PD - 95772A IRFR120ZPbF IRFU120ZPbF AUTOMOTIVE MOSFET HEXFET® Power MOSFET Features l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free D VDSS = 100V RDS(on) = 190mΩ G ID = 8.7A S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. D-Pak IRFR120Z I-Pak IRFU120Z Absolute Maximum Ratings Parameter Max. Units ID @ TC = 25°C Continuous Drain Current, VGS @ 10V (Silicon Limited) ID @ TC = 100°C Continuous Drain Current, VGS @ 10V Pulsed Drain Current IDM 8.7 PD @TC = 25°C Power Dissipation 35 W 0.23 ± 20 W/°C V 18 mJ Linear Derating Factor VGS Gate-to-Source Voltage EAS (Thermally limited) Single Pulse Avalanche Energy Single Pulse Avalanche Energy Tested Value EAS (Tested ) d c IAR Avalanche Current EAR Repetitive Avalanche Energy TJ Operating Junction and TSTG Storage Temperature Range 35 h 20 See Fig.12a, 12b, 15, 16 g -55 to + 175 °C Mounting Torque, 6-32 or M3 screw 300 (1.6mm from case ) y Parameter RθJA RθJA Junction-to-Ambient i y 10 lbf in (1.1N m) Thermal Resistance Junction-to-Case Junction-to-Ambient (PCB mount) A mJ Soldering Temperature, for 10 seconds RθJC A 6.1 c Typ. Max. ––– 4.28 ––– 40 ––– 110 Units °C/W HEXFET® is a registered trademark of International Rectifier. www.irf.com 1 12/06/04 IRFR/U120ZPbF Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance 100 ––– ––– 2.0 16 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– 0.084 150 ––– ––– ––– ––– ––– ––– 6.9 1.6 3.1 8.3 26 27 23 4.5 ––– ––– 190 4.0 ––– 20 250 200 -200 10 ––– ––– ––– ––– ––– ––– ––– LS Internal Source Inductance ––– 7.5 ––– 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance ––– ––– ––– ––– ––– ––– 310 41 24 150 26 57 ––– ––– ––– ––– ––– ––– S and center of die contact VGS = 0V VDS = 25V ƒ = 1.0MHz VGS = 0V, VDS = 1.0V, ƒ = 1.0MHz VGS = 0V, VDS = 80V, ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V gfs IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 5.2A V VDS = VGS, ID = 250µA S VDS = 25V, ID = 5.2A µA VDS = 100V, VGS = 0V VDS = 100V, VGS = 0V, TJ = 125°C nA VGS = 20V VGS = -20V ID = 5.2A nC VDS = 80V VGS = 10V VDD = 50V ID = 5.2A ns RG = 53 Ω VGS = 10V D Between lead, e e e nH pF G f Source-Drain Ratings and Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 8.7 ISM (Body Diode) Pulsed Source Current ––– ––– 35 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time ––– ––– ––– ––– 24 23 1.3 36 35 2 c Conditions MOSFET symbol A V ns nC showing the integral reverse p-n junction diode. TJ = 25°C, IS = 5.2A, VGS = 0V TJ = 25°C, IF = 5.2A, VDD = 50V di/dt = 100A/µs e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) www.irf.com IRFR/U120ZPbF 100 100 VGS 10 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP 1 4.5V 0.1 60µs PULSE WIDTH Tj = 25°C 0.01 10 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V BOTTOM 4.5V 4.5V 1 60µs PULSE WIDTH Tj = 175°C 0.1 0.1 0 11 10 10 100 100 0.1 0 VDS, Drain-to-Source Voltage (V) 11 10 10 100 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 12 Gfs, Forward Transconductance (S) 100.0 ID, Drain-to-Source Current (Α) VGS T J = 175°C 10.0 1.0 T J = 25°C VDS = 25V 60µs PULSE WIDTH T J = 175°C 10 8 T J = 25°C 6 4 2 VDS = 10V 380µs PULSE WIDTH 0.1 4.0 5.0 6.0 7.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 8.0 0 0 2 4 6 8 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current 3 IRFR/U120ZPbF 500 ID= 5.2A VGS, Gate-to-Source Voltage (V) 400 C, Capacitance (pF) 20 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 300 200 100 Coss Crss 12 8 4 FOR TEST CIRCUIT SEE FIGURE 13 0 0 1 VDS= 80V VDS= 50V VDS= 20V 16 10 0 100 6 8 10 Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000 ID, Drain-to-Source Current (A) 100.0 ISD, Reverse Drain Current (A) 4 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10.0 T J = 175°C 1.0 T J = 25°C 10 100µsec 1 VGS = 0V 0.1 0.1 0.0 0.5 1.0 VSD, Source-toDrain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 2 1.5 Tc = 25°C Tj = 175°C Single Pulse 1 1msec 10msec 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRFR/U120ZPbF 10 RDS(on) , Drain-to-Source On Resistance (Normalized) 3.0 ID , Drain Current (A) 8 6 4 2 0 ID = 5.2A VGS = 10V 