IRF IRGP50B60PD

PD - 94624B
IRGP50B60PD
SMPS IGBT
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
VCES = 600V
VCE(on) typ. = 2.00V
@ VGE = 15V IC = 33A
C
Applications
•
•
•
•
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
E
Features
•
•
•
•
•
•
•
Equivalent MOSFET
Parameters
RCE(on) typ. = 61mΩ
ID (FET equivalent) = 50A
G
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
n-channel
G
Benefits
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses
• Higher Switching Frequency up to 150kHz
C
E
TO-247AC
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
75
IC @ TC = 100°C
Continuous Collector Current
42
ICM
150
ILM
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
150
IF @ TC = 25°C
Diode Continous Forward Current
50
IF @ TC = 100°C
IFRM
Diode Continous Forward Current
Maximum Repetitive Forward Current
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
370
W
d
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
TSTG
Storage Temperature Range
A
25
e
100
150
-55 to +150
Soldering Temperature for 10 sec.
°C
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.34
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
0.64
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.24
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
40
Weight
–––
6.0 (0.21)
–––
1
g (oz)
www.irf.com
07/02/07
IRGP50B60PD
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
600
—
Temperature Coeff. of Breakdown Voltage
—
0.61
—
Internal Gate Resistance
—
1.2
—
—
2.0
2.2
—
2.4
2.6
—
2.6
2.9
—
3.2
3.6
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
RG
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
—
V
Ω
1MHz, Open Collector
IC = 33A, VGE = 15V
V
IC = 50A, VGE = 15V
IC = 50A, VGE = 15V, TJ = 125°C
3.0
4.0
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-7.07
—
gfe
ICES
Forward Transconductance
—
42
—
Collector-to-Emitter Leakage Current
—
5.0
500
µA
mA
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
1.0
—
1.3
1.7
—
1.5
2.0
—
1.3
1.7
—
—
±100
4, 5,6,8,9
IC = 33A, VGE = 15V, TJ = 125°C
Gate Threshold Voltage
—
Ref.Fig
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
VGE(th)
—
Conditions
VGE = 0V, IC = 500µA
V
IC = 250µA
7,8,9
mV/°C VCE = VGE, IC = 1.0mA
S VCE = 50V, IC = 33A, PW = 80µs
VGE = 0V, VCE = 600V
VGE = 0V, VCE = 600V, TJ = 125°C
IF = 25A, VGE = 0V
V
IF = 50A, VGE = 0V
10
IF = 25A, VGE = 0V, TJ = 125°C
nA
VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Qgc
Total Gate Charge (turn-on)
Parameter
—
240
Max. Units
360
Gate-to-Collector Charge (turn-on)
—
41
82
Conditions
Ref.Fig
IC = 33A
nC
17
VCC = 400V
CT1
VGE = 15V
Qge
Gate-to-Emitter Charge (turn-on)
—
84
130
Eon
Turn-On Switching Loss
—
360
590
Eoff
Turn-Off Switching Loss
—
380
420
Etotal
Total Switching Loss
—
740
960
VGE = +15V, RG = 3.3Ω, L = 210µH
TJ = 25°C
td(on)
Turn-On delay time
—
34
44
IC = 33A, VCC = 390V
tr
Rise time
—
26
36
td(off)
Turn-Off delay time
—
130
140
IC = 33A, VCC = 390V
µJ
ns
f
TJ = 25°C
tf
Fall time
—
43
56
Turn-On Switching Loss
—
610
880
Eoff
Turn-Off Switching Loss
—
460
530
Etotal
Total Switching Loss
—
1070
1410
td(on)
Turn-On delay time
—
33
43
tr
Rise time
—
26
36
td(off)
Turn-Off delay time
—
140
160
tf
Fall time
—
50
65
Cies
Input Capacitance
—
4750
—
VGE = 0V
Coes
Output Capacitance
—
390
—
VCC = 30V
Cres
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
—
58
—
Coes eff.
