IRF IRGB20B60PD1

PD - 94613A
IRGB20B60PD1
SMPS IGBT
WARP2 SERIES IGBT WITH
ULTRAFAST SOFT RECOVERY DIODE
•
•
•
•
Telecom and Server SMPS
PFC and ZVS SMPS Circuits
Uninterruptable Power Supplies
Consumer Electronics Power Supplies
Equivalent MOSFET
Parameters 
RCE(on) typ. = 158mΩ
ID (FET equivalent) = 20A
G
Features
•
•
•
•
•
•
•
VCES = 600V
VCE(on) typ. = 2.05V
@ VGE = 15V IC = 13.0A
C
Applications
NPT Technology, Positive Temperature Coefficient
Lower VCE(SAT)
Lower Parasitic Capacitances
Minimal Tail Current
HEXFRED Ultra Fast Soft-Recovery Co-Pack Diode
Tighter Distribution of Parameters
Higher Reliability
E
n-channel
Benefits
E
C
G
• Parallel Operation for Higher Current Applications
• Lower Conduction Losses and Switching Losses
• Higher Switching Frequency up to 150kHz
TO-220AB
Absolute Maximum Ratings
Max.
Units
VCES
Collector-to-Emitter Voltage
Parameter
600
V
IC @ TC = 25°C
Continuous Collector Current
40
IC @ TC = 100°C
Continuous Collector Current
22
ICM
80
ILM
Pulse Collector Current (Ref. Fig. C.T.4)
Clamped Inductive Load Current
IF @ TC = 25°C
Diode Continous Forward Current
10
IF @ TC = 100°C
Diode Continous Forward Current
Maximum Repetitive Forward Current
IFRM
d
80
A
4
e
16
VGE
Gate-to-Emitter Voltage
±20
V
PD @ TC = 25°C
Maximum Power Dissipation
215
W
PD @ TC = 100°C
Maximum Power Dissipation
TJ
Operating Junction and
86
TSTG
Storage Temperature Range
-55 to +150
°C
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal Resistance
Min.
Typ.
Max.
Units
RθJC (IGBT)
Thermal Resistance Junction-to-Case-(each IGBT)
Parameter
–––
–––
0.58
°C/W
RθJC (Diode)
Thermal Resistance Junction-to-Case-(each Diode)
–––
–––
5.0
RθCS
Thermal Resistance, Case-to-Sink (flat, greased surface)
–––
0.50
–––
RθJA
Thermal Resistance, Junction-to-Ambient (typical socket mount)
–––
–––
80
Weight
–––
2 (0.07)
–––
1
g (oz)
www.irf.com
12/10/03
IRGB20B60PD1
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Min.
Typ.
600
—
Temperature Coeff. of Breakdown Voltage
—
0.32
—
Internal Gate Resistance
—
4.3
—
—
2.05
2.35
—
2.50
2.80
V(BR)CES
Collector-to-Emitter Breakdown Voltage
∆V(BR)CES/∆TJ
RG
VCE(on)
Collector-to-Emitter Saturation Voltage
Max. Units
—
V
Conditions
V/°C VGE = 0V, IC = 1mA (25°C-125°C)
Ω
1MHz, Open Collector
IC = 13A, VGE = 15V
V
IC = 20A, VGE = 15V
—
2.65
3.00
IC = 13A, VGE = 15V, TJ = 125°C
—
3.30
3.70
IC = 20A, VGE = 15V, TJ = 125°C
IC = 250µA
V
mV/°C VCE = VGE, IC = 1.0mA
S VCE = 50V, IC = 40A, PW = 80µs
VGE(th)
Gate Threshold Voltage
3.0
4.0
5.0
∆VGE(th)/∆TJ
Threshold Voltage temp. coefficient
—
-11
—
gfe
ICES
Forward Transconductance
—
19
—
Collector-to-Emitter Leakage Current
—
1.0
250
µA
VGE = 0V, VCE = 600V
—
0.1
—
mA
VGE = 0V, VCE = 600V, TJ = 125°C
—
1.5
1.8
V
—
1.4
1.7
—
—
±100
VFM
IGES
Diode Forward Voltage Drop
Gate-to-Emitter Leakage Current
Ref.Fig
VGE = 0V, IC = 500µA
4, 5,6,8,9
7,8,9
IF = 4.0A, VGE = 0V
10
IF = 4.0A, VGE = 0V, TJ = 125°C
nA
VGE = ±20V, VCE = 0V
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Min.
Typ.
