PD - 97094A IRF6644PbF IRF6644TRPbF DirectFET Power MOSFET Typical values (unless otherwise specified) RoHS Compliant l Lead-Free (Qualified up to 260°C Reflow) l Application Specific MOSFETs l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l High Cdv/dt Immunity l Low Profile (<0.7mm) l Dual Sided Cooling Compatible l Compatible with existing Surface Mount Techniques l VDSS VGS RDS(on) 100V max ±20V max 10.3mΩ@ 10V Qg Qgd Vgs(th) 11.5nC 3.7V tot 35nC DirectFET ISOMETRIC MN Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SH SJ SP MZ MN Description The IRF6644PbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6644PbF is optimized for primary side bridge topologies in isolated DC-DC applications, for wide range universal input Telecom applications (36V - 75V), and for secondary side synchronous rectification in regulated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter Max. Units V VDS Drain-to-Source Voltage 100 VGS Gate-to-Source Voltage ±20 e e @ 10V f ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 10.3 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 8.3 ID @ TC = 25°C Continuous Drain Current, VGS 60 IDM Pulsed Drain Current EAS Single Pulse Avalanche Energy IAR Avalanche Current g g 82 h 220 mJ 6.2 A 13 0.08 TA= 25°C (mΩ) ID = 6.2A DS(on) 0.06 0.04 Typical R Typical R DS (on), (Ω) A TJ = 125°C 0.02 TJ = 25°C 0.00 4 6 8 10 12 14 VGS, Gate-to-Source Voltage (V) VGS = 7.0V 11 VGS = 8.0V VGS = 10V 10 VGS = 15V 9 16 Fig 1. Typical On-Resistance Vs. Gate Voltage Notes: Click on this section to link to the appropriate technical paper. Click on this section to link to the DirectFET Website. Surface mounted on 1 in. square Cu board, steady state. www.irf.com 12 0 4 8 12 16 20 ID, Drain Current (A) Fig 2. Typical On-Resistance Vs. Drain Current TC measured with thermocouple mounted to top (Drain) of part. Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 12mH, RG = 25Ω, IAS = 6.2A. 1 8/18/06 IRF6644PbF Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Conditions Typ. Max. Units VGS = 0V, ID = 250µA BVDSS Drain-to-Source Breakdown Voltage 100 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.11 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 10.3 13 mΩ VGS(th) Gate Threshold Voltage 2.8 ––– 4.8 V ∆VGS(th)/∆TJ Gate Threshold Voltage Coefficient ––– -10 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 20 µA ––– ––– 250 Gate-to-Source Forward Leakage ––– ––– 100 Gate-to-Source Reverse Leakage ––– ––– -100 gfs Forward Transconductance 15 ––– ––– Qg Total Gate Charge ––– 35 47 Qgs1 Pre-Vth Gate-to-Source Charge ––– 8.0 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 1.6 ––– IGSS V VGS = 10V, ID = 10.3A c VDS = VGS, ID = 150µA VDS = 100V, VGS = 0V VDS = 80V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V S VDS = 10V, ID = 6.2A VDS = 50V nC VGS = 10V Qgd Gate-to-Drain Charge ––– 11.5 17.3 ID = 6.2A Qgodr Gate Charge Overdrive ––– 13 ––– See Fig. 15 Qsw Switch Charge (Qgs2 + Qgd) ––– 13.1 ––– Qoss Output Charge ––– 17 ––– nC RG Gate Resistance ––– 1.0 2.0 Ω td(on) Turn-On Delay Time ––– 17 ––– tr Rise Time ––– 26 ––– ID = 6.2A RG=6.2Ω VDS = 16V, VGS = 0V VDD = 50V, VGS = 10Vc td(off) Turn-Off Delay Time ––– 34 ––– tf Fall Time ––– 16 ––– Ciss Input Capacitance ––– 2210 ––– Coss Output Capacitance ––– 420 ––– Crss Reverse Transfer Capacitance ––– 100 ––– ƒ = 1.0MHz Coss