IL1/2/5 PHOTOTRANSISTOR OPTOCOUPLER FEATURES • Current Transfer Ratio at IF=10 mA IL1, 20% Min. IL2, 100% Min. IL5, 50% Min. • High Collector-Emitter Voltage IL1 – BVCEO=50 V IL2, IL5 – BVCEO=70 V • Field-Effect Stable by TRansparent IOn Shield (TRIOS) • Double Molded Package Offers Isolation Test Voltage 5300 VACRMS • Underwriters Lab File #E52744 V • VDE Approval #0884 (Available with Option 1) Dimensions in inches (mm) Pin One ID 3 2 Anode 1 .248 (6.30) .256 (6.50) 4 5 5 Collector NC 3 6 4 Emitter .335 (8.50) .343 (8.70) .039 (1.00) Min. 4° typ. DESCRIPTION See Appnote 45, “How to Use Optocoupler Normalized Curves.” 6 Base Cathode 2 D E The IL1/2/5 are optically coupled isolated pairs employing GaAs infrared LEDs and silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the drive while maintaining a high degree of electrical isolation between input and output. The IL1/2/5 are especially designed for driving medium-speed logic and can be used to eliminate troublesome ground loop and noise problems. These couplers can be used also to replace relays and transformers in many digital interface applications such as CRT modulation. 1 .018 (0.45) .022 (0.55) .300 (7.62) typ. .130 (3.30) .150 (3.81) 18° typ. .020 (.051) min. .031 (0.80) .035 (0.90) .100 (2.54) typ. .010 (.25) .014 (.35) .110 (2.79) .150 (3.81) .300 (7.62) .347 (8.82) Maximum Ratings Emitter Reverse Voltage.................................................................................. 6 V Forward Current ............................................................................. 60 mA Surge Current .................................................................................. 2.5 A Power Dissipation ........................................................................ 100 mW Derate Linearly from 25°C .................................................... 1.33 mW/°C Detector Collector-Emitter Reverse Voltage IL1 ................................................................................................... 50 V IL2, IL5 ............................................................................................. 70 V Emitter-Base Reverse Voltage ............................................................. 7 V Collector-Base Reverse Voltage ........................................................ 70 V Collector Current ............................................................................ 50 mA Collector Current (t<1 ms) ............................................................ 400 mA Power Dissipation ........................................................................ 200 mW Derate Linearly from 25°C ...................................................... 2.6 mW/°C Package Package Power Dissipation ........................................................ 250 mW Derate Linearly from 25°C ...................................................... 3.3 mW/°C Isolation Test Voltage (between emitter and detector referred to standard climate 23°C/50%RH, DIN 50014)5300 VACRMS Creepage..................................................................................min. 7 mm Clearance .................................................................................min. 7 mm Comparative Tracking Index per DIN IEC 112/VDE 0303, part 1.........................................................175 Isolation Resistance VIO=500 V, TA=25°C .........................................................................