PD - 95390 IRFIB5N50LPbF SMPS MOSFET HEXFET® Power MOSFET Applications • Zero Voltage Switching SMPS VDSS RDS(on) typ. Trr typ. ID • Telecom and Server Power Supplies 0.67Ω 500V 73ns 4.7A • Uninterruptible Power Supplies • Motor Control applications • Lead-Free Features and Benefits • SuperFast body diode eliminates the need for external diodes in ZVS applications. • Lower Gate charge results in simpler drive requirements. • Enhanced dv/dt capabilities offer improved ruggedness. TO-220 Full-Pak • Higher Gate voltage threshold offers improved noise immunity. Absolute Maximum Ratings ID @ TC = 25°C Parameter Continuous Drain Current, VGS @ 10V Max. ID @ TC = 100°C Continuous Drain Current, VGS @ 10V 3.0 IDM 16 Pulsed Drain Current c PD @TC = 25°C Power Dissipation VGS Linear Derating Factor Gate-to-Source Voltage dv/dt TJ Peak Diode Recovery dv/dt Operating Junction and TSTG Storage Temperature Range Units 4.7 d A 42 W 0.33 ±30 W/°C V 13 -55 to + 150 V/ns °C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) 10lb in (1.1N m) x Mounting torque, 6-32 or M3 screw x Diode Characteristics Symbol Parameter Min. Typ. Max. Units Conditions IS Continuous Source Current ––– ––– 4.7 ISM (Body Diode) Pulsed Source Current ––– ––– 16 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.5 V p-n junction diode. TJ = 25°C, IS = 4.0A, VGS = 0V trr Reverse Recovery Time ––– 73 110 ns TJ = 25°C, IF = 4.0A ––– 99 150 TJ = 125°C, di/dt = 100A/µs ––– 200 310 nC TJ = 25°C, IS = 4.0A, VGS = 0V ––– 360 540 TJ = 125°C, di/dt = 100A/µs ––– 6.7 10 Qrr c Reverse Recovery Charge IRRM Reverse Recovery Current ton Forward Turn-On Time www.irf.com MOSFET symbol A A showing the integral reverse D G f f S f f TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) 1 06/10/04 IRFIB5N50LPbF Static @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units Conditions V(BR)DSS Drain-to-Source Breakdown Voltage ∆V(BR)DSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.43 ––– RDS(on) Static Drain-to-Source On-Resistance ––– 0.67 0.80 VGS(th) Gate Threshold Voltage 3.0 ––– 5.0 IDSS Drain-to-Source Leakage Current ––– ––– 50 µA VDS = 500V, VGS = 0V ––– ––– 2.0 mA VDS = 400V, VGS = 0V, TJ = 125°C Gate-to-Source Forward Leakage ––– ––– 100 nA Gate-to-Source Reverse Leakage ––– ––– -100 Internal Gate Resistance ––– 2.0 ––– IGSS RG 500 ––– ––– V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA Ω V VGS = 10V, I D = 2.4A f VDS = VGS, ID = 250µA VGS = 30V VGS = -30V Ω f = 1MHz, open drain Dynamic @ TJ = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units S Conditions gfs Qg Forward Transconductance 2.8 ––– ––– VDS = 50V, ID = 2.4A Total Gate Charge ––– ––– 45 Qgs Gate-to-Source Charge ––– ––– 13 Qgd Gate-to-Drain ("Miller") Charge ––– ––– 23 VGS = 10V, See Fig. 7 & 16 td(on) Turn-On Delay Time ––– 13 ––– VDD = 250V tr Rise Time ––– 17 ––– td(off) Turn-Off Delay Time ––– 26 ––– RG = 9.0Ω tf Fall Time ––– 10 ––– VGS = 10V, See Fig. 11a & 11b Ciss Input Capacitance ––– 1000 ––– VGS = 0V Coss Output Capacitance ––– 110 ––– VDS = 25V Crss Reverse Transfer Capacitance ––– 12 ––– Coss Output Capacitance ––– 1360 ––– Coss Output Capacitance ––– 31 ––– VGS = 0V, VDS = 400V, ƒ = 1.0MHz Coss eff. Effective Output Capacitance ––– 75 ––– VGS = 0V,VDS = 0V to 400V Coss eff. (ER) Effective Output Capacitance ––– 55 ––– ID = 4.0A nC ns pF VDS = 400V f ID = 4.0A f ƒ = 1.0MHz, See Fig. 5 VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz g (Energy Related) Avalanche Characteristics Symbol EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current EAR Repetitive Avalanche Energy c d c Typ. ––– Max. 140 ––– 4.0 A ––– 3.0 mJ Units mJ Thermal Resistance Typ. Max. Units RθJC Symbol Junction-to-Case Parameter ––– 3.0 °C/W RθJA Junction-to-Ambient ––– 65 Notes: Repetitive rating; pulse width limited by max. junction temperature. (See Fig. 11). Starting TJ = 25°C, L = 18mH, RG = 25Ω, IAS = 4.0A, dv/dt = 13V/ns. (See Figure 12a). ISD ≤ 4.0, di/dt ≤ 280A/µs, VDD ≤ V(BR)DSS, TJ ≤ 150°C. 2 Pulse width ≤ 300µs; duty cycle ≤ 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff.(ER) is a fixed capacitance that stores the same energy as C oss while VDS is rising from 0 to 80% VDSS. www.irf.com IRFIB5N50LPbF 100 100 10 BOTTOM 1 VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V VGS 15V 12V 10V 8.0V 7.0V 6.5V 6.0V 5.