PD - 94624B IRGP50B60PD SMPS IGBT WARP2 SERIES IGBT WITH ULTRAFAST SOFT RECOVERY DIODE VCES = 600V VCE(on) typ. = 2.00V @ VGE = 15V IC = 33A C Applications • • • • Telecom and Server SMPS PFC and ZVS SMPS Circuits Uninterruptable Power Supplies Consumer Electronics Power Supplies E Features • • • • • • • Equivalent MOSFET Parameters RCE(on) typ. = 61mΩ ID (FET equivalent) = 50A G NPT Technology, Positive Temperature Coefficient Lower VCE(SAT) Lower Parasitic Capacitances Minimal Tail Current HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode Tighter Distribution of Parameters Higher Reliability n-channel G Benefits • Parallel Operation for Higher Current Applications • Lower Conduction Losses and Switching Losses • Higher Switching Frequency up to 150kHz C E TO-247AC Absolute Maximum Ratings Max. Units VCES Collector-to-Emitter Voltage Parameter 600 V IC @ TC = 25°C Continuous Collector Current 75 IC @ TC = 100°C Continuous Collector Current 42 ICM 150 ILM Pulse Collector Current (Ref. Fig. C.T.4) Clamped Inductive Load Current 150 IF @ TC = 25°C Diode Continous Forward Current 50 IF @ TC = 100°C IFRM Diode Continous Forward Current Maximum Repetitive Forward Current VGE Gate-to-Emitter Voltage ±20 V PD @ TC = 25°C Maximum Power Dissipation 370 W d PD @ TC = 100°C Maximum Power Dissipation TJ Operating Junction and TSTG Storage Temperature Range A 25 e 100 150 -55 to +150 Soldering Temperature for 10 sec. °C 300 (0.063 in. (1.6mm) from case) Mounting Torque, 6-32 or M3 Screw 10 lbf·in (1.1 N·m) Thermal Resistance Min. Typ. Max. Units RθJC (IGBT) Thermal Resistance Junction-to-Case-(each IGBT) Parameter ––– ––– 0.34 °C/W RθJC (Diode) Thermal Resistance Junction-to-Case-(each Diode) ––– ––– 0.64 RθCS Thermal Resistance, Case-to-Sink (flat, greased surface) ––– 0.24 ––– RθJA Thermal Resistance, Junction-to-Ambient (typical socket mount) ––– ––– 40 Weight ––– 6.0 (0.21) ––– 1 g (oz) www.irf.com 07/02/07 IRGP50B60PD Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. 600 — Temperature Coeff. of Breakdown Voltage — 0.61 — Internal Gate Resistance — 1.2 — — 2.0 2.2 — 2.4 2.6 — 2.6 2.9 — 3.2 3.6 V(BR)CES Collector-to-Emitter Breakdown Voltage ∆V(BR)CES/∆TJ RG VCE(on) Collector-to-Emitter Saturation Voltage Max. Units — V Ω 1MHz, Open Collector IC = 33A, VGE = 15V V IC = 50A, VGE = 15V IC = 50A, VGE = 15V, TJ = 125°C 3.0 4.0 5.0 ∆VGE(th)/∆TJ Threshold Voltage temp. coefficient — -7.07 — gfe ICES Forward Transconductance — 42 — Collector-to-Emitter Leakage Current — 5.0 500 µA mA VFM IGES Diode Forward Voltage Drop Gate-to-Emitter Leakage Current 1.0 — 1.3 1.7 — 1.5 2.0 — 1.3 1.7 — — ±100 4, 5,6,8,9 IC = 33A, VGE = 15V, TJ = 125°C Gate Threshold Voltage — Ref.Fig V/°C VGE = 0V, IC = 1mA (25°C-125°C) VGE(th) — Conditions VGE = 0V, IC = 500µA V IC = 250µA 7,8,9 mV/°C VCE = VGE, IC = 1.0mA S VCE = 50V, IC = 33A, PW = 80µs VGE = 0V, VCE = 600V VGE = 0V, VCE = 600V, TJ = 125°C IF = 25A, VGE = 0V V IF = 50A, VGE = 0V 10 IF = 25A, VGE = 0V, TJ = 125°C nA VGE = ±20V, VCE = 0V Switching Characteristics @ TJ = 25°C (unless otherwise specified) Min. Typ. Qg Qgc Total Gate Charge (turn-on) Parameter — 240 Max. Units 360 Gate-to-Collector Charge (turn-on) — 41 82 Conditions Ref.Fig IC = 33A nC 17 VCC = 400V CT1 VGE = 15V Qge Gate-to-Emitter Charge (turn-on) — 84 130 Eon Turn-On Switching Loss — 360 590 Eoff Turn-Off Switching Loss — 380 420 Etotal Total Switching Loss — 740 960 VGE = +15V, RG = 3.3Ω, L = 210µH TJ = 25°C td(on) Turn-On delay time — 34 44 IC = 33A, VCC = 390V tr Rise time — 26 36 td(off) Turn-Off delay time — 130 140 IC = 33A, VCC = 390V µJ ns f TJ = 25°C tf Fall time — 43 56 Turn-On Switching Loss — 610 880 Eoff Turn-Off Switching Loss — 460 530 Etotal Total Switching Loss — 1070 1410 td(on) Turn-On delay time — 33 43 tr Rise time — 26 36 td(off) Turn-Off delay time — 140 160 tf Fall time — 50 65 Cies Input Capacitance — 4750 — VGE = 0V Coes Output Capacitance — 390 — VCC = 30V Cres Reverse Transfer Capacitance Effective Output Capacitance (Time Related) — 58 — Coes eff. — 280 — Coes eff. (ER) Effective Output Capacitance (Energy Related) — 190 — RBSOA Reverse Bias Safe Operating Area FULL SQUARE trr Diode Reverse Recovery Time — 50 75 — 105 160 g CT3 VGE = +15V, RG = 3.3Ω, L = 210µH Eon g CT3 f IC = 33A, VCC = 390V µJ CT3 VGE = +15V, RG = 3.3Ω, L = 210µH TJ = 125°C f WF1,WF2 IC = 33A, VCC = 390V ns CT3 VGE = +15V, RG = 3.3Ω, L = 200µH f TJ = 125°C pF 11,13 12,14 WF1,WF2 16 f = 1Mhz VGE = 0V, VCE = 0V to 480V 15 TJ = 150°C, IC = 150A 3 VCC = 480V, Vp =600V CT2 Rg = 22Ω, VGE = +15V to 0V Qrr Diode Reverse Recovery Charge Irr Peak Reverse Recovery Current Notes: — 112 375 — 420 4200 — 4.5 10 — 8.0 15 ns nC TJ = 25°C IF = 25A, VR = 200V, 19 TJ = 125°C di/dt = 200A/µs IF = 25A, VR = 200V, 21 TJ = 25°C di/dt = 200A/µs IF = 25A, VR = 200V, 19,20,21,22 TJ = 125°C di/dt = 200A/µs TJ = 25°C TJ = 125°C A CT5 RCE(on) typ. = equivalent on-resistance = VCE(on) typ./ IC, where VCE(on) typ.= 2.00V and IC =33A. ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions. VCC = 80% (VCES), VGE = 20V, L = 28 µH, RG = 22 Ω. Pulse width limited by max. junction temperature. Energy losses include "tail" and diode reverse recovery, Data generated with use of Diode 30ETH06. Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES. Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES. 2 www.irf.com IRGP50B60PD 80 400 Limited by package 350 60 300 50 250 Ptot (W) IC, Collector Current (A) 70 40 200 30 150 20 100 10 50 0 0 25 50 75 100 125 150 0 20 40 60 T C, Case Temperature (°C) 80 100 120 140 160 T C (°C) Fig. 1 - Maximum DC Collector Current vs. Case Temperature Fig. 2 - Power Dissipation vs. Case Temperature 1000 320 280 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 240 100 IC A) ICE (A) 200 160 120 10 80 40 1 0 10 100 1000 0 2 4 Fig. 3 - Reverse Bias SOA TJ = 150°C; VGE =15V 10 Fig. 4 - Typ. IGBT Output Characteristics