBc PARAMETER TEST CONDITIONS AC CHARACTERISTICS -3dB Bandwidth (VOUT = 0.2VP-P, Notes 2, 3) Slew Rate (VOUT = 5VP-P, Note 2) Full Power Bandwidth (VOUT = 5VP-P, Note 3) Gain Flatness (to 30MHz, Notes 2, 3) Gain Flatness (to 50MHz, Notes 2, 3) 2nd Harmonic Distortion (30MHz, VOUT = 2VP-P, Notes 2, 3) 3rd Harmonic Distortion (30MHz, VOUT = 2VP-P, Notes 2, 3) 2nd Harmonic Distortion (50MHz, VOUT = 2VP-P, Notes 2, 3) 3rd Harmonic Distortion (50MHz, VOUT = 2VP-P, Notes 2, 3) 2nd Harmonic Distortion (100MHz, VOUT = 2VP-P, Notes 2, 3) 3rd Harmonic Distortion (100MHz, VOUT = 2VP-P, Notes 2, 3) 3 HFA1112 Electrical Specifications VSUPPLY = ±5V, AV = +1, RL = 100Ω, Unless Otherwise Specified (Continued) PARAMETER TEST CONDITIONS TEMP (oC) MIN TYP MAX UNITS 3rd Order Intercept (AV = +2, Note 3) 100MHz 25 - 28 - dBm 300MHz 25 - 13 - dBm 1dB Compression (AV = +2, Note 3) 100MHz 25 - 19 - dBm 300MHz 25 - 12 - dBm Reverse Isolation (S12, Note 3) 40MHz 25 - -70 - dB 100MHz 25 - -60 - dB 600MHz 25 - -32 - dB AV = -1 25 - 500 800 ps AV = +1 25 - 480 750 ps AV = +2 25 - 700 1000 ps AV = -1 25 - 0.82 - ns AV = +1 25 - 1.06 - ns AV = +2 25 - 1.00 - ns AV = -1 25 - 12 30 % AV = +1 25 - 45 65 % AV = +2 25 - 6 20 % 0.1% Settling Time (Note 3) VOUT = 2V to 0V 25 - 11 - ns 0.05% Settling Time VOUT = 2V to 0V 25 - 15 - ns Overdrive Recovery Time VIN = 5VP-P 25 - 8.5 - ns Differential Gain AV = +1, 3.58MHz, RL = 150Ω 25 - 0.03 - % AV = +2, 3.58MHz, RL = 150Ω 25 - 0.02 - % AV = +1, 3.58MHz, RL = 150Ω 25 - 0.05 - Degrees AV = +2, 3.58MHz, RL = 150Ω 25 - 0.04 - Degrees TRANSIENT CHARACTERISTICS Rise Time (VOUT = 0.5V Step, Note 2) Rise Time (VOUT = 2V Step) Overshoot (VOUT = 0.5V Step, Input tR/tF = 200ps, Notes 2, 3, 4) Differential Phase NOTES: 2. This parameter is not tested. The limits are guaranteed based on lab characterization, and reflect lot-to-lot variation. 3. See Typical Performance Curves for more information. 4. Overshoot decreases as input transition times increase, especially for AV = +1. Please refer to Typical Performance Curves. Application Information Closed Loop Gain Selection The HFA1112 features a novel design which allows the user to select from three closed loop gains, without any external components. The result is a more flexible product, fewer part types in inventory, and more efficient use of board space. This “buffer” operates in closed loop gains of -1, +1, or +2, and gain selection is accomplished via connections to the ±inputs. Applying the input signal to +IN and floating -IN selects a gain of +1, while grounding -IN selects a gain of +2. A gain of -1 is obtained by applying the input signal to -IN with +IN grounded. 