—
280
—
Coes eff. (ER)
Effective Output Capacitance (Energy Related)
—
190
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
trr
Diode Reverse Recovery Time
—
50
75
—
105
160
g
CT3
VGE = +15V, RG = 3.3Ω, L = 210µH
Eon
g
CT3
f
IC = 33A, VCC = 390V
µJ
CT3
VGE = +15V, RG = 3.3Ω, L = 210µH
TJ = 125°C
f
WF1,WF2
IC = 33A, VCC = 390V
ns
CT3
VGE = +15V, RG = 3.3Ω, L = 200µH
f
TJ = 125°C
pF
11,13
12,14
WF1,WF2
16
f = 1Mhz
VGE = 0V, VCE = 0V to 480V
15
TJ = 150°C, IC = 150A
3
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
Notes:
—
112
375
—
420
4200
—
4.5
10
—
8.0
15
ns
nC
TJ = 25°C
IF = 25A, VR = 200V,
19
TJ = 125°C
di/dt = 200A/µs
IF = 25A, VR = 200V,
21
TJ = 25°C
di/dt = 200A/µs
IF = 25A, VR = 200V,
19,20,21,22
TJ = 125°C
di/dt = 200A/µs
TJ = 25°C
TJ = 125°C
A
CT5
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID
rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚ VCC = 80% (VCES), VGE = 20V, L = 28 µH, RG = 22 Ω.
ƒ Pulse width limited by max. junction temperature.
„ Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06.
… Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGP50B60PD
80
400
Limited by package
350
60
300
50
250
Ptot (W)
IC, Collector Current (A)
70
40
200
30
150
20
100
10
50
0
0
25
50
75
100
125
150
0
20
40
60
T C, Case Temperature (°C)
80
100 120 140 160
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
1000
320
280
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
240
100
IC A)
ICE (A)
200
160
120
10
80
40
1
0
10
100
1000
0
2
4
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
10
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
320
320
280
240
200
ICE (A)
200
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
280
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
240
ICE (A)
8
VCE (V)
VCE (V)
160
160
120
120
80
80
40
40
0
0
0
2
4
6
8
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
www.irf.com
6
10
0
2
4
6
8
10 12 14 16 18 20
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
3
IRGP50B60PD
600
25
T J = 25°C
T J = 125°C
500
20
VCE (V)
ICE (A)
400
300
15
ICE = 15A
ICE = 33A
ICE = 50A
10
200
T J = 125°C
5
100
T J = 25°C
0
0
0
5
10
15
20
0
5
VGE (V)
15
20
VGE (V)
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
25
Instantaneous Forward Current - IF (A)
100
20
VCE (V)
10
15
ICE = 15A
ICE = 33A
ICE = 50A
10
5
TJ = 150°C
T = 125°C
J
T =
0
0
5
10
15
J
10
A
1
0.6
20
25°C
1.0
1.4
1.8
2.2
2.6
Forward Voltage Drop - V FM (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
Fig. 10 - Maximum. Diode Forward
Characteristics tp = 80µs
1800
1000
1600
Energy (µJ)
Swiching Time (ns)
EON
1400
1200
EOFF
1000
800
tF
600
tdON
400
tR
200
10
10
20
30
40
50
60
70
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
4
tdOFF
100
0
10
20
30
40
50
60
70
IC (A)
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V.