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 0.1 5.5V 0.01 10 BOTTOM 1 5.5V 0.1 20µs PULSE WIDTH Tj = 150°C 20µs PULSE WIDTH Tj = 25°C 0.001 0.01 0.1 1 10 100 0.1 1 VDS, Drain-to-Source Voltage (V) 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 100 3.0 I D = 4.0A 2.5 TJ = 25 ° C 1 0.1 V DS= 50V 20µs PULSE WIDTH 0.01 5.0 6.0 7.0 8.0 V GS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 9.0 2.0 (Normalized) I D, Drain-to-Source Current (A) 10 °C RDS(on) , Drain-to-Source On Resistance TJ = 150 1.5 1.0 0.5 V GS = 10V 0.0 -60 -40 -20 0 20 40 60 80 100 120 140 160 ° Tj, Junction Temperature (°C) Fig 4. Normalized On-Resistance vs. Temperature 3 IRFIB5N50LPbF 100000 10000 9 8 Coss = Cds + Cgd 7 Energy (µJ) C, Capacitance(pF) 10 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd Ciss 1000 Coss 100 6 5 4 3 Crss 10 2 1 1 0 1 10 100 1000 0 VDS, Drain-to-Source Voltage (V) 200 300 400 500 600 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage Fig 6. Typ. Output Capacitance Stored Energy vs. VDS 100 12 I D = 4.0A VDS = 400V VDS = 250V VDS = 100V I SD , Reverse Drain Current (A) 10 VGS , Gate-to-Source Voltage (V) 100 8 6 4 10 T J= 25 ° C TJ = 150 ° C 1 2 V GS = 0 V 0.1 0 0.2 0 5 10 15 20 25 30 QG, Total Gate Charge (nC) Fig 7. Typical Gate Charge vs. Gate-to-Source Voltage 4 35 0.4 0.6 0.8 1.0 1.2 V SD,Source-to-Drain Voltage (V) Fig 8. Typical Source-Drain Diode Forward Voltage www.irf.com IRFIB5N50LPbF 5.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 4.0 10 ID , Drain Current (A) ID, Drain-to-Source Current (A) 100 100µsec 1 1msec Tc = 25°C Tj = 150°C Single Pulse 3.0 2.0 1.0 10msec 0.1 0.0 1 10 100 1000 10000 25 Fig 9. Maximum Safe Operating Area V DS VGS RG 75 100 125 150 Fig 10. Maximum Drain Current vs. Case Temperature RD VDS 90% D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 11a. Switching Time Test Circuit www.irf.com 50 TC , Case Temperature ( °C) VDS, Drain-to-Source Voltage (V) 10% VGS td(on) tr t d(off) tf Fig 11b. Switching Time Waveforms 5 IRFIB5N50LPbF (Z thJC ) 10 D = 0.50 1 Thermal Response 0.20 0.10 0.05 P DM 0.1 0.02 0.01 t1 SINGLE PULSE (THERMAL RESPONSE) t2 Notes: 1. Duty factor D = 2. Peak T 0.01 0.00001 0.0001 0.001 0.01 0.1 t1 / t 2 J = P DM x Z thJC +TC 1 10 t 1, Rectangular Pulse Duration (sec) Fig 12. Maximum Effective Transient Thermal Impedance, Junction-to-Case VGS(th) Gate threshold Voltage (V) 6.0 5.0 ID = 250µA 4.0 3.0 2.0 -75 -50 -25 0 25 50 75 100 125 150 T J , Temperature ( °C ) Fig 13. Threshold Voltage vs.Temperature 6 www.irf.com IRFIB5N50LPbF EAS , Single Pulse Avalanche Energy (mJ) 320 TOP ID 1.8A BOTTOM 2.5A 4.0A 240 160 80 0 25 50 75 100 125 150 ( ° C) Starting Tj, Junction Temperature Fig 14. Maximum Avalanche Energy vs. Drain Current 15V V(BR)DSS DRIVER L VDS D.U.T RG + V - DD IAS 20V tp tp 0.01Ω A I AS Fig 15a. Unclamped Inductive Test Circuit Fig 15b. Unclamped Inductive Waveforms Current Regulator Same Type as D.U.T. QG 50KΩ 12V 10 V .2µF .3µF D.U.T. QGS + V - DS QGD VG VGS 3mA IG ID Current Sampling Resistors Fig 16a. Gate Charge Test Circuit www.irf.com Charge Fig 16b. Basic Gate Charge Waveform 7 IRFIB5N50LPbF Peak Diode Recovery dv/dt Test Circuit Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D.U.T + - - + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test Driver Gate Drive P.W. Period D= + - VDD P.W. Period VGS=10V * D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. For N-Channel HEXFET® Power MOSFETs 8 www.irf.com IRFIB5N50LPbF TO-220 Full-Pak Package Outline Dimensions are shown in millimeters (inches) TO-220 Full-Pak Part Marking Information E X AM P L E : T H IS IS AN IR F I8 4 0G W IT H AS S E M B L Y L O T COD E 3 4 3 2 AS S E M B L E D O N W W 24 1 9 9 9 IN T H E AS S E M B L Y L IN E "K " P AR T N U M B E R IN T E R N AT ION AL R E CT I F IE R L OG O IR F I84 0G 9 24 K 34 Note: "P" in assembly line position indicates "Lead-Free" AS S E M B L Y L O T COD E 32 D AT E CO D E Y E AR 9 = 1 9 9 9 W E E K 24 L IN E K TO-220AB FullPak package is not recommended for Surface Mount Application. Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.06/04 www.irf.com 9