IRF IRFHM8363TR2PBF

IRFHM8363PbF
VDS
max
± 20
V
20.4
Qg typ
6.7
S
G
S
G
D
D
nC
D
D
D
PQFN Dual 3.3X3.3 mm
*
A
6
i
D
*
10
(@Tc(Bottom) = 25°C)
mΩ
6
ID
' (@VGS = 4.5V)
' 14.9
(@VGS = 10V)
' ' RDS(on) max
V
:
,(
9
3
2
7
Vgs
30
HEXFET® Power MOSFET
Applications
• Power Stage for high frequency buck converters
• Battery Protection charge and discharge switches
Features and Benefits
Features
Low Thermal Resistance to PCB (< 6.7°C/W)
Low Profile (<1.0mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant Containing no Lead, no Bromide and no Halogen
MSL1, Consumer Qualification
Orderable part number
Package Type
IRFHM8363TRPBF
IRFHM8363TR2PBF
PQFN Dual 3.3mm x 3.3mm
PQFN Dual 3.3mm x 3.3mm
Benefits
Enable better thermal dissipation
results in Increased Power Density
⇒
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability
Standard Pack
Form
Quantity
Tape and Reel
4000
400
Tape and Reel
Note
Absolute Maximum Ratings
Parameter
Max.
VDS
Drain-to-Source Voltage
30
VGS
Gate-to-Source Voltage
± 20
ID @ TA = 25°C
Continuous Drain Current, V GS @ 10V
11
ID @ TA = 70°C
Continuous Drain Current, V GS @ 10V
8.6
ID @ TC(Bottom) = 25°C
Continuous Drain Current, V GS @ 10V
29
ID @ TC(Bottom) = 100°C
Continuous Drain Current, V GS @ 10V
18
ID @ TC = 25°C
Continuous Drain Current, V GS @ 10V (Package Limited)
hi
hi
10i
IDM
Pulsed Drain Current
116
PD @TA = 25°C
Power Dissipation
PD @TC(Bottom) = 25°C
Power Dissipation
TJ
Linear Derating Factor
Operating Junction and
TSTG
Storage Temperature Range
g
c
2.7
19
0.02
-55 to + 150
Units
V
A
W
W/°C
°C
Notes  through ‡ are on page 9
1
www.irf.com © 2013 International Rectifier
May 13, 2013
IRFHM8363PbF
Static @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Drain-to-Source Breakdown Voltage
Parameter
30
–––
–––
RDS(on)
Breakdown Voltage Temp. Coefficient
Static Drain-to-Source On-Resistance
–––
–––
0.022
12.2
–––
14.9
VGS(th)
∆VGS(th)
Gate Threshold Voltage
Gate Threshold Voltage Coefficient
–––
1.35
–––
16.3
1.8
-6.3
20.4
2.35
–––
IDSS
Drain-to-Source Leakage Current
–––
–––
–––
–––
1.0
150
µA
VDS = 24V, VGS = 0V
VDS = 24V, VGS = 0V, TJ = 125°C
IGSS
Gate-to-Source Forward Leakage
Gate-to-Source Reverse Leakage
–––
–––
–––
–––
100
-100
nA
VGS = 20V
VGS = -20V
gfs
Qg
Forward Transconductance
Total Gate Charge
Total Gate Charge
20
–––
–––
–––
15
6.7
–––
–––
–––
S
nC
VDS = 10V, ID = 10A
VGS = 10V, VDS = 15V, ID = 10A
Pre-Vth Gate-to-Source Charge
Post-Vth Gate-to-Source Charge
–––
–––
2.1
1.0
–––
–––
Gate-to-Drain Charge
Gate Charge Overdrive
Switch Charge (Qgs2 + Qgd)
–––
–––
–––
2.0
1.6
3.0
–––
–––
–––
Output Charge
–––
7.6
–––
nC
Gate Resistance
Turn-On Delay Time
Rise Time
–––
–––
–––
1.6
14
94
–––
–––
–––
Ω
Turn-Off Delay Time
Fall Time
Input Capacitance
–––
–––
–––
12
33
–––
–––
–––
Output Capacitance
Reverse Transfer Capacitance
–––
–––
BVDSS
∆ΒVDSS/∆TJ
Qg
Qgs1
Qgs2
Qgd
Qgodr
Qsw
Qoss
RG
td(on)
tr
td(off)
tf
Ciss
Coss
Crss
1165
260
100
Max. Units
–––
–––
Conditions
VGS = 0V, ID = 250µA
V
V/°C Reference to 25°C, ID = 1.0mA
VGS = 10V, ID = 10A
mΩ
VGS = 4.5V, ID = 8.0A
V
VDS = VGS, ID = 25µA
mV/°C
e
e
VDS = 15V
VGS = 4.5V
nC
ID = 10A
VDS = 24V, VGS = 0V
VDD = 15V, VGS = 4.5V
ID = 10A
ns
RG=1.8Ω
VGS = 0V
pF
VDS = 10V
ƒ = 1.0MHz
Avalanche Characteristics
EAS
Parameter
Single Pulse Avalanche Energy
IAR
Avalanche Current
c
Max.