Qg
Qgc
Total Gate Charge (turn-on)
Parameter
—
68
Max. Units
102
Gate-to-Collector Charge (turn-on)
—
24
36
Conditions
nC
17
VCC = 400V
CT1
Qge
Gate-to-Emitter Charge (turn-on)
—
10
15
Eon
Turn-On Switching Loss
—
95
140
Eoff
Turn-Off Switching Loss
—
100
145
Etotal
Total Switching Loss
—
195
285
TJ = 25°C
td(on)
Turn-On delay time
—
20
26
IC = 13A, VCC = 390V
VGE = +15V, RG = 10Ω, L = 200µH
tr
Rise time
—
5.0
7.0
td(off)
Turn-Off delay time
—
115
135
VGE = 15V
IC = 13A, VCC = 390V
µJ
ns
TJ = 25°C
f
Fall time
—
6.0
8.0
Turn-On Switching Loss
—
165
215
Eoff
Turn-Off Switching Loss
—
150
195
Etotal
Total Switching Loss
—
315
410
TJ = 125°C
td(on)
Turn-On delay time
—
19
25
IC = 13A, VCC = 390V
tr
Rise time
—
6.0
8.0
td(off)
Turn-Off delay time
—
125
140
tf
Fall time
—
13
17
Cies
Input Capacitance
—
1560
—
VGE = 0V
VCC = 30V
Output Capacitance
—
95
—
—
20
—
Coes eff.
Reverse Transfer Capacitance
Effective Output Capacitance (Time Related)
—
83
—
Coes eff. (ER)
Effective Output Capacitance (Energy Related)
—
61
—
RBSOA
Reverse Bias Safe Operating Area
FULL SQUARE
trr
Diode Reverse Recovery Time
—
28
42
—
38
57
—
40
60
—
70
105
—
2.9
5.2
—
3.7
6.7
g
g
CT3
f
tf
Cres
CT3
VGE = +15V, RG = 10Ω, L = 200µH
Eon
Coes
Ref.Fig
IC = 13A
IC = 13A, VCC = 390V
µJ
ns
11,13
f
WF1,WF2
CT3
VGE = +15V, RG = 10Ω, L = 200µH
TJ = 125°C
pF
CT3
VGE = +15V, RG = 10Ω, L = 200µH
12,14
f
WF1,WF2
16
f = 1Mhz
VGE = 0V, VCE = 0V to 480V
15
TJ = 150°C, IC = 80A
3
VCC = 480V, Vp =600V
CT2
Rg = 22Ω, VGE = +15V to 0V
Qrr
Diode Reverse Recovery Charge
Irr
Peak Reverse Recovery Current
Notes:
 RCE(on) typ. = equivalent on-resistance = VCE(on) typ. / IC, where VCE(on) typ. = 2.05V and IC = 13A.
ns
nC
TJ = 25°C
IF = 4.0A, VR = 200V,
19
TJ = 125°C
di/dt = 200A/µs
IF = 4.0A, VR = 200V,
21
TJ = 25°C
di/dt = 200A/µs
IF = 4.0A, VR = 200V,
19,20,21,22
TJ = 125°C
di/dt = 200A/µs
TJ = 25°C
TJ = 125°C
A
CT5
ID (FET Equivalent) is the equivalent MOSFET ID rating @ 25°C for
applications up to 150kHz. These are provided for comparison purposes (only) with equivalent MOSFET solutions.
‚ VCC = 80% (VCES), VGE = 15V, L = 28µH, RG = 22Ω.
ƒ Pulse width limited by max. junction temperature.
„ Energy losses include "tail" and diode reverse recovery. Data generated with use of Diode 8ETH06.
… Coes eff. is a fixed capacitance that gives the same charging time as Coes while VCE is rising from 0 to 80% VCES.
Coes eff.(ER) is a fixed capacitance that stores the same energy as Coes while VCE is rising from 0 to 80% VCES.
