PD - 97498 INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE Features • • • • • • • • Low VCE (ON) trench IGBT technology Low switching losses Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) temperature co-efficient Ultra fast soft recovery co-pak diode Tight parameter distribution Lead-Free IRG7PH46UDPbF IRG7PH46UD-EP C VCES = 1200V I NOMINAL = 40A TJ(max) = 150°C G n-channel Benefits • High efficiency in a wide range of applications • Suitable for a wide range of switching frequencies due to low VCE (ON) and low switching losses • Rugged transient performance for increased reliability • Excellent current sharing in parallel operation C Applications • • • • VCE(on) typ. = 1.7V E C GC U.P.S. Welding Solar Inverter Induction Heating E E GC TO-247AD IRG7PH46UD-EP TO-247AC IRG7PH46UDPbF G Gate C Collector E Emitter Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 1200 V IC @ TC = 25°C Continuous Collector Current (Silicon Limited) 108 IC @ TC = 100°C Continuous Collector Current (Silicon Limited) 57 INOMINAL ICM Nominal Current Pulse Collector Current, VGE = 15V 120 ILM Clamped Inductive Load Current, VGE = 20V IF @ TC = 25°C Diode Continous Forward Current IF @ TC = 100°C IFM Diode Continous Forward Current Diode Maximum Forward Current VGE Continuous Gate-to-Emitter Voltage ±30 V PD @ TC = 25°C Maximum Power Dissipation 390 W PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range 40 c A 160 108 57 d 160 156 -55 to +150 °C Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Parameter Min. Typ. Max. ––– ––– 0.32 RθJC (Diode) f Thermal Resistance Junction-to-Case-(each Diode) f ––– ––– 0.66 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– 40 ––– RθJC (IGBT) 1 Thermal Resistance Junction-to-Case-(each IGBT) Units °C/W www.irf.com 04/26/2010 IRG7PH46UDPbF/IRG7PH46UD-EP Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. V(BR)CES Collector-to-Emitter Breakdown Voltage Parameter 1200 — Max. Units — ∆V(BR)CES/∆TJ Temperature Coeff. of Breakdown Voltage — 1.2 — VCE(on) Collector-to-Emitter Saturation Voltage — 1.7 2.0 — 2.0 — V Conditions VGE = 0V, IC = 100µA V IC = 40A, VGE = 15V, TJ = 150°C VGE(th) Gate Threshold Voltage 3.0 — 6.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -13 — gfe ICES Forward Transconductance — 50 — Collector-to-Emitter Leakage Current — 1.5 100 µA — 2.0 — mA — 3.1 4.8 V IF = 40A — 3.0 — — — ±200 nA VGE = ±30V VFM Diode Forward Voltage Drop IGES Gate-to-Emitter Leakage Current e V/°C VGE = 0V, IC = 1.0mA (25°C-150°C) IC = 40A, VGE = 15V, TJ = 25°C VCE = VGE, IC = 1.6mA V mV/°C VCE = VGE, IC = 1.6mA (25°C - 150°C) VCE = 50V, IC = 40A, PW = 20µs S VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 150°C IF = 40A, TJ = 150°C Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Total Gate Charge (turn-on) Parameter — 220 Max. Units Qge Gate-to-Emitter Charge (turn-on) — 30 50 Qgc Gate-to-Collector Charge (turn-on) — 85 130 Eon Turn-On Switching Loss — 2610 3515 Eoff Turn-Off Switching Loss — 1845 2725 — 4455 6240 IC = 40A 320 Etotal Total Switching Loss td(on) Turn-On delay time — 45 60 tr Rise time — 40 60 td(off) Turn-Off delay time — 410 450 tf Fall time — 45 60 Eon Turn-On Switching Loss — 3790 — Eoff Turn-Off Switching Loss — 2905 — nC d Conditions VGE = 15V VCC = 600V IC = 40A, VCC = 600V, VGE = 15V µJ RG = 10Ω, L = 200µH,TJ = 25°C g Energy losses include tail & diode reverse recovery ns IC = 40A, VCC = 600V, VGE=15V µJ RG=10Ω, L=200µH, TJ = 150°C Etotal Total Switching Loss — 6695 — td(on) Turn-On