PD - 97183 IRF6631 DirectFET Power MOSFET Typical values (unless otherwise specified) l l l l l l l l l RoHS compliant containing no lead or bromide Low Profile (<0.6 mm) Dual Sided Cooling Compatible Ultra Low Package Inductance Optimized for High Frequency Switching Ideal for CPU Core DC-DC Converters Optimized for Control FET applications Low Conduction and Switching Losses Compatible with existing Surface Mount Techniques VDSS VGS RDS(on) RDS(on) 30V max ±20V max 6.0mΩ@ 10V 8.3mΩ@ 4.5V Qg Qgd Qgs2 Qrr Qoss Vgs(th) 4.4nC 1.1nC 10nC 7.3nC 1.8V tot 12nC DirectFET ISOMETRIC SQ Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MP Description The IRF6631 combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.6 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6631 balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of processors operating at higher frequencies. The IRF6631 has been optimized for parameters that are critical in synchronous buck including Rds(on) and gate charge to minimize losses in the control FET socket. Absolute Maximum Ratings Parameter Drain-to-Source Voltage Gate-to-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V VGS ID @ TA = 25°C ID @ TA = 70°C ID @ TC = 25°C IDM E AS IAR g Pulsed Drain Current Single Pulse Avalanche Energy Avalanche Current g Typical RDS(on) (mΩ) ID = 13A 15 T J = 125°C 5 T J = 25°C 0 3 4 5 6 7 8 9 10 VGS, Gate -to -Source Voltage (V) Fig 1. Typical On-Resistance vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com Units 30 ±20 13 10 57 100 13 10 V h 20 10 Max. e e f VGS, Gate-to-Source Voltage (V) V DS A mJ A 12.0 ID= 10A 10.0 8.0 VDS= 24V VDS= 15V 6.0 4.0 2.0 0.0 0 5 10 15 20 25 30 QG Total Gate Charge (nC) Fig 2. Typical Total Gate Charge vs Gate-to-Source Voltage TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.24mH, RG = 25Ω, IAS = 10A. 1 02/09/06 IRF6631 Static @ TJ = 25°C (unless otherwise specified) Parameter BVDSS ∆ΒVDSS/∆TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) ∆VGS(th)/∆TJ IDSS Gate Threshold Voltage Gate Threshold Voltage Coefficient Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Forward Transconductance Total Gate Charge Pre-Vth Gate-to-Source Charge Post-Vth Gate-to-Source Charge Gate-to-Drain Charge Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) gfs Qg Qgs1 Qgs2 Qgd Qgodr Qsw Qoss RG td(on) tr td(off) tf Ciss Coss Crss Output Charge Gate Resistance Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Min. Typ. Max. Units 30 ––– ––– ––– 1.35 ––– ––– ––– ––– ––– 32 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 23 6.0 8.3 1.8 -5.2 ––– ––– ––– ––– ––– 12 3.4 1.1 4.4 3.1 5.5 7.3 1.6 15 18 18 4.9 1450 310 170 Conditions ––– V VGS = 0V, ID = 250µA ––– mV/°C Reference to 25°C, ID = 1mA 7.8 mΩ VGS = 10V, ID = 13A c VGS = 4.5V, ID = 10A c 10.8 V 2.35 V DS = VGS, ID = 25µA ––– mV/°C 1.0 µA VDS = 24V, VGS = 0V VDS = 24V, VGS = 0V, TJ = 125°C 150 100 nA VGS = 20V VGS = -20V -100 ––– S VDS = 15V, ID = 10A 18 ––– ––– ––– ––– ––– ––– 3.0 ––– ––– ––– ––– ––– ––– ––– nC VDS = 15V VGS = 4.5V ID = 10A See Fig. 15 nC VDS = 16V, VGS = 0V Ω VDD = 16V, VGS = 4.5Vc ID = 10A ns pF Clamped Inductive Load