IRF IRGIB7B60KDPBF

PD - 95195
IRGIB7B60KDPbF
INSULATED GATE BIPOLAR TRANSISTOR WITH
ULTRAFAST SOFT RECOVERY DIODE
C
Features
•
•
•
•
•
•
Low VCE (on) Non Punch Through IGBT Technology.
10µs Short Circuit Capability.
Square RBSOA.
Positive VCE (on) Temperature Coefficient.
Maximum Junction Temperature rated at 175°C.
Lead-Free
VCES = 600V
IC = 8.0A, TC=100°C
G
tsc > 10µs, TJ=150°C
E
n-ch an nel
VCE(on) typ. = 1.8V
Benefits
• Benchmark Efficiency for Motor Control.
• Rugged Transient Performance.
• Low EMI.
• Excellent Current Sharing in Parallel Operation.
TO-220AB
FullPak
Absolute Maximum Ratings
Max.
Units
VCES
IC @ TC = 25°C
Collector-to-Emitter Voltage
Parameter
600
V
Continuous Collector Current
12
IC @ TC = 100°C
Continuous Collector Current
8.0
ICM
ILM
IF @ TC = 25°C
Pulse Collector Current (Ref.Fig.C.T.5)
Clamped Inductive Load current Q
24
24
Diode Continuous Forward Current
9.0
IF @ TC = 100°C
Diode Continuous Forward Current
6.0
IFM
Diode Maximum Forward Current
RMS Isolation Voltage, Terminal to Case, t=1 min.
18
2500
Gate-to-Emitter Voltage
±20
Maximum Power Dissipation
39
VISOL
VGE
PD @ TC = 25°C
PD @ TC = 100°C Maximum Power Dissipation
Operating Junction and
TJ
TSTG
A
V
W
20
-55 to +175
Storage Temperature Range
Soldering Temperature, for 10 sec.
300 (0.063 in. (1.6mm) from case)
°C
Mounting Torque, 6-32 or M3 Screw
10 lbf·in (1.1 N·m)
Thermal / Mechanical Characteristics
Min.
Typ.
Max.
RθJC
Junction-to-Case- IGBT
Parameter
–––
–––
3.8
RθJC
Junction-to-Case- Diode
–––
–––
6.0
RθCS
Case-to-Sink, flat, greased surface
–––
0.50
–––
RθJA
Junction-to-Ambient, typical socket mount
–––
–––
62
Wt
Weight
–––
2.0
–––
www.irf.com
Units
°C/W
g
1
04/27/04
IRGIB7B60KDPbF
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
V(BR)CES
∆V(BR)CES/∆TJ
VCE(on)
VGE(th)
∆VGE(th)/∆TJ
gfe
ICES
VFM
IGES
Min. Typ. Max. Units
600
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage —
—
Collector-to-Emitter Voltage
—
—
Gate Threshold Voltage
3.5
Threshold Voltage temp. coefficient
—
Forward Transconductance
—
—
Zero Gate Voltage Collector Current
—
—
Diode Forward Voltage Drop
—
—
—
Gate-to-Emitter Leakage Current
—
—
0.57
1.8
2.2
2.3
4.5
-9.5
3.7
1.0
200
720
1.25
1.20
1.20
—
Conditions
Ref.Fig.