≥1012 Ω VIO=500 V, TA=100°C .......................................................................≥1011 Ω Storage Temperature .................................................... –40°C to +150°C Operating Temperature................................................. –40°C to +100°C Junction Temperature ..................................................................... 100°C Soldering Temperature (2 mm from case bottom).......................... 260°C 5–1 This document was created with FrameMaker 4.0.4 Characteristics Symbol Min Typ Max Unit Condition 1.25 1.65 V IF=60 mA V IR=10 µA µA VR=6 V VR=0 V, f=1 MHz Emitter Forward Voltage VF Breakdown Voltage VBR Reverse Current IR 0.01 Capacitance CO 40 pF Thermal Resistance Junction to Lead RTHJL 750 °C/W Capacitance CCE CCB CEB 6.8 8.5 11 pF pF pF VCE=5 V, f=1 MHz VCB=5 V, f=1 MHz VEB=5 V, f=1 MHz Collector-Emitter Leakage Current ICEO 5 nA VCE=10 V Collector-Emitter Saturation Voltage VCESAT 0.25 Base-Emitter Voltage VBE 0.65 DC Forward Current Gain HFE 200 650 1800 VCE=10 V, IB=20 µA Saturated DC Forward Current Gain HFESAT 120 400 600 VCE=0.4 V, IB=20 µA Thermal Resistance Junction to Lead RTHJL 500 °C/W Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT 75 % IF=10 mA, VCE=0.4 V Current Transfer Ratio (Collector-Emitter) CTRCE % IF=10 mA, VCE=10 V Current Transfer Ratio (Collector-Base) CTRCB 0.25 % IF=10 mA, VCB=9.3 V Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT 170 % IF=10 mA, VCE=0.4 V Current Transfer Ratio (Collector-Emitter) CTRCE % IF=10 mA, VCE=10 V Current Transfer Ratio CTRCB 0.25 % IF=10 mA, VCB=9.3 V Saturated Current Transfer Ratio (Collector-Emitter) CTRCESAT 100 % IF=10 mA, VCE=0.4 V Current Transfer Ratio (Collector-Emitter) CTRCE % IF=10 mA, VCE=10 V Current Transfer Ratio CTRCB 0.25 % IF=10 mA, VCB=9.3 V Common Mode Rejection Output High CMH 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=0 mA Common Mode Rejection Output Low CML 5000 V/µs VCM=50 VP-P, RL=1 kΩ, IF=10 mA Common Mode Coupling Capacitance CCM 0.01 pF Package Capacitance CI-O 0.6 pF VI-O=0 V, f=1 MHz Insulation Resistance RS 10+14 Ω VI-O=500 V 6 30 10 Detector 50 ICE=1 mA, IB=20 µA V VCE=10 V, IB=20 µA Package Transfer Characteristics IL1 20 80 300 IL2 100 200 500 IL5 50 130 400 Isolation and Insulation IL1/2/5 5–2 SWITCHING TIMES Figure 3. Non-saturated switching timing IF Figure 1. Non-saturated switching timing VCC=5 V IF=10 mA F=10 KHz DF=50% VO RL=75 Ω tPHL V0 tPLH tS 50% Figure 2. Saturated switching timing tD VCC=5 V F=10 KHz DF=50% Figure 4. Saturated switching timing RL VO IF=10 mA tF tR IF VO tD tR tPLH tPHL tS VTH=1.5 V tF Non-Saturated Switching Time Table-Typical Characteristic Sym IL1 IF=20 mA IL2 IF=5 mA IL5 IF=10 mA Unit Test Condition Delay TD 0.8 1.7 1.7 µs Rise Time tR 1.9 2.6 2.6 µs VCC=5 V Storage tS 0.2 0.4 0.4 µs RL=75 Ω Fall Time tF 1.4 2.2 2.2 µs Propagation H-L tPHL 0.7 1.2 1.1 µs Propagation L-H tPLH 1.4 2.3 2.5 µs tp measured at 50% of output Saturated