TJ = -40°C; tp = 80µs 320 320 280 240 200 ICE (A) 200 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 280 VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V VGE = 6.0V 240 ICE (A) 8 VCE (V) VCE (V) 160 160 120 120 80 80 40 40 0 0 0 2 4 6 8 VCE (V) Fig. 5 - Typ. IGBT Output Characteristics TJ = 25°C; tp = 80µs www.irf.com 6 10 0 2 4 6 8 10 12 14 16 18 20 VCE (V) Fig. 6 - Typ. IGBT Output Characteristics TJ = 125°C; tp = 80µs 3 IRGP50B60PD 600 25 T J = 25°C T J = 125°C 500 20 VCE (V) ICE (A) 400 300 15 ICE = 15A ICE = 33A ICE = 50A 10 200 T J = 125°C 5 100 T J = 25°C 0 0 0 5 10 15 20 0 5 VGE (V) 15 20 VGE (V) Fig. 7 - Typ. Transfer Characteristics VCE = 50V; tp = 10µs Fig. 8 - Typical VCE vs. VGE TJ = 25°C 25 Instantaneous Forward Current - IF (A) 100 20 VCE (V) 10 15 ICE = 15A ICE = 33A ICE = 50A 10 5 TJ = 150°C T = 125°C J T = 0 0 5 10 15 J 10 A 1 0.6 20 25°C 1.0 1.4 1.8 2.2 2.6 Forward Voltage Drop - V FM (V) VGE (V) Fig. 9 - Typical VCE vs. VGE TJ = 125°C Fig. 10 - Maximum. Diode Forward Characteristics tp = 80µs 1800 1000 1600 Energy (µJ) Swiching Time (ns) EON 1400 1200 EOFF 1000 800 tF 600 tdON 400 tR 200 10 10 20 30 40 50 60 70 IC (A) Fig. 11 - Typ. Energy Loss vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) 4 tdOFF 100 0 10 20 30 40 50 60 70 IC (A) Fig. 12 - Typ. Switching Time vs. IC TJ = 125°C; L = 200µH; VCE = 390V, RG = 3.3Ω; VGE = 15V. Diode clamp used: 30ETH06 (See C.T.3) www.irf.com IRGP50B60PD 1800 1000 EOFF 1600 tdOFF Swiching Time (ns) Energy (µJ) 1400 1200 1000 800 EON 600 100 tF tdON tR 400 200 10 0 10 20 30 40 0 10 20 RG (Ω) 30 40 RG (Ω) Fig. 13 - Typ. Energy Loss vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) Fig. 14 - Typ. Switching Time vs. RG TJ = 125°C; L = 200µH; VCE = 390V, ICE = 33A; VGE = 15V Diode clamp used: 30ETH06 (See C.T.3) 35 10000 30 Cies Capacitance (pF) Eoes (µJ) 25 20 15 10 1000 Coes 100 Cres 5 0 0 100 200 300 400 500 600 10 700 0 300 400 500 Fig. 16- Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz Fig. 15- Typ. Output Capacitance Stored Energy vs. VCE 1.5 16 14 VCE = 480V 12 Normalized VCE(on) VGE, Gate-to-Emitter Voltage (V) 200 VCE (V) Voltage (V) 10 8 6 4 1.3 1.0 0.8 2 0 0.5 0 50 100 150 200 250 300 Q G, Total Gate Charge (nC) Fig. 17 - Typical Gate Charge vs. VGE ICE = 33A www.irf.com 100 -60 -40 -20 0 20 40 60 80 100 120 140 160 T C (°C) Fig. 18 - Normalized Typ. VCE(on) vs. Junction Temperature IC = 33A, VGE= 15V 5 IRGP50B60PD 140 30 VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C 120 25 100 20 I F = 50A 80 Irr- ( A) trr- (nC) I F = 25A I F = 50A I F = 10A 15 I F = 25A IF = 10A 60 10 40 5 A 20 100 di f /dt - (A/µs) VR = 200V TJ = 125°C TJ = 25°C VR = 200V TJ = 125°C TJ = 25°C I F = 50A di (rec) M/dt- (A /µs) Qrr- (nC) 800 di f /dt - (A/µs) 10000 1400 1000 1000 Fig. 20 - Typical Recovery Current vs. dif/dt Fig. 19 - Typical Reverse Recovery vs. dif/dt 1200 A 0 100 1000 I F = 25A I F = 10A 600 1000 I F = 50A I