delay time — 40 — tr Rise time — 40 — td(off) Turn-Off delay time — 480 — tf Fall time — 200 — Cies Input Capacitance — 4820 — Coes Output Capacitance — 150 — VCC = 30V Cres Reverse Transfer Capacitance — 110 — f = 1.0Mhz TJ = 150°C, IC = 160A RBSOA Reverse Bias Safe Operating Area FULL SQUARE g Energy losses include tail & diode reverse recovery ns pF VGE = 0V VCC = 960V, Vp 1200V Rg = 10Ω, VGE = +20V to 0V Erec trr Reverse Recovery Energy of the Diode — 1130 — µJ TJ = 150°C Diode Reverse Recovery Time — 140 — ns Irr Peak Reverse Recovery Current — 40 — A VCC = 600V, IF = 40A Rg = 10Ω, L =1.0mH Notes: VCC = 80% (VCES), VGE = 20V, L = 200µH, RG = 10Ω. Pulse width limited by max. junction temperature. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. Rθ is measured at TJ of approximately 90°C. Values influenced by parasitic L and C of the test circuit. 2 www.irf.com IRG7PH46UDPbF/IRG7PH46UD-EP 100 Duty cycle : 50% Tj = 150°C Tc = 100°C Vcc = 600V Gate drive as specified Power Dissipation = 154W Load Current ( A ) 80 Square Wave: 60 VCC 40 I Diode as specified 20 0 0.1 1 10 100 f , Frequency ( kHz ) Fig. 1 - Typical Load Current vs. Frequency (Load Current = IRMS of fundamental) 120 400 350 100 300 250 Ptot (W) IC (A) 80 60 200 150 40 100 20 50 0 0 25 50 75 100 125 150 25 50 75 100 125 150 T C (°C) T C (°C) Fig. 2 - Power Dissipation vs. Case Temperature Fig. 1 - Maximum DC Collector Current vs. Case Temperature 1000 1000 100 100 10 100µsec DC IC (A) IC (A) 10µsec 10 1msec 1 Tc = 25°C Tj = 150°C Single Pulse 0.1 1 1 10 100 1000 VCE (V) Fig. 3 - Forward SOA TC = 25°C, TJ ≤ 150°C; VGE =15V www.irf.com 10000 10 100 1000 10000 VCE (V) Fig. 4 - Reverse Bias SOA TJ = 150°C; VGE = 20V 3 IRG7PH46UDPbF/IRG7PH46UD-EP 160 160 140 140 120 120 100 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V 80 60 40 ICE (A) ICE (A) 100 VGE = 18V VGE = 15V 80 VGE = 12V VGE = 10V 60 VGE = 8.0V 40 20 20 0 0 0 2 4 6 8 10 0 2 4 VCE (V) 160 140 140 120 120 VGE = 18V VGE = 15V VGE = 12V 80 100 IF (A) ICE (A) 10 Fig. 6 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 30µs 160 100 VGE = 10V VGE = 8.0V 60 -40°C 25°C 150°C 80 60 40 40 20 20 0 0 0 2 4 6 8 10 0.0 1.0 2.0 VCE (V) 3.0 4.0 5.0 6.0 VF (V) Fig. 7 - Typ. IGBT Output Characteristics TJ = 150°C; tp = 30µs Fig. 8 - Typ. Diode Forward Characteristics tp = 30µs 12 12 10 10 8 8 ICE = 20A ICE = 40A 6 VCE (V) VCE (V) 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 30µs ICE = 80A ICE = 20A ICE = 40A 6 ICE = 80A 4 4 2 2 0 0 4 8 12 16 VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = -40°C 4 6 20 4 8 12 16 20 VGE (V) Fig. 10 - Typical VCE vs. VGE TJ = 25°C www.irf.com IRG7PH46UDPbF/IRG7PH46UD-EP 12 ICE, Collector-to-Emitter Current (A) 120 10 VCE (V) 8 ICE = 20A ICE = 40A 6 ICE = 80A 4 2 100 80 T J = 25°C T J = 150°C 60 40 20 0 0 4 8 12 16 4 20 5 6 7 8 9 VGE, Gate-to-Emitter Voltage (V) VGE (V) Fig. 12 - Typ. Transfer Characteristics VCE = 50V Fig. 11 - Typical VCE vs. VGE TJ = 150°C 9000 1000 tdOFF 8000 Swiching Time (ns) 7000 Energy (µJ) 6000 EON 5000 4000 3000 EOFF 2000 tF 100 tdON 1000 tR 0 10 0 10 20 30 40 50 60 70 80 0 10 20 IC (A) Fig. 13 - Typ. Energy Loss vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V 30 40 50 60 70 80 IC (A) Fig. 14 - Typ. Switching Time vs. IC TJ = 150°C; L = 200µH; VCE = 600V, RG = 10Ω; VGE = 15V 10000 10000 9000 Energy (µJ) Swiching Time (ns) EOFF 8000 7000 6000 EON 5000 tdOFF 1000 tF 100 tR tdON 4000 3000 2000 10 0 20 40 60 80 100 RG (Ω) Fig. 15 - Typ. Energy Loss vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 40A; VGE = 15V www.irf.com 0 20 40 60 80 100 RG (Ω) Fig. 16 - Typ. Switching Time vs. RG TJ = 150°C; L = 200µH; VCE = 600V, ICE = 40A; VGE = 15V 5 IRG7PH46UDPbF/IRG7PH46UD-EP 40 50 35 RG = 5.0Ω IRR (A) IRR (A) 40 RG = 10Ω 30 30 25 RG = 47Ω 20 20 RG = 100Ω 15 10 10 20 30 40 50 60 70 0 80 20 IF (A) 40 60 80 100 RG (Ω) Fig. 17 - Typ. Diode IRR vs. IF TJ = 150°C Fig. 18 - Typ. Diode IRR vs. RG TJ = 150°C 40 6000 35 5000 30 QRR (µC) IRR (A) 80A 25 4000 40A 5.0Ω 3000 10Ω 47Ω 100Ω 2000 20 20A 1000 15 200 300 400 500 600 700 100 200 300 400 500 600 700 800 900 1000 800 diF /dt (A/µs) diF /dt (A/µs) Fig. 19 - Typ. Diode IRR vs. diF/dt VCC = 600V; VGE = 15V; IF = 40A; TJ = 150°C Fig. 20 - Typ. Diode QRR vs. diF/dt VCC = 600V; VGE = 15V; TJ = 150°C 1600 RG = 5.0 Ω RG = 10 Ω RG = 47Ω RG = 100Ω Energy (µJ) 1200 800 400 0 20 30 40 50 60 70 80 IF (A) Fig. 21 - Typ. Diode ERR vs. IF TJ = 150°C 6 www.irf.com IRG7PH46UDPbF/IRG7PH46UD-EP 10000 VGE, Gate-to-Emitter Voltage (V) 16 Capacitance (pF) Cies 1000 Coes 100 Cres 14 VCES = 600V VCES = 400V 12 10 8 6 4 2 10 0 0 100 200 300 400 500 600 0 40 VCE (V) 80 120 160 200 240 Q G, Total Gate Charge (nC) Fig. 23 - Typical Gate Charge vs. VGE ICE = 40A; L = 2400H Fig. 22 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 Ri (°C/W) R4 R4 τC τ τ2 τ1 τ2 τ3 τ3 τ4 τ4 Ci= τi/Ri Ci i/Ri 0.001 1E-005 0.000031 0.08573 0.001470 0.12712 0.002625 0.09903 0.012121 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 τi (sec) 0.01330 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) 1 Thermal Response ( Z thJC ) D = 0.50 0.20 0.1 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 R2 R2 R3 R3 τC τ τ2 τ1 τ2 τ3 τ3 Ci= τi/Ri Ci i/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 R4 R4 τ4 τ4 Ri (°C/W) τi (sec) 0.007488 0.000016 0.235126 0.00057 0.280054 0.00409 0.136283 0.022342 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) www.irf.com 7 IRG7PH46UDPbF/IRG7PH46UD-EP L L DUT 0 80 V + VCC - DUT 1K VCC Rg Fig.C.T.1 - Gate Charge Circuit (turn-off) Fig.C.T.2 - RBSOA Circuit diode clamp / DUT R= VCC ICM L -5V VCC DUT DUT / DRIVER VCC Rg Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit C force 100K D1 22K C sense G force DUT 0.0075µF E sense E force Fig.C.T.5 - BVCES Filter Circuit 8 www.irf.com IRG7PH46UDPbF/IRG7PH46UD-EP 900 80 800 700 70 700 600 60 600 60 500 50 500 50 300 200 40 90% ICE 30 5% VCE 100 5% ICE 0 -100 -0.5 0 0.5 10 100 1.5 70 40 90% test current 10% tes t current 30 20 5% V CE 0 10 0 Eon Loss -100 -2 2 80 TEST CURRENT 300 200 -10 1 tr 400 20 0 Eoff Loss 90 -1 0 1 2 I CE (A) V CE (V) 400 I CE (A) tf 800 V CE (V) 90 900 3 4 -10 5 time (µs) time(µs) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 150°C using Fig. CT.4 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 150°C using Fig. CT.4 50 EREC 40 30 20 tRR IF (A) 10 0 -10 -20 10% Peak IRR Peak IRR -30 -40 -50 -0.20 0.00 0.20 0.40 0.60 time (µS) Fig. WF3 - Typ. Diode Recovery Waveform @ TJ = 150°C using Fig. CT.4 www.irf.com 9 IRG7PH46UDPbF/IRG7PH46UD-EP TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com IRG7PH46UDPbF/IRG7PH46UD-EP TO-247AD Package Outline Dimensions are shown in millimeters (inches) TO-247AD Part Marking Information (;$03/( 7+,6,6$1,5*3%.'( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH 3$57180%(5 ,17(51$7,21$/ 5(&7,),(5 /2*2 + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AD package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 04/2010 www.irf.com 11