—
V VGE = 0V, IC = 500µA
—
V/°C VGE = 0V, IC = 1mA (25°C-150°C)
IC = 8.0A, VGE = 15V, TJ = 25°C
2.2
2.5
V IC = 8.0A, VGE = 15V, TJ = 150°C
IC = 8.0A, VGE = 15V, TJ = 175°C
2.5
5.5
V VCE = VGE, IC = 250µA
— mV/°C VCE = VGE, IC = 1mA (25°C-150°C)
—
S VCE = 50V, IC = 8.0A, PW = 80µs
VGE = 0V, VCE = 600V
150
500
µA VGE = 0V, VCE = 600V, TJ = 150°C
VGE = 0V, VCE = 600V, TJ = 175°C
1100
1.45
V IF = 5.0A, VGE = 0V
IF = 5.0A, TJ = 150°C, VGE = 0V
1.40
IF = 5.0A, TJ = 175°C, VGE = 0V
1.30
±100 nA VGE = ±20V, VCE = 0V
5,6,7
9,10,11
9,10,11
12
8
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter
Qg
Qge
Qgc
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
Eon
Eoff
Etot
td(on)
tr
td(off)
tf
LE
Cies
Coes
Cres
RBSOA
SCSOA
ISC (Peak)
Erec
trr
Irr
Qrr
Total Gate Charge (turn-on)
Gate-to-Emitter Charge (turn-on)
Gate-to-Collector Charge (turn-on)
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Turn-On Switching Loss
Turn-Off Switching Loss
Total Switching Loss
Turn-On delay time
Rise time
Turn-Off delay time
Fall time
Internal Emitter Inductance
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Reverse Bias Safe Operating Area
Short Circuit Safe Operating Area
Peak Short Circuit Collector Current
Reverse Recovery Energy of the Diode
Diode Reverse Recovery Time
Peak Reverse Recovery Current
Diode Reverse Recovery Charge
Note QtoRare on page 12
2
Min. Typ. Max. Units
—
29
44
—
3.7
5.6
—
14
21
—
160
268
—
160
268
—
320
433
—
23
27
—
22
26
—
140
150
—
32
42
—
220
330
—
270
381
—
490
711
—
22
27
—
21
25
—
180
198
—
40
56
—
7.5
—
—
440
660
—
38
57
—
16
24
FULL SQUARE
10
—
—
—
—
—
—
70
100
95
13
620
—
—
133
120
17
800
nC
µJ
ns
µJ
ns
Conditions
IC = 8.0A
VCC = 400V
VGE = 15V
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 25°C R
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 25°C
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 150°C R
IC = 8.0A, VCC = 400V
VGE = 15V, RG = 50Ω, L = 1.1mH
TJ = 150°C
Ref.Fig.
23
CT1
CT4
CT4
CT4
13,15
WF1,WF2
14,16
CT4
WF1
WF2
nH
pF
µs
A
µJ
ns
A
nC
Measured 5mm from package
VGE = 0V
VCC = 30V
f = 1.0MHz
TJ = 150°C, IC = 54A, Vp = 600V
VCC=500V,VGE = +15V to 0V,RG = 50Ω
TJ = 150°C, Vp = 600V, RG = 100Ω
VCC=360V,VGE = +15V to 0V
22
4
CT2
CT3
WF4
WF4
TJ = 150°C
VCC = 400V, IF = 8.0A, L = 1.07mH
VGE = 15V, RG = 50Ω
di/dt = 500A/µS
17,18,19
20,21
CT4,WF3
www.irf.com
IRGIB7B60KDPbF
"
50
40
Ptot (W)
IC (A)
&
$
30
20
"
10
0
"
$
& " $ &
0
20
40
60
80 100 120 140 160 180
T C (°C)
T C (°C)
Fig. 1 - Maximum DC Collector Current vs.
Case Temperature
Fig. 2 - Power Dissipation vs. Case
Temperature
100
100 µs
10
1ms
IC A)
IC (A)
1
10ms
0.1
DC
0.01
1
10
100
1000
VCE (V)
Fig. 3 - Forward SOA
TC = 25°C; TJ ≤ 150°C
www.irf.com
10000
VCE (V)
Fig. 4 - Reverse Bias SOA
TJ = 150°C; VGE =15V
3