4 The table below summarizes these connections: CONNECTIONS GAIN (ACL) +INPUT (PIN 3) -INPUT (PIN 2) -1 GND Input +1 Input NC (Floating) +2 Input GND HFA1112 The frequency response of this amplifier depends greatly on the amount of care taken in designing the PC board. The use of low inductance components such as chip resistors and chip capacitors is strongly recommended, while a solid ground plane is a must! Attention should be given to decoupling the power supplies. A large value (10µF) tantalum in parallel with a small value (0.1µF) chip capacitor works well in most cases. Terminated microstrip signal lines are recommended at the input and output of the device. Capacitance directly on the output must be minimized, or isolated as discussed in the next section. For unity gain applications, care must also be taken to minimize the capacitance to ground seen by the amplifier’s inverting input. At higher frequencies this capacitance will tend to short the -INPUT to GND, resulting in a closed loop gain which increases with frequency. This will cause excessive high frequency peaking and potentially other problems as well. An example of a good high frequency layout is the Evaluation Board shown in Figure 2. overdamped response, while points below or left of the curve indicate areas of underdamped performance. RS and CL form a low pass network at the output, thus limiting system bandwidth well below the amplifier bandwidth of 850MHz. By decreasing RS as CLincreases (as illustrated in the curves), the maximum bandwidth is obtained without sacrificing stability. Even so, bandwidth does decrease as you move to the right along the curve. For example, at AV = +1, RS = 50Ω, CL = 30pF, the overall bandwidth is limited to 300MHz, and bandwidth drops to 100MHz at AV = +1, RS = 5Ω, CL = 340pF. RS (Ω) PC Board Layout 50 45 40 35 30 25 20 15 10 5 0 AV = +1 AV = +2 0 40 80 120 160 200 240 280 320 LOAD CAPACITANCE (pF) 360 400 FIGURE 1. RECOMMENDED SERIES OUTPUT RESISTOR vs LOAD CAPACITANCE Driving Capacitive Loads Evaluation Board Capacitive loads, such as an A/D input, or an improperly terminated transmission line will degrade the amplifier’s phase margin resulting in frequency response peaking and possible oscillations. In most cases, the oscillation can be avoided by placing a resistor (RS) in series with the output prior to the capacitance. The performance of the HFA1112 may be evaluated using the HFA11XX Evaluation Board, slightly modified as follows: Figure 1 details starting points for the selection of this resistor. The points on the curve indicate the RS and CL combinations for the optimum bandwidth, stability, and settling time, but experimental fine tuning is recommended. Picking a point above