See Fig. 16 & 17 VGS = 0V VDS = 15V ƒ = 1.0MHz Diode Characteristics Parameter IS ISM VSD trr Qrr Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)d Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Min. Typ. Max. Units ––– ––– 42 ––– ––– 100 ––– ––– ––– ––– 11 10 1.2 17 15 A V ns nC Conditions MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25°C, IS = 10A, VGS = 0V c TJ = 25°C, IF = 10A di/dt = 500A/µs c See Fig. 18 Notes: Pulse width ≤ 400µs; duty cycle ≤ 2%. Repetitive rating; pulse width limited by max. junction temperature. 2 www.irf.com IRF6631 Absolute Maximum Ratings PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C TP TJ TSTG c c f Thermal Resistance Parameter cg dg eg fg RθJA RθJA RθJA RθJC RθJ-PCB Max. Units 2.2 1.4 42 270 -40 to + 150 W Parameter Power Dissipation Power Dissipation Power Dissipation Peak Soldering Temperature Operating Junction and Storage Temperature Range Junction-to-Ambient Junction-to-Ambient Junction-to-Ambient Junction-to-Case Junction-to-PCB Mounted Linear Derating Factor c °C Typ. Max. Units ––– 12.5 20 ––– 1.4 58 ––– ––– 3.0 ––– °C/W 0.017 W/°C 100 Thermal Response ( Z thJA ) D = 0.50 10 0.20 0.10 0.05 1 0.02 0.01 τJ R2 R2 R3 R3 R4 R4 R5 R5 τA τ2 τ1 τ2 τ3 τ3 τ4 τ4 τ5 τ5 Ci= τi/Ri Ci= τi/Ri 0.1 0.01 R1 R1 τJ τ1 SINGLE PULSE ( THERMAL RESPONSE ) τA Ri (°C/W) τi (sec) 1.6195 0.000126 2.14056 0.001354 22.2887 0.375850 20.0457 7.41 11.9144 99 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on 1 in. square Cu board, steady state. Used double sided cooling , mounting pad. Mounted on minimum footprint full size board with metalized TC measured with thermocouple incontact with top (Drain) of part. Rθ is measured at TJ of approximately 90°C. back and with small clip heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6631 1000 1000 ID, Drain-to-Source Current (A) 100 BOTTOM 10 TOP ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V 1 ≤60µs PULSE WIDTH Tj = 25°C 0.1 100 BOTTOM 10 2.5V 1 ≤60µs PULSE WIDTH 2.5V Tj = 150°C 0.01 0.1 0.1 1 10 100 0.1 10 100 Fig 5. Typical Output Characteristics 1000 2.0 VDS = 10V ≤60µs PULSE WIDTH ID = 13A Typical RDS(on) (Normalized) ID, Drain-to-Source Current (A) 1 V DS, Drain-to-Source Voltage (V) VDS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 100 T J = 150°C T J = 25°C 10 T J = -40°C 1 0.1 V GS = 10V V GS = 4.5V 1.5 1.0 0.5 1 2 3 4 5 -60 -40 -20 0 Fig 6. Typical Transfer Characteristics 10000 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) VGS, Gate-to-Source Voltage (V) Fig 7. Normalized On-Resistance vs. Temperature 50 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd T = 25°C J Vgs = 3.5V Vgs = 4.0V Vgs = 4.5V Vgs = 5.0V Vgs = 10V 40 Typical RDS(on) ( mΩ) C oss = C ds + C gd C, Capacitance(pF) VGS 10V 5.0V 4.5V 4.0V 3.5V 3.0V 2.8V 2.5V Ciss 1000 Coss 30 20 10 Crss 0 100 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 0 20 40 60 80 100 120 ID, Drain Current (A) Fig 9. Typical On-Resistance Vs. Drain Current and Gate Voltage www.irf.com IRF6631 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 1000 100 T J = 150°C T J = 25°C T J = -40°C 100 OPERATION IN THIS AREA LIMITED BY R