IRGIB7B60KDPbF
40
40
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
35
30
30
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
ICE (A)
25
35
20
20
15
15
10
10
5
5
0
0
0
1
2
3
4
5
6
0
1
2
VCE (V)
4
5
6
VCE (V)
Fig. 5 - Typ. IGBT Output Characteristics
TJ = -40°C; tp = 80µs
Fig. 6 - Typ. IGBT Output Characteristics
TJ = 25°C; tp = 80µs
30
40
35
-40°C
25°C
150°C
25
30
20
20
15
IF (A)
VGE = 18V
VGE = 15V
VGE = 12V
VGE = 10V
VGE = 8.0V
25
ICE (A)
3
15
10
10
5
5
0
0
0
1
2
3
4
5
6
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics
TJ = 150°C; tp = 80µs
4
0.0
0.5
1.0
1.5
2.0
VF (V)
Fig. 8 - Typ. Diode Forward Characteristics
tp = 80µs
www.irf.com
20
20
18
18
16
16
14
14
12
VCE (V)
VCE (V)
IRGIB7B60KDPbF
ICE = 4.0A
ICE = 8.0A
10
8
ICE = 16A
6
12
ICE = 4.0A
10
ICE = 8.0A
ICE = 16A
8
6
4
4
2
2
0
0
5
10
15
5
20
10
15
20
VGE (V)
VGE (V)
Fig. 9 - Typical VCE vs. VGE
TJ = -40°C
Fig. 10 - Typical VCE vs. VGE
TJ = 25°C
20
100
18
16
80
ICE = 4.0A
ICE = 8.0A
12
10
ICE (A)
VCE (V)
14
ICE = 16A
8
T J = 25°C
T J = 150°C
60
40
6
4
T J = 150°C
20
T J = 25°C
2
0
0
5
10
15
VGE (V)
Fig. 11 - Typical VCE vs. VGE
TJ = 150°C
www.irf.com
20
0
5
10
15
20
VGE (V)
Fig. 12 - Typ. Transfer Characteristics
VCE = 360V; tp = 10µs
5
IRGIB7B60KDPbF
600
1000
500
Swiching Time (ns)
Energy (µJ)
400
EOFF
300
200
EON
100
tdOFF
100
tF
tdON
tR
0
10
0
5
10
15
20
0
5
IC (A)
700
20
Fig. 14 - Typ. Switching Time vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V
RG= 50Ω; VGE= 15V
10000
EON
600
500
EOFF
Swiching Time (ns)
Energy (µJ)
15
IC (A)
Fig. 13 - Typ. Energy Loss vs. IC
TJ = 150°C; L=1.1mH; VCE= 400V,
RG= 50Ω; VGE= 15V
400
300
200
1000
tdOFF
tdON
100
tF
100
tR
0
10
0
100
200
300
400
RG ( Ω)
Fig. 15 - Typ. Energy Loss vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
6
10
500
0
100
200
300
400
500
RG ( Ω)
Fig. 16 - Typ. Switching Time vs. RG
TJ = 150°C; L=1.1mH; VCE= 400V
ICE= 8.0A; VGE= 15V
www.irf.com
IRGIB7B60KDPbF
16
20
14
18
RG = 50 Ω
16
12
8
IRR (A)
IRR (A)
14
RG = 150 Ω
10
RG = 270 Ω
12
10
8
6
6
RG = 470 Ω
4
4
2
2
0
0
0
5
10
15
20
0
100
IF (A)
200
300
500
RG (Ω)
Fig. 18 - Typical Diode IRR vs. RG
TJ = 150°C; IF = 8.0A
Fig. 17 - Typical Diode IRR vs. IF
TJ = 150°C
1500
16
14
50Ω
12
150Ω
1000
8
6
16A
270Ω
Q RR (nC)
10
IRR (A)
400
470 Ω
8.0A
500
4.0A
4
2
0
0
0
100
200
300
400
500
diF /dt (A/µs)
Fig. 19- Typical Diode IRR vs. diF/dt
VCC= 400V; VGE= 15V;
IF= 8.0A; TJ = 150°C
www.irf.com
600
0
100
200
300
400
500
600
700
diF /dt (A/µs)
Fig. 20 - Typical Diode QRR
VCC= 400V; VGE= 15V;TJ = 150°C
7
IRGIB7B60KDPbF
250
470Ω
Energy (µJ)
200
270Ω
150 Ω
150
50 Ω
100
50
0
0
5
10
15
20
IF (A)
Fig. 21 - Typical Diode ERR vs. IF
TJ = 150°C
1000
16
Cies
Coes
12
Cres
10
100
VGE (V)
Capacitance (pF)
14
10
300V
400V
8
6
4
2
0
1
0
20
40
60
80
VCE (V)
