Rad Hard 40V Quad Precision Low Power Operational Amplifiers ISL70417SEH Features The ISL70417SEH contains four very high precision amplifiers featuring the perfect combination of low noise vs power consumption. Low offset voltage, low IBIAS current and low temperature drift making them the ideal choice for applications requiring both high DC accuracy and AC performance. The combination of high precision, low noise, low power and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts. • Electrically Screened to DLA SMD# 5962-12228 Applications for these amplifiers include precision active filters, medical and analytical instrumentation, precision power supply controls, and industrial controls. The ISL70417SEH is offered in a 14 lead hermetic ceramic flatpack package. The device is offered in an industry standard pin configuration and operates over the extended temperature range from -55°C to +125°C. Applications • Precision Instrumentation • Spectral Analysis Equipment • Active Filter Blocks • Low Input Offset Voltage . . . . . . . . . . . . . . . . . . ±110µV, Max. • Superb Offset Temperature Coefficient . . . . . . 1µV/°C, Max. • Input Bias Current. . . . . . . . . . . . . . . . . . . . . . . . . . ±5nA, Max. • Input Bias Current TC . . . . . . . . . . . . . . . . . . . . ±5pA/°C, Max. • Low Current Consumption . . . . . . . . . . . . . . . . . . . . . . . 440µA • Voltage Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8nV/√Hz • Wide Supply Range . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 40V • Operating Temperature Range. . . . . . . . . . .-55°C to +125°C • Radiation Environment - SEL/SEB LETTH (VS = ±20V). . . . . . . . . 73.9 MeV•cm2/mg - Total Dose, High Dose Rate . . . . . . . . . . . . . . . 300krad(Si) - Total Dose, Low Dose Rate . . . . . . . . . . . . . . . 100krad(Si) * * Product capability established by initial characterization. The EH version is acceptance tested on a wafer by wafer basis to 50krad(Si) at low dose rate. • Thermocouples and RTD Reference Buffers • Data Acquisition • Power Supply Control 6 4 C1 2 8.2nF VOS (µV) V+ - VIN R1 R2 1.84k 4.93k ISL70417SEH C2 -2 BIAS OUTPUT -4 + 3.3nF GND 0 -6 VS = ±15V V-8 0 SALLEN-KEY LOW PASS FILTER (fC = 10kHz) FIGURE 1. TYPICAL APPLICATION July 2, 2012 FN7962.0 1 50 100 150 krad(Si) 200 250 300 FIGURE 2. VOS SHIFT vs HIGH DOSE RATE RADIATION CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. 1-888-INTERSIL or 1-888-468-3774 | Copyright Intersil Americas Inc. 2012. All Rights Reserved Intersil (and design) is a trademark owned by Intersil Corporation or one of its subsidiaries. All other trademarks mentioned are the property of their respective owners. ISL70417SEH Ordering Information ORDERING NUMBER PART NUMBER (Notes 2, 3) 5962R1222801VXC TEMPERATURE RANGE (°C) PACKAGE (Pb-Free) PKG. DWG. # ISL70417SEHVF -55 to +125 14 Ld Flatpack K14.A ISL70417SEHF/PROTO ISL70417SEHF/PROTO -55 to +125 14 Ld Flatpack K14.A 5962R1222801V9AX ISL70417SEHVX -55 to +125 DIE ISL70417SEHX/SAMPLE ISL70417SEHX/SAMPLE -55 to +125 DIE ISL70417SEHEVAL1Z Evaluation Board NOTES: 1. These Intersil Pb-free Hermetic packaged products employ 100% Au plate - e4 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations. 