Data Sheet No. PD60253 IRS2111(S)PbF HALF-BRIDGE DRIVER Features • Floating channel designed for bootstrap operation • Fully operational to +600 V • Tolerant to negative transient voltage, dV/dt Product Summary VOFFSET 600 V max. IO+/- 200 mA / 420 mA VOUT 10 V - 20 V ton/off (typ.) 750 ns & 150 ns Deadtime (typ.) 650 ns immune • Gate drive supply range from 10 V to 20 V • Undervoltage lockout for both channels • CMOS Schmitt-triggered inputs with pull-down • Matched propagation delay for both channels • Internally set deadtime • High side output in phase with input Description Packages The IRS2111 is a high voltage, high speed power MOSFET and IGBT driver with dependent high and low side referenced output channels designed for half-bridge applications. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic input is compatible with standard CMOS outputs. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Internal deadtime is provided to avoid shoot-through in the output half-bridge. The floating channel can be used to drive an Nchannel power MOSFET or IGBT in the high side configuration which operates up to 600 V. 8-Lead PDIP IRS2111PbF 8-Lead SOIC IRS21111SPbF Typical Connection up to 600 V VCC VCC IN IN COM VB HO VS TO LOAD LO (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2111(S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 7 through 10. Symbol Definition Min. Max. VB High side floating supply voltage -0.3 625 (Note 1) VS High side floating supply offset voltage VB - 25 VB + 0.3 VHO High side floating output voltage VS - 0.3 VB + 0.3 VCC Low side and logic fixed supply voltage -0.3 25 (Note 1) VLO Low side output voltage -0.3 VCC + 0.3 Logic input voltage -0.3 VCC + 0.3 — 50 VIN dVs/dt PD RthJA Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA ≤ +25°C Thermal resistance, junction to ambient (8 Lead PDIP) — 1.0 (8 lead SOIC) — 0.625 (8 lead PDIP) — 125 (8 lead SOIC) — 200 TJ Junction temperature — 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) — 300 Units V V/ns W °C/W °C Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at a 15 V differential. Symbol Min. Max. VB High side floating supply absolute voltage Definition VS + 10 VS + 20 VS High side floating supply offset voltage Note 2 600 VHO High side floating output voltage VS VB VCC Low side and logic fixed supply voltage 10 20 VLO Low side output voltage 0 VCC VIN Logic input voltage 0 VCC TA Ambient temperature -40 125 Units V °C Note 2: Logic operational for VS of -5 V to +600 V. Logic state held for VS of -5 V to -VBS. (Please refer to the Design Tip DT97-3 for more details). www.irf.com 2 IRS2111(S)PbF Dynamic Electrical Characteristics VBIAS (VCC, VBS) = 15 V, CL = 1000 pF and TA = 25 °C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay 550 750 950 VS = 0 V toff Turn-off propagation delay — 150 180 VS = 600 V tr Turn-on rise time — 75 130 tf Turn-off fall time — 35 65 480 650 820 — 30 — DT Deadtime, LS turn-off to HS turn-on & HS turn-off to LS turn-on MT Delay matching, HS & LS turn-on/off ns Static Electrical Characteristics VBIAS (VCC, VBS) = 15 V and TA = 25 °C unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to COM. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol VIH VIL Definition Logic “1” input voltage for HO & logic “0” for LO Logic “0” input voltage for HO & logic “1” for LO Min. Typ. Max. Units Test Conditions 6.4 — — VCC = 10 V 9.5 — — VCC = 15 V 12.6 — — VCC = 20 V — — 3.8 — — 6.0 VCC = 15 V — — 8.3 VCC = 20 V V VCC = 10 V VOH High level output voltage, VBIAS - VO — 0.05 0.2 VOL Low level output voltage, VO — 0.02 0.1 ILK Offset supply leakage current — — 50 IQBS Quiescent VBS supply current — 50 100 IQCC Quiescent VCC supply current — 70 180 IIN+ Logic “1” input bias current — 30 50 VIN = VCC IIN- Logic “0” input bias current — — 1.0 VIN = 0 V VBSUV+ VBS supply undervoltage positive going threshold 7.6 8.6 9.6 VBSUV- VBS supply undervoltage negative going threshold 7.2 8.2 9.2 VCCUV+ VCC supply undervoltage positive going threshold 7.6 8.6 9.6 VCCUV- VCC supply undervoltage negative going threshold 7.2 8.2 9.2 Output high short circuit pulsed current 200 290 — IO+ mV VB = VS = 600 V µA www.irf.com Output low short circuit pulsed current 420 600 — VIN = 0 V or VCC V VO = 0 V, VIN = VCC mA IO- IO = 2 mA PW ≤ 10 µs VO = 15 V, VIN = 0 V PW ≤ 10 µs 3 IRS2111(S)PbF Functional Block Diagram VB HV LEVEL SHIFT DEAD TIME UV DETECT R PULSE FILTER R Q PULSE GEN IN HO S VS UV DETECT VCC LO DEAD TIME COM Lead Definitions Symbol Description IN VB HO VS VCC LO COM Logic input for high side and low side gate driver outputs (HO & LO), in phase with HO High side floating supply High side gate drive output High side floating supply return Low side and logic fixed supply Low side gate drive output Low side return Lead Assignments 8 Lead DIP 8 Lead SOIC IRS2111 IRS2111S Part Number www.irf.com 4 IRS2111(S)PbF Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition Figure 5. Deadtime Waveform Definitions www.irf.com Figure 6. Delay Matching Waveform Definitions 5 IRS2111(S)PbF 1500 1250 M ax. 1000 Typ. 750 M in. 500 250 0 -50 Turn-On Delay Time (ns) Turn-On Delay Time (ns) 1500 1250 Max. 1000 Typ. 750 Min. 500 250 0 -25 0 25 50 75 100 125 10 12 Temperature ( oC) 350 350 Turn-Off Delay Time (ns)) Turn-Off Delay Time (ns) 400 300 Max 200 Typ 100 50 0 -50 18 20 V BIA S Supply Voltage (V) 400 150 16 Figure 7B Turn-On Time vs Voltage Figure 7A Turn-On Time vs Temperature 250 14 300 250 Max 200 150 Typ 100 50 0 -25 0 25 50 75 Temperature (°C) 100 125 10 12 14 16 18 20 V BIAS Supply Voltage Figure 8A Turn-Off Time vs Temperature Figure 8B Turn-Off Time vs Voltage 350 Turn-On Rise Time (ns) Turn-On Rise Time (ns) 400 300 250 200 Max 150 100 Typ 50 0 -50 Max Typ 10 -25 0 25 50 75 100 Temperature (°C) Figure 9A Turn-On Rise Time vs Temperature www.irf.com 400 350 300 250 200 150 100 50 0 12 14 16 18 20 125 V BIAS Supply Voltage (V) Figure 9B Turn-On Rise Time vs Voltage 6 200 200 150 150 100 Turn-Off Fall Time (ns) Turn-Off Fall Time (ns) IRS2111(S)PbF Max 50 Typ 0 -50 -25 0 25 50 75 Temperature (°C) 100 100 Max 50 Typ 0 125 10 18 20 Figure 10B Turn-Off Fall Time vs Voltage 1000 1000 M ax. Typ. 750 M in. 500 Deadtime (ns) Deadtime (ns) 16 1250 1250 750 Max. Typ. Min. 500 250 250 0 -25 0 25 50 75 100 10 125 12 14 16 18 20 VBIAS Supply Voltage (V) Temperature (oC) Figure 11A Deadtime vs Temperature 6 3 0 -50 -25 0 25 50 75 100 125 9 9 Min 6 Min 3 12 0 15 12 15 Figure 11B Deadtime vs Voltage Logic “1” Input Threshold (V) Logic “1” Input Threshold (V) 14 VBIAS Supply Voltage (V) Figure 10A Turn-Off Fall Time vs Temperature 0 -50 12 10 12 14 16 18 20 Temperature (°C) Figure 12A Logic “I” Input voltage for HO & Logic “0” for LO vs Temperature www.irf.com Figure 12B Logic “I” Input voltage for HO & Logic “0” for LO vs Voltage 7 3 0 -25 0 25 50 Temperature (°C) 75 100 15 12 9 Max 6 Max 6 3 9 0 12 -50 High Level Output Voltage (V) Logic “0” Input Threshold (V) 15 10 125 12 16 18 Figure 13A Logic “0” Input voltage for HO & Logic “I” for LO vs Temperature Figure 13B Logic “0” Input voltage for HO & Logic “I” for LO vs Voltage 1.0 1.0 