Fig. 22- Typ. Capacitance vs. VCE
VGE= 0V; f = 1MHz
8
100
0
5
10
15
20
25
30
Q G , Total Gate Charge (nC)
Fig. 23 - Typical Gate Charge vs. VGE
ICE = 8.0A; L = 600µH
www.irf.com
IRGIB7B60KDPbF
Thermal Response ( Z thJC )
10
D = 0.50
1
0.20
0.10
R1
R1
0.05
τJ
0.01
0.02
0.1
τJ
τ1
R2
R2
τ2
τ1
R3
R3
Ri (°C/W)
R4
R4
τC
τ
τ3
τ2
τ4
τ3
τ4
Ci= τi/Ri
Ci i/Ri
0.01
τi (sec)
0.367
0.000164
0.425
0.000652
1.070
0.081521
1.928
2.124500
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-6
1E-5
1E-4
1E-3
1E-2
1E-1
1E+0
1E+1
t1 , Rectangular Pulse Duration (sec)
Fig 24. Maximum Transient Thermal Impedance, Junction-to-Case (IGBT)
10
Thermal Response ( Z thJC )
D = 0.50
1
0.20
0.10
0.05
0.1
τJ
0.02
0.01
R1
R1
τJ
τ1
τ1
R2
R2
τ2
τ2
R3
R3
τ3
τC
τ
τ3
τi (sec)
0.001
0.068689
Ri (°C/W)
2.530
1.354
2.114
Ci= τi/Ri
Ci i/Ri
0.01
2.758
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
SINGLE PULSE
( THERMAL RESPONSE )
0.001
1E-006
1E-005
0.0001
0.001
0.01
0.1
1
10
100
t1 , Rectangular Pulse Duration (sec)
Fig 25. Maximum Transient Thermal Impedance, Junction-to-Case (DIODE)
www.irf.com
9
IRGIB7B60KDPbF
10
www.irf.com
IRGIB7B60KDPbF
600
tf
Vce
400
600
10
500
8
tr
Ice
4
5% Ice
Vce (V)
200
Ice (A)
6
5% Vce
10% Ice
300
200
8
100
0
Eoff Loss
-100
0
-2
-200
0.6
0.8
0
Eon
Loss
-100
-4
0.4
0.3
1
4
5% Vce
0
0.2
12
2
Ice
0
16
90% Ice
300
100
20
Vce
400
90% Ice
Vce (V)
24
Ice (A)
500
12
0.5
-4
0.9
0.7
Time (uS)
Time (uS)
Fig. WF1- Typ. Turn-off Loss Waveform
@ TJ = 150°C using Fig. CT.4
100
Fig. WF2- Typ. Turn-on Loss Waveform
@ TJ = 150°C using Fig. CT.4
15
400
10
350
-100
5
300
-200
0
80
QR R
-400
10%
Peak
IRR
Peak
IRR
-5
Vce (V)
-300
60
250
IF (A)
VF (V)
tR R
200
40
150
-10
100
-500
-600
-0.15
-15
-0.05
0.05
0.15
-20
0.25
time (µS)
Fig. WF3- Typ. Diode Recovery Waveform
@ TJ = 150°C using Fig. CT.4
www.irf.com
Ice (A)
0
20
50
0
0.00
10.00
20.00
30.00
40.00
0
50.00
Time (uS)
Fig. WF4- Typ. S.C Waveform
@ TC = 150°C using Fig. CT.3
11
IRGIB7B60KDPbF
TO-220 Full-Pak Package Outline
Dimensions are shown in millimeters (inches)
TO-220 Full-Pak Part Marking Information
EXAMPLE: T HIS IS AN IRF I840G
WIT H AS S EMBLY
LOT CODE 3432
AS S EMBLE D ON WW 24 1999
IN T HE AS S EMBLY LINE "K"
INT ERNAT IONAL
RECT IF IER
LOGO
Note: "P" in assembly line
position indicates "Lead-Free"
AS S EMBLY
LOT CODE
PART NUMBE R
IRF I840G
924K
34
32
DAT E CODE
YEAR 9 = 1999
WEE K 24
LINE K
Notes:
Q VCC = 80% (VCES), VGE = 15V, L = 100µH, RG = 50Ω.
R Energy losses include "tail" and diode reverse recovery.
TO-220AB FullPak package is not recommended for Surface Mount Application.
Data and specifications subject to change without notice.
This product has been designed and qualified for Industrial market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/04
12
www.irf.com