Output Capacitance ––– 2120 ––– VGS = 0V, VDS = 1.0V, f=1.0MHz Coss Output Capacitance ––– 240 ––– VGS = 0V, VDS = 80V, f=1.0MHz Min. Typ. Max. Units ns VGS = 0V pF VDS = 25V Diode Characteristics Parameter IS Continuous Source Current ––– ––– 10 ––– ––– 82 (Body Diode) ISM Pulsed Source Current MOSFET symbol A Diode Forward Voltage showing the integral reverse p-n junction diode. (Body Diode)d VSD Conditions ––– ––– trr Reverse Recovery Time ––– 42 Qrr Reverse Recovery Charge ––– 69 V TJ = 25°C, IS = 6.2A, VGS = 0V c 63 ns TJ = 25°C, IF = 6.2A, VDD = 50V 100 nC di/dt = 100A/µs c 1.3 Notes: Repetitive rating; pulse width limited by max. junction temperature. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 www.irf.com IRF6644PbF Absolute Maximum Ratings c Power Dissipation c Power Dissipation f Parameter Max. Units 2.8 W Power Dissipation PD @TA = 25°C PD @TA = 70°C PD @TC = 25°C 1.8 89 TP Peak Soldering Temperature TJ Operating Junction and TSTG Storage Temperature Range 270 °C -40 to + 150 Thermal Resistance Parameter Typ. cg dg Junction-to-Ambient eg Junction-to-Case fg Max. RθJA Junction-to-Ambient ––– 45 RθJA Junction-to-Ambient 12.5 ––– RθJA RθJC RθJ-PCB Junction-to-PCB Mounted 20 ––– ––– 1.4 1.0 ––– Units °C/W 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 0.1 τJ 0.01 τJ τ1 R2 R2 τ2 τ1 R3 R3 τC τ τ3 τ2 τ3 τ4 τi (sec) Ri (°C/W) R4 R4 τ4 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R1 R1 0.6784 0.00086 17.299 0.57756 17.566 8.94 9.4701 106 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Mounted on minimum footprint full size board with metalized Surface mounted on 1 in. square Cu board, steady state. TC measured with thermocouple incontact with top (Drain) of part. back and with small clip heatsink. Rθ is measured at TJ of approximately 90°C. Used double sided cooling, mounting pad with large heatsink. Surface mounted on 1 in. square Cu board (still air). www.irf.com Mounted to a PCB with small clip heatsink (still air) Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air) 3 IRF6644PbF 100 6.0V TOP 10 BOTTOM ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) 100 VGS 15V 10V 8.0V 7.0V 6.0V ≤ 60µs PULSE WIDTH Tj = 25°C 1 6.0V TOP 10 BOTTOM ≤ 60µs PULSE WIDTH Tj = 150°C 1 0.1 1 10 100 0.1 VDS , Drain-to-Source Voltage (V) 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics Fig 5. Typical Output Characteristics 100.00 2.0 ID = 10.3A TJ = 150°C TJ = 25°C 10.00 Typical R DS(on), (Normalized) ID, Drain-to-Source Current(Α) VGS 15V 10V 8.0V 7.0V 6.0V TJ = -40°C 1.00 0.10 VDS = 10V VGS = 10V 1.5 1.0 ≤ 60µs PULSE WIDTH 0.01 3.0 4.0 5.0 6.0 0.5 7.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) VGS, Gate-to-Source Voltage (V) C, Capacitance (pF) ID= 6.2A Ciss Coss Crss 100 10 1 10 100 VDS , Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.Drain-to-Source Voltage 4 60 80 100 120 140 160 20 Coss = Cds + Cgd 1000 40 Fig 7. Normalized On-Resistance vs. Temperature VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 20 TJ , Junction Temperature (°C) Fig 6. Typical Transfer Characteristics 100000 0 VDS = 50V VDS= 20V 16 12 8 4 0 0 20 40 60 QG Total Gate Charge (nC) Fig 9. Typical Total Gate Charge vs Gate-to-Source Voltage www.irf.com IRF6644PbF 1000 ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 TJ = 150°C TJ = 25°C TJ = -40°C 10.0 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 