2.5 2.0 1.5 1.0 0.5 25 50 75 100 125 150 175 -60 -40 -20 T J , Junction Temperature (°C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (°C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 D = 0.50 1 0.20 0.10 τJ 0.05 0.02 0.01 0.1 R1 R1 τJ τ1 τ1 R2 R2 τ2 τ2 R3 R3 τ3 τC τ τ3 Ci= τi/Ri Ci= i/Ri Ri (°C/W) τi (sec) 0.33747 0.000053 1.793 2.150 0.000125 0.000474 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.01 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case www.irf.com 5 IRFR/U120ZPbF DRIVER L VDS D.U.T RG + V - DD IAS 20V VGS A 0.01Ω tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS tp EAS, Single Pulse Avalanche Energy (mJ) 80 15V ID 0.9A 1.2 BOTTOM 5.2A TOP 60 40 20 0 25 50 75 100 125 150 175 Starting T J, Junction Temperature (°C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGD 5.0 VG Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50KΩ 12V .2µF .3µF D.U.T. + V - DS VGS(th) Gate threshold Voltage (V) QGS 4.0 ID = 250µA 3.0 2.0 -75 -50 -25 VGS 0 25 50 75 100 125 150 175 200 T J , Temperature ( °C ) 3mA IG ID Current Sampling Resistors Fig 13b. Gate Charge Test Circuit 6 Fig 14. Threshold Voltage Vs. Temperature www.irf.com IRFR/U120ZPbF 10 Duty Cycle = Single Pulse Allowed avalanche Current vs avalanche pulsewidth, tav assuming ∆ Tj = 25°C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax Avalanche Current (A) 0.01 0.05 1 0.10 0.1 0.01 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 20 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 5.2A 16 12 8 4 0 25 50 75 100 125 150 Starting T J , Junction Temperature (°C) Fig 16. Maximum Avalanche Energy Vs. Temperature www.irf.com Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. I av = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav ·f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav 7 IRFR/U120ZPbF D.U.T Driver Gate Drive + - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period P.W. + VDD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple ≤ 5% ISD * VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V DS VGS RG RD D.U.T. + -VDD 10V Pulse Width ≤ 1 µs Duty Factor ≤ 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms 8 www.irf.com IRFR/U120ZPbF D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak (TO-252AA) Part Marking Information EXAMPLE: T HIS IS AN IRF R120 WIT H ASS EMBLY LOT CODE 1234 AS SEMBLED ON WW 16, 1999 IN T HE ASS EMBLY LINE "A" PART NUMBER INTERNAT IONAL RECT IF IER LOGO Note: "P" in as sembly line position indicates "Lead-Free" IRFU120 916A 12 34 ASS EMBLY LOT CODE DATE CODE YEAR 9 = 1999 WEEK 16 LINE A OR PART NUMBER INTERNAT IONAL RECT IFIER LOGO IRFU120 12 ASS EMBLY LOT CODE www.irf.com 34 DATE CODE P = DESIGNATES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 16 A = ASS EMBLY SIT E CODE 9 IRFR/U120ZPbF I-Pak (TO-251AA) Package Outline Dimensions are shown in millimeters (inches) I-Pak (TO-251AA) Part Marking Information EXAMPLE: THIS IS AN IRF U120 WITH ASSEMBLY LOT CODE 5678 ASSEMBLED ON WW 19, 1999 IN THE ASSEMBLY LINE "A" INT ERNAT IONAL RECT IFIER LOGO PART NUMBER IRFU120 919A 56 78 ASSEMBLY LOT CODE Note: "P" in assembly line position indicates "Lead-Free" DAT E CODE YEAR 9 = 1999 WEEK 19 LINE A OR INT ERNAT IONAL RECTIFIER LOGO PART NUMBER IRFU120 56 AS SEMBLY LOT CODE 10 78 DATE CODE P = DES IGNAT ES LEAD-FREE PRODUCT (OPTIONAL) YEAR 9 = 1999 WEEK 19 A = ASS EMBLY SIT E CODE www.irf.com IRFR/U120ZPbF D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. Notes: Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25°C, L = 1.29mH Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive RG = 25Ω, IAS = 5.2A, VGS =10V. Part not avalanche performance. recommended for use above this value. This value determined from sample failure population. 100% Pulse width ≤ 1.0ms; duty cycle ≤ 2%. tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994 Repetitive rating; pulse width limited by Data and specifications subject to change without notice. This product has been designed and qualified for the Automotive [Q101] market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.12/04 www.irf.com 11