2
www.irf.com
IRGB20B60PD1
250
45
40
200
35
Ptot (W)
30
IC (A)
25
20
150
100
15
10
50
5
0
0
0
20
40
60
80
0
100 120 140 160
20
40
60
80
100 120 140 160
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
40
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
35
30
10
IC A)
ICE (A)
25
20
15
1
10
5
0
0
10
100
1000
0
1
2
VCE (V)
Fig. 3 - Reverse Bias SOA
TJ = 150°C; VGE =15V
5
6
40
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
VGE = 6.0V
35
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
25
ICE (A)
25
ICE (A)
4
Fig. 4 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
40
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
www.irf.com
3
VCE (V)
6
0
1
2
3
4
5
6
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 125°C; tp = 80µs
3
IRGB20B60PD1
450
10
400
9
8
350
T J = 25°C
TJ = 125°C
6
VCE (V)
ICE (A)
300
ICE = 20A
ICE = 13A
7
250
200
ICE = 8.0A
5
4
150
3
100
2
50
1
0
0
0
5
10
15
0
20
5
10
Fig. 7 - Typ. Transfer Characteristics
VCE = 50V; tp = 10µs
20
Fig. 8 - Typical VCE vs. VGE
TJ = 25°C
10
Instantaneous Forward Current - IF (A)
100
9
VCE (V)
15
VGE (V)
VGE (V)
8
ICE = 20A
7
ICE = 13A
6
ICE = 8.0A
5
4
3
2
TJ = 150°C
10
TJ = 125°C
T =
J
25°C
1
1
0
0
5
10
15
0.1
0.0
20
1.0
2.0
3.0
4.0
Forward Voltage Drop - V
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = 125°C
5.0
6.0
(V)
FM
Fig. 10 - Typ. Diode Forward Characteristics
tp = 80µs
350
1000
300
EON
tdOFF
Swiching Time (ns)
Energy (µJ)
250
200
EOFF
150
100
100
tdON
tF
10
tR
50
0
1
0
5
10
15
20
25
IC (A)
Fig. 11 - Typ. Energy Loss vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V.
Diode clamp used: 8ETH06 (See C.T.3)
4
0
5
10
15
20
25
IC (A)
Fig. 12 - Typ. Switching Time vs. IC
TJ = 125°C; L = 200µH; VCE = 390V, RG = 10Ω; VGE = 15V.
Diode clamp used: 8ETH06 (See C.T.3)
www.irf.com
IRGB20B60PD1
1000
250
td OFF
EON
Swiching Time (ns)
Energy (µJ)
200
EOFF
150
100
tdON
10
tF
100
tR
1
50
0
5
10
15
20
25
30
0
35
10
20
30
40
RG ( Ω)
RG ( Ω)
Fig. 13 - Typ. Energy Loss vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V
Diode clamp used: 8ETH06 (See C.T.3)
Fig. 14 - Typ. Switching Time vs. RG
TJ = 125°C; L = 200µH; VCE = 390V, ICE = 13A; VGE = 15V
Diode clamp used: 8ETH06 (See C.T.3)
12
10000
10
Cies
Capacitance (pF)
Eoes (µJ)
8
6
4
1000
Coes
100
2
Cres
0
10
0
100
200
300
400
500
600
700
0
60
80
100
Fig. 16- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
Fig. 15- Typ. Output Capacitance
Stored Energy vs. VCE
16
1.6
1.5
14
400V
Normalized V CE(on) (V)
12
10
VGE (V)
40
VCE (V)
VCE (V)
8
6
4
2
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0
0.6
0
10
20
30
40
50
60
Q G , Total Gate Charge (nC)
70
80
Fig. 17 - Typical Gate Charge vs. VGE
ICE = 13A
www.irf.com
20
-50
0
50
100
150
200
T J , Junction Temperature (°C)
Fig. 18 - Normalized Typical VCE(on) vs.
Junction Temperature
ICE = 13A; VGE = 15V
5
IRGB20B60PD1
14
50
I F = 8.0A
45
12
VR = 200V
TJ = 125°C
TJ = 25°C
I F = 4.0A
10
I F = 4.0A
8
Irr- ( A)
trr- (nC)
40
I F = 8.0A
35
6
30
4
25
2
VR = 200V
TJ = 125°C
TJ = 25°C
20
100
di f /dt - (A/µs)
0
100
1000
Fig. 19 - Typical Reverse Recovery vs. dif/dt
1000
di f /dt - (A/µs)
Fig. 20 - Typical Recovery Current vs. dif/dt
1000
200
VR = 200V
TJ = 125°C
TJ = 25°C
VR = 200V
TJ = 125°C
TJ = 25°C
160
I F = 8.0A
I F = 4.0A
Qrr- (nC)
120
di (rec) M/dt- (A /µs)
I F = 8.0A
80
I F = 4.0A
40
0
100
di f /dt - (A/µs)
1000
Fig. 21 - Typical Stored Charge vs. dif/dt
6
100
100
A
1000
di f /dt - (A/µs)
Fig. 22 - Typical di(rec)M/dt vs. dif/dt,
www.irf.com
IRGB20B60PD1
1
Thermal Response ( Z thJC )
D = 0.50
0.1
0.20
0.10
τJ
0.05
0.02
0.01
R1
R1
τJ
τ1
R2
R2
R3
R3
R4
R4
τ2
τ1
τ3
τ2
τ4
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.01
Ri (°C/W)
τC
τ
τi (sec)
0.0076
0.000001
0.2696
0.000270
0.1568
0.001386
0.1462
0.015586
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig 23. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
0.01
0.02
0.01
τJ
R1
R1
τJ
τ1
SINGLE PULSE
( THERMAL RESPONSE )
R2
R2
τC
τ1
τ2
τ2
Ci= τi/Ri
Ci i/Ri
τ
Ri (°C/W) τi (sec)
1.779
0.000226
3.223
0.001883
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
t1 , Rectangular Pulse Duration (sec)
Fig. 24. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
7
IRGB20B60PD1
L
L
VCC
DUT
0
80 V
DUT
480V
Rg
1K
Fig.C.T.2 - RBSOA Circuit
Fig.C.T.1 - Gate Charge Circuit (turn-off)
R=
L
PFC diode
DUT /
DRIVER
VCC
DUT
Rg
VCC
ICM
VCC
Rg
Fig.C.T.4 - Resistive Load Circuit
Fig.C.T.3 - Switching Loss Circuit
REVERSE RECOVERY CIRCUIT
VR = 200V
0.01 Ω
L = 70µH
D.U.T.