29
10
Typ.
–––
–––
d
Units
mJ
A
Diode Characteristics
Parameter
IS
Continuous Source Current
ISM
(Body Diode)
Pulsed Source Current
Min.
–––
c
(Body Diode)
Diode Forward Voltage
Reverse Recovery Time
VSD
trr
Qrr
Reverse Recovery Charge
Forward Turn-On Time
ton
Typ.
–––
Max. Units
10
i
–––
–––
116
–––
–––
–––
17
1.3
26
Conditions
MOSFET symbol
D
A
showing the
integral reverse
V
ns
p-n junction diode.
TJ = 25°C, IS = 10A, VGS = 0V
TJ = 25°C, IF = 10A, VDD = 15V
di/dt = 280A/µs
–––
24
36
nC
Time is dominated by parasitic Inductance
G
S
e
e
Thermal Resistance
RθJC (Top)
f
Junction-to-Case f
RθJA
Junction-to-Ambient
RθJC (Bottom)
RθJA (<10s)
2
Parameter
Junction-to-Case
g
Junction-to-Ambient g
www.irf.com © 2013 International Rectifier
Typ.
–––
–––
–––
–––
Max.
Units
6.7
72
°C/W
47
32
May 13, 2013
IRFHM8363PbF
1000
1000
100
BOTTOM
100
10
1
2.5V
BOTTOM
10
2.5V
1
≤60µs PULSE WIDTH
≤60µs PULSE WIDTH
Tj = 150°C
Tj = 25°C
0.1
0.1
0.1
1
10
0.1
100
1
Fig 1. Typical Output Characteristics
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID, Drain-to-Source Current (A)
100
Fig 2. Typical Output Characteristics
1000
100
T J = 150°C
10
T J = 25°C
VDS = 15V
≤60µs PULSE WIDTH
1.0
1
2
3
4
5
6
ID = 10A
VGS = 10V
1.4
1.2
1.0
0.8
0.6
7
-60 -40 -20 0
Fig 4. Normalized On-Resistance vs. Temperature
Fig 3. Typical Transfer Characteristics
10000
14.0
VGS = 0V,
f = 1 MHZ
C iss = C gs + C gd, C ds SHORTED
C rss = C gd
VGS, Gate-to-Source Voltage (V)
ID= 10A
C oss = C ds + C gd
Ciss
1000
Coss
Crss
100
20 40 60 80 100 120 140 160
T J , Junction Temperature (°C)
VGS, Gate-to-Source Voltage (V)
C, Capacitance (pF)
10
V DS, Drain-to-Source Voltage (V)
V DS, Drain-to-Source Voltage (V)
10
12.0
VDS= 24V
VDS= 15V
VDS= 6.0V
10.0
8.0
6.0
4.0
2.0
0.0
1
10
100
VDS, Drain-to-Source Voltage (V)
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
3
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
TOP
ID, Drain-to-Source Current (A)
ID, Drain-to-Source Current (A)
TOP
VGS
10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
2.5V
www.irf.com © 2013 International Rectifier
0
2
4
6
8
10 12 14 16 18 20
QG, Total Gate Charge (nC)
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
May 13, 2013
IRFHM8363PbF
1000
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
1000
100
T J = 150°C
10
T J = 25°C
1
OPERATION IN THIS AREA
LIMITED BY R DS(on)
100
100µsec
1msec
10msec
10
Limited by source
bonding technology
1
DC
Tc = 25°C
Tj = 150°C
Single Pulse
VGS = 0V
0.1
0.1
0.0
0.5
1.0
1.5
2.0
0
2.5
1
10
100
VDS, Drain-to-Source Voltage (V)
VSD, Source-to-Drain Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
30
2.8
i
VGS(th) , Gate threshold Voltage (V)
Limited by source
bonding technology
25
ID, Drain Current (A)
i
20
15
10
5
0
2.6
2.4
2.2
2.0
1.8
1.6
1.4
1.2
ID = 25µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
1.0
0.8
25
50
75
100
125
150
-75 -50 -25
T C , Case Temperature (°C)
0
25
50
75 100 125 150
T J , Temperature ( °C )
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 10. Threshold Voltage vs. Temperature
Thermal Response ( Z thJC ) °C/W
10
D = 0.50
0.20
1
0.10
0.05
0.02
0.01
0.1
0.01
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
4
www.irf.com © 2013 International Rectifier