F = 25A I F = 10A 400 200 0 100 A di f /dt - (A/µs) 1000 Fig. 21 - Typical Stored Charge vs. dif/dt 6 100 100 A 1000 di f /dt - (A/µs) Fig. 22 - Typical di(rec)M/dt vs. dif/dt, www.irf.com IRGP50B60PD 1 Thermal Response ( Z thJC ) D = 0.50 0.1 0.20 0.10 0.05 0.01 0.02 τJ 0.01 0.001 R1 R1 τJ τ1 R2 R2 τ2 τ1 Ri (°C/W) τi (sec) 0.0789 0.000277 τC τ 0.2614 τ2 0.040918 Ci= τi/Ri Ci i/Ri SINGLE PULSE ( THERMAL RESPONSE ) Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT) Thermal Response ( Z thJC ) 1 D = 0.50 0.1 0.20 0.10 0.05 0.01 τJ 0.02 0.01 R1 R1 τJ τ1 R2 R2 τ2 τ1 R3 R3 τ3 τ2 τC τ τ3 Ci= τi/Ri Ci τi/Ri 0.001 SINGLE PULSE ( THERMAL RESPONSE ) Ri (°C/W) τi (sec) 0.0733 0.000420 0.1301 0.002274 0.1358 0.023026 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 t1 , Rectangular Pulse Duration (sec) Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE) ID, Drain-to-Source Current (A) 1000 OPERATION IN THIS AREA LIMITED BY V CE(on) 100 100µsec 1msec 10 10msec 1 100msec 0.1 Tc = 25°C Tj = 150°C Single Pulse 0.01 1 10 100 1000 VDS, Drain-to-Source Voltage (V) www.irf.com Fig. 25 - Forward SOA, TC = 25°C; TJ ≤ 150°C 7 IRGP50B60PD L L VCC DUT 0 80 V DUT 480V Rg 1K Fig.C.T.2 - RBSOA Circuit Fig.C.T.1 - Gate Charge Circuit (turn-off) L PFC diode R= DUT / DRIVER VCC DUT Rg VCC ICM VCC Rg Fig.C.T.4 - Resistive Load Circuit Fig.C.T.3 - Switching Loss Circuit REVERSE RECOVERY CIRCUIT VR = 200V 0.01 Ω L = 70µH D.U.T. dif/dt ADJUST D G IRFP250 S Fig. C.T.5 - Reverse Recovery Parameter Test Circuit 8 www.irf.com IRGP50B60PD 700 35 700 70 tr 30 600 500 25 500 20 400 Vce 90% Ice 15 Ice Vce (V) Vce (V) 300 Ice (A) 90% Ice 400 5% Vce 30 10% Ice 200 100 5 100 0 0 0 50 40 300 10 200 60 Ice Vce 5% Vce Ice (A) tf 600 20 5% Ice Eoff Loss -100 -0.05 0 0.05 0 Eon Loss -100 3.95 -5 0.15 0.1 10 4.05 Time (uS) 4.15 -10 4.25 Time (uS) Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 25°C using Fig. CT.3 Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 25°C using Fig. CT.3 3 trr IF tb ta 0 2 Q rr I RRM 4 0.5 I RRM di(rec)M/dt 5 0.75 I RRM 1 di f /dt 1. dif/dt - Rate of change of current through zero crossing 2. IRRM - Peak reverse recovery current 3. trr - Reverse recovery time measured from zero crossing point of negative going IF to point where a line passing through 0.75 IRRM and 0.50 IRRM extrapolated to zero current 4. Qrr - Area under curve defined by trr and IRRM trr X IRRM Qrr = 2 5. di(rec)M/dt - Peak rate of change of current during tb portion of trr Fig. WF3 - Reverse Recovery Waveform and Definitions www.irf.com 9 IRGP50B60PD TO-247AC Package Outline Dimensions are shown in millimeters (inches) TO-247AC Part Marking Information (;$03/( 7+,6,6$1,5)3( :,7+$66(0%/< /27&2'( $66(0%/('21:: ,17+($66(0%/</,1(+ 1RWH3LQDVVHPEO\OLQHSRVLWLRQ LQGLFDWHV/HDG)UHH ,17(51$7,21$/ 5(&7,),(5 /2*2 3$57180%(5 ,5)3( + $66(0%/< /27&2'( '$7(&2'( <($5 :((. /,1(+ TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 07/07 10 www.irf.com