dif/dt
ADJUST
D
G
IRFP250
S
Fig. C.T.5 - Reverse Recovery Parameter
Test Circuit
8
www.irf.com
IRGB20B60PD1
18
450
400
16
400
tf
300
90% ICE
350
12
300
10
200
8
5% V CE
150
100
6
5% ICE
50
0
-50
-0.20
Eoff Loss
0.00
0.20
0.40
25
90% test current
200
10% test current
150
4
100
2
50
0
0
35
30
tr
250
20
15
10
5% V CE
Eon Loss
-50
7.75
-2
0.80
0.60
40
TEST CURRENT
VCE (V)
VCE (V)
250
14
ICE (A)
350
45
I CE (A)
450
7.85
7.95
8.05
5
0
-5
8.15
Time (µs)
Time(µs)
Fig. WF1 - Typ. Turn-off Loss Waveform
@ TJ = 125°C using Fig. CT.3
Fig. WF2 - Typ. Turn-on Loss Waveform
@ TJ = 125°C using Fig. CT.3
3
trr
IF
tb
ta
0
2
Q rr
I RRM
4
0.5 I RRM
di(rec)M/dt
5
0.75 I RRM
1
di f /dt
1. dif/dt - Rate of change of current
through zero crossing
2. I RRM - Peak reverse recovery current
3. trr - Reverse recovery time measured
from zero crossing point of negative
going I F to point where a line passing
through 0.75 I RRM and 0.50 IRRM
extrapolated to zero current
4. Qrr - Area under curve defined by trr
and IRRM
trr X IRRM
Qrr =
2
5. di(rec)M /dt - Peak rate of change of
current during tb portion of trr
Fig. WF3 - Reverse Recovery Waveform and
Definitions
www.irf.com
9
IRGB20B60PD1
TO-220AB Package Outline
Dimensions are shown in millimeters (inches)
10.54 (.415)
10.29 (.405)
2.87 (.113)
2.62 (.103)
-B-
3.78 (.149)
3.54 (.139)
4.69 (.185)
4.20 (.165)
-A-
1.32 (.052)
1.22 (.048)
6.47 (.255)
6.10 (.240)
4
15.24 (.600)
14.84 (.584)
LEAD ASSIGNMENTS
1.15 (.045)
MIN
1
2
LEAD ASSIGNMENTS
1 - GATE
1 - GATE
2 - DRAIN
2 -COLLECTOR
3 - SOURCE
3 EMITTER
4 - DRAIN
3
4 - COLLECTOR
14.09 (.555)
13.47 (.530)
4.06 (.160)
3.55 (.140)
3X
1.40 (.055)
3X
1.15 (.045)
0.93 (.037)
0.69 (.027)
0.36 (.014)
3X
M
B A M
0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)
2.54 (.100)
2X
NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
2 CONTROLLING DIMENSION : INCH
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.
TO-220AB Part Marking Information
(;$03/( 7+,6,6$1,5)
/27&2'(
$66(0%/('21::
,17+($66(0%/</,1(&
,17(51$7,21$/
5(&7,),(5
/2*2
$66(0%/<
/27&2'(
3$57180%(5
'$7(&2'(
<($5 :((.
/,1(&
TO-220AB package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 12/03
10
www.irf.com