2. For Moisture Sensitivity Level (MSL), please see device information page for ISL70417SEH. For more information on MSL please see tech brief TB363. 2 July 2, 2012 FN7962.0 ISL70417SEH Pin Configuration ISL70417SEH (14 LD FLATPACK) TOP VIEW OUT_A 1 -IN_A 2 +IN_A 14 OUT_D 13 -IN_D 3 12 +IN_D V+ 4 11 V- +IN_B 5 10 +IN_C 9 -IN_C 8 OUT_C -IN_B 6 OUT_B 7 A - + - + B D + - + C Pin Descriptions ISL70417SEH (14 LD FLATPACK) PIN NAME EQUIVALENT CIRCUIT 1 OUT_A Circuit 2 Amplifier A output 2 -IN_A Circuit 1 Amplifier A inverting input 3 +IN_A Circuit 1 Amplifier A non-inverting input 4 V+ Circuit 3 Positive power supply 5 +IN_B Circuit 1 Amplifier B non-inverting input 6 -IN_B Circuit 1 Amplifier B inverting input 7 OUT_B Circuit 2 Amplifier B output 8 OUT_C Circuit 2 Amplifier C output 9 -IN_C Circuit 1 Amplifier C inverting input 10 +IN_C Circuit 1 Amplifier C non-inverting input 11 V- Circuit 3 Negative power supply 12 +IN_D Circuit 1 Amplifier D non-inverting input 13 -IN_D Circuit 1 Amplifier D inverting input 14 OUT_D Circuit 2 Amplifier D output V+ 500Ω V+ 500Ω IN- IN+ VCIRCUIT 2 3 V+ CAPACITIVELY COUPLED ESD CLAMP OUT V- CIRCUIT 1 DESCRIPTION V- CIRCUIT 3 July 2, 2012 FN7962.0 ISL70417SEH Absolute Maximum Ratings Thermal Information Maximum Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....42V Maximum Supply Voltage (LET = 73.9 MeV•cm2/mg). . . . . . . . . . . ....40V Maximum Differential Input Current . . . . . . . . . . . . . . . . . . . . . . . . . . 20mA Maximum Differential Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20V Min/Max Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . V- - 0.5V to V+ + 0.5V Max/Min Input current for Input Voltage >V+ or <V-. . . . . . . . . . . . . . . . ±20mA Output Short-Circuit Duration (1 output at a time). . . . . . . . . . . . . . . . Indefinite ESD Rating Human Body Model (Tested per MIL-PRF-883 3015.7). . . . . . . . . . . 2kV Machine Model (Tested per EIA/JESD22-A115-A) . . . . . . . . . . . . . . 300V Charged Device Model (Tested per JESD22-C101D) . . . . . . . . . . . . . 2kV Thermal Resistance (Typical) θJA (°C/W) θJC (°C/W) 14 Ld Flatpack (Notes 3, 4). . . . . . . . . . . . . 105 15 Maximum Storage Temperature Range . . . . . . . . . . . . . .-65°C to +150°C Maximum Junction Temperature (TJMAX) . . . . . . . . . . . . . . . . . . . . .+150°C Pb-Free Reflow Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . see link below http://www.intersil.com/pbfree/Pb-FreeReflow.asp Recommended Operating Conditions Ambient Operating Temperature Range . . . . . . . . . . . . . .-55°C to +125°C Maximum Operating Junction Temperature . . . . . . . . . . . . . . . . . .+150°C Supply Voltage . . . . . . . . . . . . . . . . . . . . . . . . . 4.5V (±2.25V) to 30V (±15V) CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty. NOTES: 3. θJA is measured with the component mounted on a low effective thermal conductivity test board in free air. See Tech Brief TB379 for details. 