or to the right of the curve yields an ∞ (AV = +1) or 0Ω (AV = +2) 10µF 1. a. For AV = +1 evaluation, remove the 500Ω gain setting resistor (R1), and leave pin 2 floating. b. For AV = +2, replace the 500Ω gain setting resistor with a 0Ω resistor to GND. The layout and modified schematic of the board are shown in Figure 2. To order evaluation boards (part number HFA11XXEVAL), please contact your local sales office. TOP LAYOUT VH VH R1 1 8 50Ω 2 7 IN 1. Remove the 500Ω feedback resistor (R2), and leave the connection open. 0.1µF 10µF 3 6 OUT 4 5 VL -5V GND GND 0.1µF 1 +5V 50Ω +IN OUT V+ VL VGND FIGURE 2. EVALUATION BOARD SCHEMATIC AND LAYOUT 5 BOTTOM LAYOUT HFA1112 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified 200 2.0 AV = +2 AV = +2 1.5 100 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 50 0 -50 -100 -150 1.0 0.5 0 -0.5 -1.0 -1.5 -200 -2.0 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 3. SMALL SIGNAL PULSE RESPONSE FIGURE 4. LARGE SIGNAL PULSE RESPONSE 200 1.5 100 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 2.0 AV = +1 50 0 -50 -100 -150 AV = +1 1.0 0.5 0 -0.5 -1.0 -1.5 -200 -2.0 TIME (5ns/DIV.) TIME (5ns/DIV.) FIGURE 5. SMALL SIGNAL PULSE RESPONSE FIGURE 6. LARGE SIGNAL PULSE RESPONSE 200 1.5 100 OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (mV) 150 2.0 AV = -1 50 0 -50 -100 AV = -1 1.0 0.5 0 -0.5 -1.0 -1.5 -150 -2.0 -200 TIME (5ns/DIV.) FIGURE 7. SMALL SIGNAL PULSE RESPONSE 6 TIME (5ns/DIV.) FIGURE 8. LARGE SIGNAL PULSE RESPONSE HFA1112 VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) 6 AV = +1 GAIN AV = -1 AV = +2 -6 0 PHASE -90 AV = +2 AV = -1 AV = +1 -180 -270 0.3 1 10 FREQUENCY (MHz) 100 0.3 RL = 100Ω -360 1000 RL = 1kΩ 0 GAIN -3 RL = 100Ω RL = 50Ω -9 -90 RL = 100Ω -180 RL = 50Ω RL = 1kΩ 1 10 100 FREQUENCY (MHz) -270 -360 1000 180 PHASE 90 0 RL = 50Ω RL = 1kΩ 0.3 FIGURE 11. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 6 1VP-P AV = +2 GAIN (dB) 6 GAIN 3 4.0VP-P 2.5VP-P PHASE 0 2.5VP-P 1VP-P 10 100 FREQUENCY (MHz) -180 -270 -360 1000 FIGURE 13. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES 7 -180 1000 AV = +1 0 GAIN -3 VOUT = 4VP-P VOUT = 2.5VP-P -6 -90 4.0VP-P 10 100 FREQUENCY (MHz) 3 PHASE (DEGREES) 0 1 -90 FIGURE 12. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 9 1 RL = 100Ω PHASE (DEGREES) PHASE 0.3 AV = -1, VOUT = 200mVP-P -6 RL = 50Ω 0 12 10 100 FREQUENCY (MHz) 3 -9 0.3 1 -270 FIGURE 10. FREQUENCY RESPONSE FOR VARIOUS LOAD RESISTORS 0 -6 -180 RL = 50Ω RL = 1kΩ RL = 1kΩ GAIN -90 RL = 100Ω GAIN (dB) GAIN (dB) 0 PHASE 6 AV = +1, VOUT = 200mVP-P 3 -3 RL = 50Ω RL = 100Ω RL = 1kΩ 0 1000 FIGURE 9. FREQUENCY RESPONSE 6 GAIN 3 PHASE (DEGREES) -9 6 VOUT = 1VP-P 0 PHASE -90 VOUT = 4VP-P VOUT = 2.5VP-P VOUT = 1VP-P 0.3 1 10 100 FREQUENCY (MHz) -180 -270 -360 PHASE (DEGREES) -3 GAIN (dB) 0 -360 GAIN (dB) AV = +2, VOUT = 200mVP-P 9 PHASE (DEGREES) VOUT = 200mVP-P 3 NORMALIZED PHASE (DEGREES) NORMALIZED GAIN (dB) Typical Performance Curves 1000 FIGURE 14. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES HFA1112 Typical Performance Curves AV = -1 15 VOUT = 2.5VP-P VOUT = 4VP-P 3 GAIN 0 9 VOUT = 1VP-P -3 -6 180 90 VOUT = 4VP-P 0 VOUT = 2.5VP-P -90 VOUT = 1VP-P -180 1 10 100 FREQUENCY (MHz) PHASE (DEGREES) PHASE 0.3 VOUT = 5VP-P 12 NORMALIZED GAIN (dB) GAIN (dB) 6 VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) 6 3 0 -3 AV = -1 AV = +2 -6 AV = +1 -9 -12 -15 0.3 1000 FIGURE 15. FREQUENCY RESPONSE FOR VARIOUS OUTPUT VOLTAGES 10 FREQUENCY (MHz) 100 1000 FIGURE 16. FULL POWER BANDWIDTH 900 0.35 AV = +1 800 0.30 NORMALIZED GAIN (dB) 850 BANDWIDTH (MHz) 1 AV = -1 750 700 650 600 AV = +2 0.25 0.20 AV = -1 AV = +1 0.15 0.10 0.05 0 -0.05 550 AV = +2 -0.10 500 -0.15 -50 -25 0 25 50 75 100 125 1 10 TEMPERATURE (oC) 100 FREQUENCY (MHz) FIGURE 17. -3dB BANDWIDTH vs TEMPERATURE FIGURE 18. GAIN FLATNESS 4 AV = +2, VOUT = 2V 0.6 2 1 AV = -1 0 -1 AV = +2 -2 AV = +1 -3 -4 SETTLING ERROR (%) DEVIATION (DEGREES) 3 0.4 0.2 0.1 0 -0.1 -0.2 -0.4 -0.6 -5 -6 0 15 30 45 60 75 90 105 120 135 150 FREQUENCY (MHz) FIGURE 19. DEVIATION FROM LINEAR PHASE 8 -2 3 8 13 18 23 28 33 38 TIME (ns) FIGURE 20. SETTLING RESPONSE 43 48 HFA1112 VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) -24 235 -30 180 PHASE -36 45 -24 -54 AV = +2 AV = -1 AV = -1 -72 -78 AV = +2 AV = +2 0 20 40 60 0 GAIN -36 AV = +1 -42 AV = -1 -48 -54 -84 80 100 120 140 160 180 -60 100 190 200 280 370 FREQUENCY (MHz) FIGURE 21. LOW FREQUENCY REVERSE ISOLATION (S12) 460 550 640 730 FREQUENCY (MHz) 820 910 1000 FIGURE 22. HIGH FREQUENCY REVERSE ISOLATION (S12) 20 30 2 - TONE 18 16 INTERCEPT POINT (dBm) OUTPUT POWER AT 1dB COMPRESSION (dBm) AV = +2 -30 -60 GAIN (dB) GAIN (dB) -48 -66 AV = -1 14 12 10 8 AV = +2 AV = +1 6 AV = -1 20 AV = +2 AV = +1 10 4 2 0 100 200 300 FREQUENCY (MHz) 400 0 100 500 -20 AV = +2 -30 -40 -40 DISTORTION (dBc) -30 -50 100MHz 300 400 FIGURE 24. 3rd ORDER INTERMODULATION INTERCEPT vs FREQUENCY -20 -60 200 FREQUENCY (MHz) FIGURE 23. 1dB GAIN COMPRESSION vs FREQUENCY DISTORTION (dBc) 90 AV = +1 AV = -1 AV = +1 -42 30MHz 50MHz -70 AV = +2 -50 -60 -70 -80 -80 -90 -90 30MHz 50MHz 100MHz -100 -100 -6 -3 0 PHASE (DEGREES) Typical Performance Curves 3 6 9 12 OUTPUT POWER (dBm) FIGURE 25. 2nd HARMONIC DISTORTION vs POUT 9 15 -6 -3 0 3 6 9 12 15 OUTPUT POWER (dBm) FIGURE 26. 