May 13, 2013
35
120
EAS , Single Pulse Avalanche Energy (mJ)
RDS(on), Drain-to -Source On Resistance (m Ω)
IRFHM8363PbF
ID = 10A
30
25
20
TJ = 125°C
15
T J = 25°C
10
ID
2.3A
4.7A
BOTTOM 10A
TOP
100
80
60
40
20
0
0
5
10
15
20
25
50
75
100
125
150
Starting T J , Junction Temperature (°C)
VGS, Gate -to -Source Voltage (V)
Fig 12. On-Resistance vs. Gate Voltage
Fig 13. Maximum Avalanche Energy vs. Drain Current
V(BR)DSS
tp
15V
DRIVER
L
VDS
D.U.T
RG
+
V
- DD
IAS
20V
A
Fig 14a. Unclamped Inductive Test Circuit
VDS
VGS
RG
RD
Fig 14b. Unclamped Inductive Waveforms
VDS
90%
D.U.T.
+
-VDD
V10V
GS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
Fig 15a. Switching Time Test Circuit
5
I AS
0.01Ω
tp
www.irf.com © 2013 International Rectifier
10%
VGS
td(on)
tr
td(off)
tf
Fig 15b. Switching Time Waveforms
May 13, 2013
IRFHM8363PbF
D.U.T
Driver Gate Drive
ƒ
+
‚
-
-
„
*
D.U.T. ISD Waveform
Reverse
Recovery
Current
+

RG
•
•
•
•
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
P.W.
Period
VGS=10V
Circuit Layout Considerations
• Low Stray Inductance
• Ground Plane
• Low Leakage Inductance
Current Transformer
-
D=
Period
P.W.
+
V DD
+
Body Diode Forward
Current
di/dt
D.U.T. VDS Waveform
Diode Recovery
dv/dt
Re-Applied
Voltage
-
Body Diode
VDD
Forward Drop
Inductor Curent
ISD
Ripple ≤ 5%
* VGS = 5V for Logic Level Devices
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Id
Vds
Vgs
L
DUT
0
1K
VCC
S
Vgs(th)
Qgs1 Qgs2
Fig 17. Gate Charge Test Circuit
6
www.irf.com © 2013 International Rectifier
Qgd
Qgodr
Fig 18. Gate Charge Waveform
May 13, 2013
IRFHM8363PbF
PQFN Dual 3.3 x 3.3 Package Details
For more information on board mounting, including footprint and stencil recommendation, please refer to
application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf
For more information on package inspection techniques, please refer to application note AN-1154:
http://www.irf.com/technical-info/appnotes/an-1154.pdf
PQFN Dual 3.3 x 3.3 Part Marking
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
7
www.irf.com © 2013 International Rectifier
May 13, 2013
IRFHM8363PbF
PQFN Dual 3.3x3.3 Tape and Reel
8
www.irf.com © 2013 International Rectifier
May 13, 2013
IRFHM8363PbF
Qualification information†
Cons umer
Qualification level
(per JE DE C JE S D47F
Moisture Sensitivity Level
††
†††
guidelines )
MS L1
PQFN Dual 3.3mm x 3.3mm
†††
(per JE DE C J-S T D-020D
RoHS compliant
†
††
†††
)
Yes
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
Applicable version of JEDEC standard at the time of product release.
Notes:
 Repetitive rating; pulse width limited by max. junction temperature.
‚ Starting TJ = 25°C, L = 0.58mH, RG = 50Ω, IAS = 10A.
ƒ Pulse width ≤ 400µs; duty cycle ≤ 2%.
„ Rθ is measured at TJ of approximately 90°C.
… When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details:
http://www.irf.com/technical-info/appnotes/an-994.pdf
† Calculated continuous current based on maximum allowable junction temperature.
‡ Current is limited to 10A by source bonding technology.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA
To contact International Rectifier, please visit http://www.irf.com/whoto-call/
9
www.irf.com © 2013 International Rectifier
May 13, 2013