DS(on) 10 1 100µsec 1msec 10 10msec 1 VGS = 0V T A = 25°C T J = 150°C Single Pulse 0.1 0 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0.0 1.1 Fig 10. Typical Source-Drain Diode Forward Voltage 1.0 10 100 Fig 11. Maximum Safe Operating Area 2.5 Typical VGS(th) Gate threshold Voltage (V) 60 50 ID, Drain Current (A) 0.1 VDS, Drain-to-Source Voltage (V) VSD, Source-to-Drain Voltage (V) 40 30 20 10 2.0 ID = 50µA 1.5 1.0 0 25 50 75 100 125 -75 -50 -25 150 0 25 50 75 100 125 150 T J , Temperature ( °C ) T C , Case Temperature (°C) Fig 12. Maximum Drain Current vs. Case Temperature Fig 13. Typical Threshold Voltage vs. Junction Temperature EAS , Single Pulse Avalanche Energy (mJ) 60 ID TOP 3.1A 4.5A BOTTOM 10A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 14. Maximum Avalanche Energy vs. Drain Current www.irf.com 5 IRF6631 Current Regulator Same Type as D.U.T. Id Vds 50KΩ Vgs .2µF 12V .3µF + V - DS D.U.T. Vgs(th) VGS 3mA IG ID Qgs1 Qgs2 Current Sampling Resistors Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V DRIVER L VDS tp D.U.T V RGSG + V - DD IAS 20V tp A I AS 0.01Ω Fig 16b. Unclamped Inductive Waveforms Fig 16a. Unclamped Inductive Test Circuit LD VDS VDS 90% + VDD D.U.T VGS Pulse Width < 1µs Duty Factor < 0.1% Fig 17a. Switching Time Test Circuit 6 10% VGS td(on) tr td(off) tf Fig 17b. Switching Time Waveforms www.irf.com IRF6631 D.U.T Driver Gate Drive + + D.U.T. ISD Waveform Reverse Recovery Current + RG di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * • • • • D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - - Period P.W. Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage + Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D D G D www.irf.com S D 7 IRF6631 DirectFET Outline Dimension, SQ Outline (Small Size Can, Q-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 4.85 A 4.75 3.95 B 3.70 2.85 C 2.75 0.45 D 0.35 0.52 E 0.48 0.82 F 0.78 0.92 G 0.88 0.82 H 0.78 N/A J N/A 0.97 K 0.93 2.10 L 2.00 0.59 M 0.48 0.08 N 0.03 0.17 P 0.08 IMPERIAL MIN 0.187 0.146 0.108 0.014 0.019 0.031 0.035 0.031 N/A 0.037 0.079 0.019 0.001 0.003 MAX 0.191 0.156 0.112 0.018 0.020 0.032 0.036 0.032 N/A 0.038 0.083 0.023 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6631 DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6631). For 1000 parts on 7" reel, order IRF6631TR1 REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR1 OPTION (QTY 1000) IMPERIAL METRIC IMPERIAL METRIC MAX CODE MIN MIN MAX MIN MIN MAX MAX N.C A 6.9 12.992 330.0 177.77 N.C N.C N.C B 0.75 0.795 N.C 20.2 19.06 N.C N.C N.C C 0.53 0.504 0.50 12.8 13.5 0.520 12.8 13.2 D 0.059 0.059 N.C 1.5 1.5 N.C N.C N.C E 2.31 3.937 N.C 100.0 58.72 N.C N.C N.C F N.C N.C 0.53 N.C N.C 0.724 13.50 18.4 G 0.47 0.488 N.C 12.4 11.9 0.567 12.01 14.4 H 0.47 0.469 N.C 11.9 11.9 0.606 12.01 15.4 Loaded Tape Feed Direction NOTE: CONTROLLING DIMENSIONS IN MM CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MAX MIN MAX 0.311 0.319 7.90 8.10 0.154 0.161 3.90 4.10 0.469 11.90 0.484 12.30 0.215 5.45 0.219 5.55 0.158 0.165 4.00 4.20 0.197 0.205 5.00 5.20 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.02/06 www.irf.com 9