0.8 0.6 0.4 Max. 0.2 Typ. 0.0 -50 -25 0 25 50 75 100 0.6 0.4 0.2 Max. Typ. 0.0 10 125 12 Figure 14A. High Level Output vs. Tem perature Low Level Output Voltage (V) 0.4 0.3 0.2 Max. 0.1 Typ. 0 25 50 75 100 125 Temperature ( oC) Figure 15A. Low Level Output vs. Temperature www.irf.com 16 18 20 Figure 14B. High Level Output vs. Supply Voltage 0.5 -25 14 V cc Supply Voltage (V) Temperature ( C) 0 -50 20 0.8 o Low Level Output Voltage (V) 14 VCC Logic Supply Voltage (V) High Level Output Voltage (V) Logic “0” Input Threshold (V) IRS2111(S)PbF 0.5 0.4 0.3 0.2 Max. 0.1 Typ. 0 10 12 14 16 18 20 V cc Supply Voltage (V) Figure 15B. Low Level Output vs. Voltage 8 IRS2111(S)PbF 400 300 200 Max. 100 0 -50 -25 0 500 Offset Supply Current (µA) Offset Supply Current (µA) 500 25 50 75 100 400 300 200 M ax . 100 0 125 0 Figure 16A Offset Supply Current vs Temperature 300 400 500 600 Figure 16B Offset Supply Current vs Voltage 200 VBS Supply Current (µA) 200 VBS Supply Current (µA) 200 V B B oos t V oltage (v) Temperature (°C) 150 Max. 100 Typ. 50 0 150 Max. 100 Typ. 50 0 -50 -25 0 25 50 75 100 125 10 Temperature (°C) 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 17A VBS Supply Current vs Temperature Figure 17B VBS Supply Current vs Voltage 500 500 VCC Supply Current (µA) VCC Supply Current (µA) 100 400 300 Max. 200 Typ. 100 0 400 300 Max 200 100 Typ 0 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 18A VCC Supply Current vs Temperature www.irf.com 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 18B VCC Supply Current vs Voltage 9 120 Logic “1” Input Bias Current (µA) Logic “1” Input Bias Current (µA) IRS2111(S)PbF 100 80 60 Max. 40 Typ. 20 0 -50 -25 0 25 50 75 100 120 100 80 Max. 60 40 20 Typ. 0 10 125 12 4 3 2 Max. 1 0 25 50 75 100 125 Logic “0” Input Bias Current (µA) Logic “0” Input Bias Current (µA) 5 0 20 5 4 3 2 Max. 1 0 10 12 14 16 18 20 VCC Supply Voltage (V) Temperature (°C) Figure 20A. Logic “0” Input Current vs. Temperature Figure 20B. Logic “0” Input Current vs. VCC Voltage 12 V B S U V LO Threshold -(V ) 12 VBS UVLO Threshold +(V) 18 Figure 19B Logic “1” Input Current vs. VCC Voltage Figure 19A Logic “1” Input Current vs. Temperature -25 16 VCC Supply Voltage (V) Temperature (°C) -50 14 11 Max. 10 Typ. 9 8 7 Min. 11 Max. 10 9 Typ. 8 7 Min. 6 6 -50 -25 0 25 50 75 100 125 Temperature (°C) Figure 21 VBS Undervoltage Threshold (+) vs. Temperature www.irf.com -50 -25 0 25 50 75 100 125 Temperature(°C) Figure 22 VBS Undervoltage Threshold (-) vs. Temperature 10 IRS2111(S)PbF 11 10 VCC Undervoltage Lockout- (V) Vcc Undervoltage Lockout +(V) 11 Max. 9 Typ. 8 Min. 7 6 -50 -25 0 25 50 75 100 10 Max. 9 Typ. 8 Min. 7 6 -50 125 -25 0 Temperature (°C) 50 75 100 125 Figure 24 VCC Undervoltage (-) vs Temperature 500 500 400 Output Source Current(mA) ( ) µΑ Output Source Current(mA) ( ) µΑ Figure 23 VCC Undervoltage (-) vs Temperature Typ. 300 Min. 200 100 0 400 300 Typ. 200 100 Min. 0 -50 -25 0 25 50 75 100 125 10 12 Temperature (oC) 14 16 18 20 V BIAS Supply Voltage (V) Figure 25B Output Source Current vs Voltage Figure 25A Output Source Current vs Temperature 900 Output Sink Current(mA) ( ) µΑ 900 Output Sink Current (mA) ( ) µΑ 25 Temperature (°C) 750 Typ. 600 Min. 450 300 150 750 600 Typ. 450 Min. 300 150 0 0 -50 -25 0 25 50 75 100 125 10 Temperature ( oC) Figure 26A Output Sink Current vs Temperature 12 14 16 18 20 V BIAS Supply Voltage (V) Figure 26B Output Sink Current vs Voltage www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 11 150 100 160 V 75 30 V 50 25 0 1E+2 1E+3 1E+4 1E+5 100 30 V 75 50 