100 100µsec 10 1msec 100msec 1 VGS = 0V 0.1 0.1 0.0 1.0 2.0 3.0 4.0 0.01 5.0 0.10 1.00 10.00 100.00 1000.00 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area Typical VGS(th) Gate threshold Voltage (V) 12 10 ID , Drain Current (A) 10msec TA = 25°C Tj = 150°C Single Pulse 8 6 4 2 0 5.0 ID = 1.0A ID = 1.0mA 4.5 ID = 250µA ID = 150µA 4.0 3.5 3.0 2.5 2.0 25 50 75 100 125 150 -50 -25 TA , Ambient Temperature (°C) 0 25 50 75 100 125 150 TJ , Junction Temperature ( °C ) Fig 13. Typical Threshold Voltage vs. Junction Temperature Fig 12. Maximum Drain Current vs. Ambient Temperature EAS, Single Pulse Avalanche Energy (mJ) 1000 ID 2.8A 3.3A BOTTOM 6.2A TOP 800 600 400 200 0 25 50 75 100 125 150 Starting TJ, Junction Temperature (°C) Fig 14. Maximum Avalanche Energy Vs. Drain Current www.irf.com 5 IRF6644PbF Id Vds Vgs L VCC DUT 0 1K Vgs(th) S Qgs1 Qgs2 Fig 15a. Gate Charge Test Circuit Qgd Qgodr Fig 15b. Gate Charge Waveform V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS A I AS 0.01Ω tp Fig 16c. Unclamped Inductive Waveforms Fig 16b. Unclamped Inductive Test Circuit VDS RD VDS 90% VGS D.U.T. RG + - VDD 10V Pulse Width ≤ 1 µs 10% VGS td(on) tr td(off) tf Duty Factor ≤ 0.1 % Fig 17a. Switching Time Test Circuit 6 Fig 17b. Switching Time Waveforms www.irf.com IRF6644PbF D.U.T Driver Gate Drive + + - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • di/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - D= Period P.W. + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent - Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 18. Diode Reverse Recovery Test Circuit for N-Channel HEXFET® Power MOSFETs DirectFET Substrate and PCB Layout, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. G = GATE D = DRAIN S = SOURCE D S D G D www.irf.com S D 7 IRF6644PbF DirectFET Outline Dimension, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. DIMENSIONS METRIC MAX CODE MIN 6.35 6.25 A 5.05 4.80 B 3.95 3.85 C 0.45 0.35 D 0.92 0.88 E 0.82 0.78 F 1.42 1.38 G 0.92 0.88 H 0.52 0.48 J 1.29 1.16 K 2.91 2.74 L 0.616 0.676 M R 0.020 0.080 P 0.17 0.08 IMPERIAL MIN MAX 0.246 0.250 0.189 0.201 0.156 0.152 0.018 0.014 0.036 0.034 0.031 0.032 0.054 0.056 0.034 0.036 0.019 0.020 0.046 0.051 0.115 0.109 0.0235 0.0274 0.0008 0.0031 0.003 0.007 DirectFET Part Marking 8 www.irf.com IRF6644PbF DirectFET Tape & Reel Dimension (Showing component orientation). NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6644TRPBF). For 1000 parts on 7" reel, order IRF6644TR1PBF STANDARD OPTION METRIC CODE MIN MAX A 330.0 N.C B 20.2 N.C C 12.8 13.2 D 1.5 N.C E 100.0 N.C F N.C 18.4 G 12.4 14.4 H 11.9 15.4 REEL DIMENSIONS (QTY 4800) TR1 OPTION IMPERIAL METRIC MIN MAX MIN MAX 12.992 N.C 177.77 N.C 0.795 19.06 N.C N.C 0.504 0.520 13.5 12.8 0.059 1.5 N.C N.C 3.937 58.72 N.C N.C N.C N.C 0.724 13.50 0.488 11.9 0.567 12.01 0.469 11.9 0.606 12.01 (QTY 1000) IMPERIAL MAX MIN 6.9 N.C 0.75 N.C 0.53 0.50 0.059 N.C 2.31 N.C N.C 0.53 0.47 N.C 0.47 N.C LOADED TAPE FEED DIRECTION CODE A B C D E F G H DIMENSIONS IMPERIAL METRIC MIN MIN MAX MAX 0.311 0.319 8.10 7.90 0.154 0.161 4.10 3.90 0.469 11.90 0.484 12.30 0.215 5.55 5.45 0.219 0.201 0.209 5.30 5.10 0.256 6.50 0.264 6.70 0.059 1.50 N.C N.C 0.059 1.50 0.063 1.60 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.08/06 www.irf.com 9 Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/