Switching Time Table-Typical Characteristic Sym IL1 IF=20 mA IL2 IF=5 mA IL5 IF=10 mA Unit Test Condition Delay TD 0.8 1 1.7 µs Rise Time tR 1.2 2 7 µs VCL=5.0 V Storage tS 7.4 5.4 4.6 µs VCE=0.4 Fall Time tF 7.6 13.5 20 µs RL=1 K Propagation H-L tPHL 1.6 5.4 2.6 µs VTH=1.5 V Propagation L-H tPLH 8.6 7.4 7.2 µs IL1/2/5 5–3 Figure 5. gForward voltage versus forward current Figure 9. Normalized non-saturated and saturated CTR at TA=100°C versus LED current NCTR - Normalized CTR VF - Forward Voltage - V 1.4 Ta = -55°C 1.3 1.2 Ta = 25°C 1.1 1.0 0.9 Ta = 100°C 0.8 0.7 .1 1 10 IF - Forward Current - mA 100 NCTR - Normalized CTR Ice - Collector Current - mA 100 Iceo - Collector-Emitter - nA NCTR - Normalized CTR 0.5 NCTR(SAT) NCTR 0.0 100 Figure 8. Normalized non-saturated and saturated CTR at TA=70°C versus LED current Normalized to: Vce = 10V, IF = 10mA Ta = 25°C 1.0 0.5 Ta = 70°C NCTR(SAT) NCTR .1 1 10 IF - LED Current - mA 30 25 50°C 20 15 70°C 25°C 100°C 10 5 0 0 10 20 30 40 IF - LED Current - mA 50 60 10 10 5 4 10 3 WORST CASE 10 2 Vce = 10V 10 1 TYPICAL 10 0 10 -1 10 -2 -20 0 20 40 60 80 100 Ta - Ambient Temperature - °C 1.5 CTRce(sat) Vce = 0.4V 0.0 100 Figure 12. Normalized CTRcb versus LED current and temperature NCTRcb - Normalized CTRcb NCTR - Normalized CTR 1.5 1 10 IF - LED Current - mA Figure 11. Collector-emitter leakage current versus temperature Ta = 50°C 1 10 IF - LED Current - mA Ta = 100°C NCTR(SAT) NCTR 35 Figure 7. Normalized non-saturated and saturated CTR at TA=50°C versus LED current 1.5 Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V .1 0.5 Figure 10. Collector-emitter current versus temperature and LED current NCTR(SAT) NCTR 1.0 1.0 .1 0.5 1 10 IF - LED Current - mA Normalized to: Vce = 10V, IF = 10mA, Ta = 25°C CTRce(sat) Vce = 0.4V 0.0 Figure 6. Normalized non-saturated and saturated CTR at TA=25°C versus LED current 1.5 Normalized to: Vce = 10V, IF = 10mA Ta = 25°C 1.0 CTRce(sat) Vce = 0.4V 0.0 .1 1.5 100 Normalized to: IF =10 mA Vcb = 9.3 V Ta = 25°C 1.0 0.5 25°C 50°C 70°C 0.0 .1 1 10 IF - LED Current - mA 100 IL1/2/5 5–4 Figure 16. Normalized saturated HFE versus base current and temperature 1.5 Normalized to: Vce = 10V 70°C 50°C Ib = 20µA 1.0 Ta = 25°C 25°C 1000 Icb = 1.0357 *IF ^1.3631 NHFE(sat) - Normalized Saturated HFE Icb - Collector Base Photocurrent - µA Ta = 25°C 100 10 1 .1 .01 .1 100 1 10 IF - LED Current - mA Vce = 0.4V 0.0 1 Figure 14. Normalized photocurrent versus If and temperature 1000 tp – Propagatio Delay - µs Normalized to: If = 10ma, Ta = 25¡C 1 NIB-Ta=-20¡C .1 NIb,Ta=25¡C NIb,Ta=50¡C NIb,Ta=70¡C .01 .1 1 10 If -LED Current- mA 1000 2.5 Ta = 25°C, IF = 10mA Vcc = 5 V, Vth = 1.5 V tpHL 100 2.0 1.5 10 tpLH 1 100 10 100 Ib - Base Current - (µA) Figure 17. Propagation delay versus collector load resistor 10 Normalized Photocurrent -20°C 0.5 1.0 .1 1 10 RL - Collector Load Resistor - KΩ tpHL - Propagation Delay - µs Figure 13. Collector base photocurrent versus LED current 100 Table 15. Normalized non-saturated HFE versus base current and temperature NHFE - Normalized HFE 1.2 70°C 50°C 1.0 25°C Normalized to: Ib = 20µA Vce = 10 V Ta = 25°C -20°C 0.8 0.6 0.4 1 10 100 Ib - Base Current - µA 1000 IL1/2/5 5–5