Diode clamp used: 30ETH06 (See C.T.3)
www.irf.com
IRGP50B60PD
1800
1000
EOFF
1600
tdOFF
Swiching Time (ns)
Energy (µJ)
1400
1200
1000
800
EON
600
100
tF
tdON
tR
400
200
10
0
10
20
30
40
0
10
20
RG (Ω)
30
40
RG (Ω)
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V
Diode clamp used: 30ETH06 (See C.T.3)
35
10000
30
Cies
Capacitance (pF)
Eoes (µJ)
25
20
15
10
1000
Coes
100
Cres
5
0
0
100
200
300
400
500
600
10
700
0
300
400
500
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
1.5
16
14
VCE = 480V
12
Normalized VCE(on)
VGE, Gate-to-Emitter Voltage (V)
200
VCE (V)
Voltage (V)
10
8
6
4
1.3
1.0
0.8
2
0
0.5
0
50
100
150
200
250
300
Q G, Total Gate Charge (nC)
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 33A
www.irf.com
100
-60 -40 -20 0 20 40 60 80 100 120 140 160
T C (°C)
Fig. 18 - Normalized Typ. VCE(on)
vs. Junction Temperature
IC = 33A, VGE= 15V
5
IRGP50B60PD
140
30
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
120
25
100
20
I F = 50A
80
Irr- ( A)
trr- (nC)
I F = 25A
I F = 50A
I F = 10A
15
I F = 25A
IF = 10A
60
10
40
5
A
20
100
di f /dt - (A/µs)
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
I F = 50A
di (rec) M/dt- (A /µs)
Qrr- (nC)
800
di f /dt - (A/µs)
10000
1400
1000
1000
Fig. 20 - Typical Recovery Current vs. dif/dt
Fig. 19 - Typical Reverse Recovery vs. dif/dt
1200
A
0
100
1000
I F = 25A
I F = 10A
600
1000
I F = 50A
I F = 25A
I F = 10A
400
200
0
100
A
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
6
100
100
A
1000
di f /dt - (A/µs)
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
IRGP50B60PD
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
0.05
0.01
0.02
τJ
0.01
0.001
R1
R1
τJ
τ1
R2
R2
τ2
τ1
Ri (°C/W) τi (sec)
0.0789 0.000277
τC
τ
0.2614
τ2
0.040918
Ci= τi/Ri
Ci i/Ri
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
Thermal Response ( Z thJC )
1
D = 0.50
0.1
0.20
0.10
0.05
0.01
τJ
0.02
0.01
R1
R1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
τ3
τ2
τC
τ
τ3
Ci= τi/Ri
Ci τi/Ri
0.001
SINGLE PULSE
( THERMAL RESPONSE )
Ri (°C/W) τi (sec)
0.0733 0.000420
0.1301
0.002274
0.1358
0.023026
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.0001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
ID, Drain-to-Source Current (A)
1000
OPERATION IN THIS AREA
LIMITED BY V CE(on)
100
100µsec
1msec
10
10msec
1
100msec
0.1
Tc = 25°C
Tj = 150°C
Single Pulse
0.01
1
10
100
1000
VDS, Drain-to-Source Voltage (V)
www.irf.com
Fig. 25 - Forward SOA, TC = 25°C; TJ ≤ 150°C
7
IRGP50B60PD
L
L
VCC
DUT
0
80 V
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
L
PFC diode
R=
DUT /
DRIVER
VCC
DUT
Rg
VCC
ICM
VCC
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω
L = 70µH
D.U.T.
dif/dt
ADJUST
D
G
IRFP250
S
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
8
www.irf.com
IRGP50B60PD
700
35
700
70
tr
30
600
500
25
500
20
400
Vce
90% Ice
15
Ice
Vce (V)
Vce (V)
300
Ice (A)
90% Ice
400
5% Vce
30
10% Ice
200
100
5
100
0
0
0
50
40
300
10
200
60
Ice
Vce
5% Vce
Ice (A)
tf
600
20
5% Ice
Eoff Loss
-100
-0.05
0
0.05
0
Eon
Loss
-100
3.95
-5
0.15
0.1
10
4.05
Time (uS)
4.15
-10
4.25
Time (uS)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 25°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 25°C using Fig. CT.3
3
trr
IF
tb
ta
0
2
Q rr
I RRM
4
0.5 I RRM
di(rec)M/dt
5
0.75 I RRM
1
di f /dt
1. dif/dt - Rate of change of current
through zero crossing
2. IRRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going IF to point where a line passing
through 0.75 IRRM and 0.50 IRRM
extrapolated to zero current
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M/dt - Peak rate of change of
current during tb portion of trr
Fig. WF3 - Reverse Recovery Waveform and
Definitions
www.irf.com
9
IRGP50B60PD
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
(;$03/( 7+,6,6$1,5)3(
:,7+$66(0%/<
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(+
1RWH3LQDVVHPEO\OLQHSRVLWLRQ
LQGLFDWHV/HDG)UHH
,17(51$7,21$/
5(&7,),(5
/2*2
3$57180%(5
,5)3(
+
$66(0%/<
/27&2'(
'$7(&2'(
<($5 :((.
/,1(+
TO-247AC package is not recommended for Surface Mount Application.
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 07/07
10
www.irf.com