25 0 1E+2 1E+6 160 V 125 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 27. IR2111 TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V Figure 28. IR2111 TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V 320 V 150 Junction Temperature (oC) Junction Temperature(°C) 125 320 V 150 320 V 160 V 30V 125 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 320 V 160 V 30 V 150 Junction Temperature(°C) Junction Temperature(°C) IRS2111(S)PbF 125 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 29. IR2111 TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V Figure 30. IR2111 TJ vs. Frequency (IRFPC50) RGATE = 10 Ω, VCC = 15 V www.irf.com 12 IRS2111(S)PbF 320 V 320 V 140 V 160 V 125 100 75 30 V 50 25 0 1E+2 150 1E+3 1E+4 1E+5 Junction Temperature (oC) Junction Temperature (oC) 150 30 V 125 100 75 50 25 0 1E+2 1E+6 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 31. IR2111S TJ vs. Frequency (IRFBC20) RGATE = 33 Ω, VCC = 15 V Figure 32. IR2111S TJ vs. Frequency (IRFBC30) RGATE = 22 Ω, VCC = 15 V 320 V 140 V 30 V 125 100 75 50 25 0 1E+2 320 V 140 V 1E+3 1E+4 1E+5 1E+6 30 V 150 Junction Temperature (oC) Junction Temperature (oC) 150 125 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Frequency (kHz) Figure 33. IR2111S TJ vs. Frequency (IRFBC40) RGATE = 15 Ω, VCC = 15 V Figure 34. IR2111S TJ vs. Frequency (IRFPC50) RGATE = 10 Ω, VCC = 15 V www.irf.com 13 IRS2111(S)PbF Case outlines 01-6014 01-3003 01 (MS-001AB) 8-Lead PDIP D DIM B 5 A FOOTPRINT 8 6 7 6 5 H E 1 6X 2 3 0.25 [.010] 4 e A 6.46 [.255] 3X 1.27 [.050] e1 0.25 [.010] A1 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 .1574 3.80 4.00 E .1497 e .050 BASIC e1 MAX 1.27 BASIC .025 BASIC 0.635 BASIC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° y 0.10 [.004] 8X L 8X c 7 C A B NOTES: 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. 2. CONTROLLING DIMENSION: MILLIMETER 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 4. OUTLINE C ONFORMS TO JEDEC OUTLINE MS-012AA. 8-Lead SOIC www.irf.com MIN .0532 K x 45° A C 8X b 8X 1.78 [.070] MILLIMETERS MAX A 8X 0.72 [.028] INCHES MIN 5 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006]. 6 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010]. 7 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE. 01-6027 01-0021 11 (MS-012AA) 14 IRS2111(S)PbF Tape & Reel 8-lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 8 S O I C N M etr ic Im p er i al Co d e M in M ax M in M ax A 7 .9 0 8.1 0 0. 31 1 0 .3 18 B 3 .9 0 4.1 0 0. 15 3 0 .1 61 C 11 .7 0 1 2. 30 0 .4 6 0 .4 84 D 5 .4 5 5.5 5 0. 21 4 0 .2 18 E 6 .3 0 6.5 0 0. 24 8 0 .2 55 F 5 .1 0 5.3 0 0. 20 0 0 .2 08 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1.6 0 0. 05 9 0 .0 62 F D C B A E G H R E E L D IM E N S I O N S F O R 8 S O IC N M etr ic Im p er i al Co d e M in M ax M in M ax A 32 9. 60 3 30 .2 5 1 2 .9 76 13 .0 0 1 B 20 .9 5 2 1. 45 0. 82 4 0 .8 44 C 12 .8 0 1 3. 20 0. 50 3 0 .5 19 D 1 .9 5 2.4 5 0. 76 7 0 .0 96 E 98 .0 0 1 02 .0 0 3. 85 8 4 .0 15 F n /a 1 8. 40 n /a 0 .7 24 G 14 .5 0 1 7. 10 0. 57 0 0 .6 73 H 12 .4 0 1 4. 40 0. 48 8 0 .5 66 www.irf.com 15 IRS2111(S)PbF LEADFREE PART MARKING INFORMATION IRSxxxx Part number YWW? Date code Pin 1 Identifier ? P MARKING CODE Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 8-Lead PDIP IRS2111PbF 8-Lead SOIC IRS2111SPbF 8-Lead SOIC Tape & Reel IRS2111STRPbF The SOIC-8 is MSL2 qualified. The SOIC-14 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com <http://www.irf.com/> IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 6/14/2006 www.irf.com 16