4. For θJC, the "case temp" location is the center of the ceramic on the package underside. Electrical Specifications VS ± 15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure a low dose rate of <10mrad(Si)/s. PARAMETER VOS DESCRIPTION CONDITIONS MIN (Note 5) Input Offset Voltage TCVOS Offset Voltage Drift IB Input Bias Current -1 TYP MAX (Note 5) UNIT 10 75 µV 110 µV 0.1 1 µV/°C 0.08 1 nA 5 nA -5 TCIB Input Bias Current Temperature Coefficient IOS Input Offset Current -5 1 5 pA/°C -1.5 0.08 1.5 nA 3 nA 3 pA/°C 13 V -3 TCIOS VCM CMRR Input Offset Current Temperature Coefficient -3 Input Voltage Range Guaranteed by CMRR test -13 Common-Mode Rejection Ratio VCM = -13V to +13V 120 0.42 145 dB 120 PSRR Power Supply Rejection Ratio VS = ±2.25V to ±20V 120 dB 145 dB 120 dB AVOL Open-Loop Gain VO = -13V to +13V, RL = 10kΩ to ground 3,000 14,000 V/mV VOH Output Voltage High RL = 10kΩ to ground 13.5 13.7 V 13.2 RL = 2kΩ to ground 13.3 V 13.55 V 13.0 VOL Output Voltage Low RL = 10kΩ to ground RL = 2kΩ to ground 4 V -13.7 -13.55 -13.5 V -13.2 V -13.3 V -13.0 V July 2, 2012 FN7962.0 ISL70417SEH Electrical Specifications VS ± 15V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure a low dose rate of <10mrad(Si)/s. (Continued) PARAMETER IS ISC VSUPPLY DESCRIPTION CONDITIONS MIN (Note 5) Supply Current/Amplifier Short-Circuit Current Supply Voltage Range TYP MAX (Note 5) UNIT 0.44 0.53 mA 0.68 mA 43 Guaranteed by PSRR ± 2.25 mA ± 20 V AC SPECIFICATIONS GBWP Gain Bandwidth Product AV = 1k, RL = 2kΩ 1.5 MHz enVp-p Voltage Noise VP-P 0.1Hz to 10Hz 0.25 µVP-P en Voltage Noise Density f = 10Hz 10 nV/√Hz en Voltage Noise Density f = 100Hz 8.2 nV/√Hz en Voltage Noise Density f = 1kHz 8 nV/√Hz en Voltage Noise Density f = 10kHz 8 nV/√Hz in Current Noise Density f = 1kHz 0.1 pA/√Hz Total Harmonic Distortion 1kHz, G = 1, VO = 3.5VRMS, RL = 2kΩ 0.0009 % 1kHz, G = 1, VO = 3.5VRMS, RL = 10kΩ 0.0005 % 0.5 V/µs THD + N TRANSIENT RESPONSE SR Slew Rate, VOUT 20% to 80% AV = 11, RL = 2kΩ, VO = 4VP-P 0.3 0.2 tr, tf, Small Signal ts tOL OS+ OS- V/µs Rise Time 10% to 90% of VOUT AV = 1, VOUT = 50mVP-P, RL = 10kΩ to VCM 130 Fall Time 90% to 10% of VOUT AV = 1, VOUT = 50mVP-P, RL = 10kΩ to VCM 130 Settling Time to 0.1% 10V Step; 10% to VOUT AV = -1, VOUT = 10VP-P, RL = 5kΩ to VCM 21 µs Settling Time to 0.01% 10V Step; 10% to VOUT AV = -1, VOUT = 10VP-P, RL = 5kΩ to VCM 24 µs Settling Time to 0.1% 4V Step; 10% to VOUT AV = -1, VOUT = 4VP-P, RL = 5kΩ to VCM 13 µs Settling Time to 0.01% 4V Step; 10% to VOUT AV = -1, VOUT = 4VP-P, RL = 5kΩ to VCM 18 µs Output Positive Overload Recovery Time AV = -100, VIN = 0.2VP-P, RL = 2kΩ to VCM 5.6 µs Output Negative Overload Recovery Time AV = -100, VIN = 0.2VP-P, RL = 2kΩ to VCM 10.6 µs AV = 1, VOUT = 10VP-P, Rf = 0Ω RL = 2kΩ to VCM 15 % AV = 1, VOUT = 10VP-P, Rf = 0Ω RL = 2kΩ to VCM 15 Positive Overshoot Negative Overshoot 5 450 ns 625 ns 600 ns 700 ns 33 % % 33 % July 2, 2012 FN7962.0 ISL70417SEH Electrical Specifications VS ± 5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure a low dose rate of <10mrad(Si)/s. PARAMETER VOS DESCRIPTION CONDITIONS MIN (Note 5) Input Offset Voltage TCVOS Offset Voltage Drift IB Input Bias Current -1 TYP MAX (Note 5) UNIT 10 150 µV 250 µV 0.1 1 