3rd HARMONIC DISTORTION vs POUT 18 HFA1112 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) -20 -20 AV = +1 -30 -30 -40 -40 DISTORTION (dBc) DISTORTION (dBc) AV = +1 -50 -60 -70 50MHz 100MHz 30MHz -50 -60 -70 100MHz -80 -80 -90 -90 -100 -6 -100 -6 -3 0 3 6 9 OUTPUT POWER (dBm) 12 15 FIGURE 27. 2nd HARMONIC DISTORTION vs POUT -3 30MHz 0 3 6 9 OUTPUT POWER (dBm) 12 15 FIGURE 28. 3rd HARMONIC DISTORTION vs POUT -20 -20 AV = -1 AV = -1 -30 -30 -40 -40 DISTORTION (dBc) DISTORTION (dBc) 50MHz -50 -60 100MHz -70 50MHz 30MHz -50 -60 -70 -80 -80 -90 -90 50MHz 30MHz 100MHz -100 -100 -6 -3 0 3 6 9 OUTPUT POWER (dBm) 12 -6 15 -3 0 3 6 9 12 15 OUTPUT POWER (dBm) FIGURE 29. 2nd HARMONIC DISTORTION vs POUT FIGURE 30. 3rd HARMONIC DISTORTION vs POUT 60 0.04 VOUT = 0.5V OVERSHOOT (%) PERCENT ERROR (%) 50 0.02 0 AV = +1 40 30 20 AV = -1 -0.02 10 AV = +2 0 -0.04 -3.0 -2.0 -1.0 0 1.0 INPUT VOLTAGE (V) 2.0 FIGURE 31. INTEGRAL LINEARITY ERROR 10 3.0 100 300 500 700 900 1100 INPUT RISE TIME (ps) FIGURE 32. OVERSHOOT vs INPUT RISE TIME 1300 HFA1112 Typical Performance Curves VSUPPLY = ±5V, TA = 25oC, RL = 100Ω, Unless Otherwise Specified (Continued) 60 60 VOUT = 2V VOUT = 1V 50 OVERSHOOT (%) OVERSHOOT (%) 50 40 AV = +1 30 20 40 AV = +1 30 20 AV = +2 AV = -1 10 10 AV = -1 AV = +2 0 100 300 500 700 900 1100 0 100 1300 300 INPUT RISE TIME (ps) 900 1100 1300 FIGURE 34. OVERSHOOT vs INPUT RISE TIME 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 25 24 23 SUPPLY CURRENT (mA) 22 21 20 19 18 17 16 15 5 6 7 8 9 -50 10 FIGURE 35. SUPPLY CURRENT vs SUPPLY VOLTAGE AV = -1 +VOUT (RL= 100Ω) 3.3 3.2 NOISE VOLTAGE (nV/√Hz) +VOUT (RL= 50Ω) 3.4 |-VOUT| (RL= 100Ω) 3.1 3.0 2.9 2.8 0 25 50 75 100 125 FIGURE 36. SUPPLY CURRENT vs TEMPERATURE 3.6 3.5 -25 TEMPERATURE (oC) TOTAL SUPPLY VOLTAGE (V+ - V-, V) |-VOUT| (RL= 50Ω) 50 130 40 110 30 90 20 70 ENI 50 10 INI 2.7 2.6 0 -50 -25 0 25 50 75 TEMPERATURE (oC) 100 125 FIGURE 37. OUTPUT VOLTAGE vs TEMPERATURE 11 0.1 1 10 FREQUENCY (kHz) 30 100 FIGURE 38. INPUT NOISE CHARACTERISTICS NOISE CURRENT (pA/√Hz) SUPPLY CURRENT (mA) 700 INPUT RISE TIME (ps) FIGURE 33. OVERSHOOT vs INPUT RISE TIME OUTPUT VOLTAGE (V) 500 HFA1112 Die Characteristics DIE DIMENSIONS: PASSIVATION: 63 mils x 44 mils x 19 mils 1600µm x 1130µm 483µm Type: Nitride Thickness: 4kÅ ±0.5kÅ METALLIZATION: TRANSISTOR COUNT: Type: Metal 1: AlCu (2%)/TiW Thickness: Metal 1: 8kÅ ±0.4kÅ 52 SUBSTRATE POTENTIAL (Powered Up): Type: Metal 2: AlCu (2%) Thickness: Metal 2: 16kÅ ±0.8kÅ Floating (Recommend Connection to V-) Metallization Mask Layout HFA1112 NC +IN V- -IN NC NC NC V+ OUT All Intersil semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification. Intersil semiconductor products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see web site http://www.intersil.com 12