µV/°C 0.18 1 nA 5 nA -5 TCIB Input Bias Current Temperature Coefficient IOS Input Offset Current -5 1 5 pA/°C -1.5 0.3 1.5 nA 3 nA 3 pA/°C 3 V -3 TCIOS VCM CMRR Input Offset Current Temperature Coefficient -3 Input Voltage Range -3 Common-Mode Rejection Ratio VCM = -3V to +3V 120 0.42 145 dB 120 PSRR Power Supply Rejection Ratio VS = ±2.25V to ±5V 120 dB 145 dB 120 dB AVOL Open-Loop Gain VO = -3.0V to +3.0V RL = 10kΩ to ground 3,000 14,000 V/mV VOH Output Voltage High RL = 10kΩ to ground 3.5 3.7 V 3.2 RL = 2kΩ to ground 3.3 V 3.55 V 3.0 VOL IS ISC Output Voltage Low V RL = 10kΩ to ground -3.7 -3.5 -3.2 V RL = 2kΩ to ground -3.55 -3.3 V -3.0 V Supply Current/Amplifier 0.44 Short-Circuit Current V 0.53 mA 0.68 mA 43 mA AC SPECIFICATIONS GBWP Gain Bandwidth Product AV = 1k, RL = 2kΩ 1.5 MHz enp-p Voltage Noise 0.1Hz to 10Hz 0.25 µVP-P en Voltage Noise Density f = 10Hz 12 nV/√Hz en Voltage Noise Density f = 100Hz 8.6 nV/√Hz en Voltage Noise Density f = 1kHz 8 nV/√Hz en Voltage Noise Density f = 10kHz 8 nV/√Hz in Current Noise Density f = 1kHz 0.1 pA/√Hz AV = 11, RL = 2kΩ, VO = 4VP-P 0.5 V/µs TRANSIENT RESPONSE SR Slew Rate, VOUT 20% to 80% 6 July 2, 2012 FN7962.0 ISL70417SEH Electrical Specifications VS ± 5V, VCM = 0, VO = 0V, TA = +25°C, unless otherwise noted. Boldface limits apply over the operating temperature range, -55°C to +125°C; over a total ionizing dose of 300krad(Si) with exposure at a high dose rate of 50 - 300krad(Si)/s; and over a total ionizing dose of 50krad(Si) with exposure a low dose rate of <10mrad(Si)/s. (Continued) PARAMETER tr, tf, Small Signal DESCRIPTION CONDITIONS MIN (Note 5) TYP MAX (Note 5) UNIT Rise Time 10% to 90% of VOUT AV = 1, VOUT = 50mVP-P, RL = 10kΩ to VCM 130 ns Fall Time 90% to 10% of VOUT AV = 1, VOUT = 50mVP-P, RL = 10kΩ to VCM 130 ns Settling Time to 0.1% 4V Step; 10% to VOUT AV = -1, VOUT = 4VP-P, RL = 5kΩ to VCM 12 µs Settling Time to 0.01% 4V Step; 10% to VOUT AV = -1, VOUT = 4VP-P, RL = 5kΩ to VCM 19 µs Output Positive Overload Recovery Time AV = -100, VIN = 0.2VP-P RL = 2kΩ to VCM 7 µs Output Negative Overload Recovery Time AV = -100, VIN = 0.2VP-P RL = 2kΩ to VCM 5.8 µs OS+ Positive Overshoot AV = 1, VOUT = 10VP-P, Rf = 0Ω RL = 2kΩ to VCM 15 % OS- Negative Overshoot AV = 1, VOUT = 10VP-P, Rf = 0Ω RL = 2kΩ to VCM 15 % ts tOL NOTE: 5. Compliance to datasheet limits is assured by one or more methods: production test, characterization and/or design. 7 July 2, 2012 FN7962.0 ISL70417SEH Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. 100 100 VS = ±15V VS = ±5V 50 VOS (µV) VOS (µV) 50 0 -50 -100 -75 0 -50 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 150 -100 -75 -50 FIGURE 3. VOS vs TEMPERATURE 300 300 200 200 100 100 IB- (pA) IB+ (pA) 125 150 0 -100 0 -100 -200 -200 -300 -300 -400 -400 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 VS = ±15V 400 -500 -75 150 -50 FIGURE 5. IB+ vs TEMPERATURE -25 0 25 50 75 TEMPERATURE (°C) 100 125 150 FIGURE 6. IB- vs TEMPERATURE 500 500 400 400 VS = ±5V 300 300 200 200 100 100 IB- (pA) IB+ (pA) 100 500 VS = ±15V 400 0 -100 0 -200 -300 -300 -400 -400 -50 -25 0 25 50 75 TEMPERATURE (°C) FIGURE 7. IB+ vs TEMPERATURE 8 100 125 150 VS = ±5V -100 -200 -500 -75 0 25 50 75 TEMPERATURE (°C) FIGURE 4. VOS vs TEMPERATURE 500 -500 -75 -25 -500 -75 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 150 FIGURE 8. IB- vs TEMPERATURE July 2, 2012 FN7962.0 ISL70417SEH Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) 500 500 400 VS = ±15V 300 300 200 200 100 100 IOS (pA) IOS (pA) 400 0 -100 0 -100 -200 -200 -300 -300 -400 -400 -500 -75 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 -500 -75 150 VS = ±5V -50 0 25 50 75 TEMPERATURE (°C) 100 125 150 FIGURE 10. IOS vs TEMPERATURE FIGURE 9. IOS vs TEMPERATURE 0.7 25000 VO = ±13V VS=±15V 0.6 VS=±5V AVOL (V/mV) Isupply (mA) -25 0.5 VS=±2.25V 0.4 20000 15000 0.3 0.2 -70 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) 90 110 10000 -75 130 -25 0 25 50 75 TEMPERATURE (°C) 100 125 150 FIGURE 12. AVOL vs TEMPERATURE FIGURE 11. SUPPLY CURRENT PER AMP vs TEMPERATURE -135 -50 -130 VS = ±2.25V TO ±20V -135 CMRR (dB) PSRR (dB) -140 -140 -145 -150 VCM = ±13V -155 -145 -70 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) FIGURE 13. PSRR vs TEMPERATURE 9 90 110 130 -160 -75 -50 -25 0 25 50 75 TEMPERATURE (°C) 100 125 150 FIGURE 14. CMRR vs TEMPERATURE July 2, 2012 FN7962.0 ISL70417SEH Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) 80 80 75 ISC+ @ ±15V 70 70 65 65 60 60 ISC- (mA) ISC+ (mA) 75 55 50 55 50 45 45 40 40 35 35 30 -70 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) 90 110 30 -70 130 100 -10 10 30 50 70 TEMPERATURE (°C) 90 110 130 VS = +5V 80 VS = ±15V +125°C 60 60 40 +125°C 40 VOS (µV) VOS (µV) -30 100 80 +25°C 20 0 20 +25°C 0 -55°C -55°C -20 -20 -40 -40 -15 -10 -5 0 VCM (V) 5 10 14.2 14.1 14.0 -60 -5 15 -1 1 VS = +15V RL = 10kΩ -13.2 -13.3 13.8 -13.5 VOL (V) -13.4 13.7 13.6 -13.6 -13.7 13.5 -13.8 13.4 -13.9 13.3 -14.0 13.2 -14.1 -30 5 -13.1 VS = +15V RL = 10kΩ -50 3 FIGURE 18. INPUT VOS vs INPUT COMMON MODE VOLTAGE, VS = ±5V 13.9 13.1 -70 -3 VCM (V) FIGURE 17. INPUT VOS vs INPUT COMMON MODE VOLTAGE, VS = ±15 VOH (V) -50 FIGURE 16. SHORT CIRCUIT CURRENT vs TEMPERATURE FIGURE 15. SHORT CIRCUIT CURRENT vs TEMPERATURE -60 ISC- @ ±15V -10 10 30 50 70 TEMPERATURE (°C) 90 110 FIGURE 19. VOUT vs TEMPERATURE 10 130 -14.2 -70 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) 90 110 130 FIGURE 20. VOUT vs TEMPERATURE July 2, 2012 FN7962.0 ISL70417SEH Typical Performance Curves -13.1 14.2 VS = +15V RL = 2kΩ 14.1 14.0 VS = +15V RL = 2kΩ -13.2 -13.3 13.9 -13.4 13.8 -13.5 VOL (V) VOH (V) VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) 13.7 13.6 -13.6 -13.7 13.5 -13.8 13.4 -13.9 13.3 -14.0 13.2 -14.1 13.1 -70 -14.2 -70 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) 90 110 130 250 -10 INPUT NOISE VOLTAGE (nV/ÖHz) 150 100 50 0 -50 -100 -150 V+ = 36.4V -200 Rg = 10, Rf = 100k AV = 10,000 0 1 2 3 4 5 6 7 8 9 110 130 10 1 10 VS = ±18.2V AV = 1 OPEN LOOP GAIN (dB)/PHASE (°) 100 1k 10k FREQUENCY (Hz) FIGURE 25. INPUT NOISE CURRENT SPECTRAL DENSITY 11 1k 10k 100k FIGURE 24. INPUT NOISE VOLTAGE SPECTRAL DENSITY 1 10 100 FREQUENCY (Hz) TIME (s) INPUT NOISE CURRENT (pA/ÖHz) 90 VS = ±18.2V AV = 1 1 10 FIGURE 23. INPUT NOISE VOLTAGE 0.1Hz to 10Hz 0.1 1 10 30 50 70 TEMPERATURE (°C) 100 200 INPUT NOISE VOLTAGE (nV) -30 FIGURE 22. VOUT vs TEMPERATURE FIGURE 21. VOUT vs TEMPERATURE -250 -50 100k 200 180 160 140 120 100 80 60 40 20 0 -20 R = 10k L -40 CL = 10pF -60 SIMULATION -80 -100 0.1m 1m 10m 100m PHASE GAIN 1 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) FIGURE 26. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 10kΩ, CL = 10pF July 2, 2012 FN7962.0 ISL70417SEH VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) 220 200 180 160 140 120 100 80 60 40 20 0 -20 R = 10k L -40 CL = 100pF -60 SIMULATION -80 -100 0.1m 1m 10m 100m VS = ±2.5V 200 180 PHASE VS = ±5V 160 140 CMRR (dB) OPEN LOOP GAIN (dB)/PHASE (°) Typical Performance Curves GAIN 120 VS = ±15V 100 80 60 RL = INF 40 CL = 10pF SIMULATION 20 1 10 100 1k 0 1m 10m 100m 10k 100k 1M 10M 100M 1 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz) FREQUENCY (Hz) FIGURE 27. OPEN-LOOP GAIN, PHASE vs FREQUENCY, RL = 10kΩ, CL = 100pF FIGURE 28. CMRR vs FREQUENCY, VS = ±2.25, ±5V, ±15V 120 70 110 60 100 PSRR+ AND PSRR- VS = ±2.25V 90 RL = INF CL = 4pF 40 AV = +1 30 VCM = 1VP-P GAIN (dB) PSRR (dB) 70 50 10 30 20 AV = 10 Rg = 10k, Rf = 100k AV = 1 PSRR+ AND PSRR- VS = ±15V 10 100 1k 10k 100k FREQUENCY (Hz) 1M 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 29. PSRR vs FREQUENCY, VS = ±5V, ±15V FIGURE 30. FREQUENCY RESPONSE vs CLOSED LOOP GAIN 4 2 Rf = Rg = 100k 2 RL = 10k 1 0 0 Rf = Rg = 10k -2 -4 -1 GAIN (dB) Rf = Rg = 1k -6 Rf = Rg = 100 -8 VS = ±20V RL = 10k -10 CL = 4pF -12 AV = +2 -14 VOUT = 50mVP-P -16 10 Rg = OPEN, Rf = 0 -10 10 10M VS = ±20V CL = 4pF RL = 10k VOUT = 50mVP-P AV = 100 0 0 NORMALIZED GAIN (dB) 40 10 20 -10 Rg = 1k, Rf = 100k 50 80 60 Rg = 100, Rf = 100k AV = 1000 100 -3 -6 -7 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 31. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE Rf/Rg 12 RL = 1k -4 -5 1k RL = 4.99k -2 -8 10 VS = ±20V RL = 499 CL = 4pF AV = +1 RL = 100 VOUT = 50mVP-P 100 1k 10k 100k 1M 10M FREQUENCY (Hz) FIGURE 32. GAIN vs FREQUENCY vs RL July 2, 2012 FN7962.0 ISL70417SEH Typical Performance Curves VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) 12 2 VS = ±2.5V RL = 10k 10 8 AV = +1 VOUT = 50mVP-P -1 4 2 CL = 0.01µF CL = 47pF 0 -2 CL = 100pF CL = 470pF -6 CL = 1000pF 100 10k 1k 100k 1M VS = ±15V -2 -3 VS = ±20V -4 -5 CL = 4pF RL = 10k -6 AV = +1 -7 V OUT = 50mVP-P CL = 4pF CL = 270pF -4 -8 10 VS = ±5V 0 GAIN (dB) GAIN (dB) 6 VS = ±2.25V 1 -810 10M 1k 100 FREQUENCY (Hz) FIGURE 33. GAIN vs FREQUENCY vs CL LARGE SIGNAL TRANSIENT RESPONSE (V) 160 120 VS = ±15V RL-DRIVER CH. = OPEN 60 RL-RECEIVING CH. = 10k CL = 4pF 40 AV = +1 20 VSOURCE = 1VP-P 0 10 100 1k 10k 100k FREQUENCY (Hz) 1M 10M FIGURE 35. CROSSTALK, VS = ±15V 1.6 1.5 Slew Rate (V/uS) 1.4 SR+ 1.3 1.2 1.1 SR- 1.0 0.9 0.8 0.6 -70 RL = 2k, 10k CL = 7pF AV = 1 VOut = 4VP-P VS = ±5V, ±15V 0.7 -50 -30 -10 10 30 50 70 TEMPERATURE (°C) 90 110 FIGURE 37. SLEW RATE vs TEMPERATURE VS = ±5V, ±15V 13 10M 2.4 2.0 1.6 1.2 VS = ±15V, RL = 2k, 10k 0.8 0.4 0 VS = ±5V, RL = 2k, 10k -0.4 -0.8 CL = 4pF AV = +1 VOUT = 4VP-P -1.2 -1.6 -2.0 -2.4 0 10 20 30 40 50 60 TIME (µs) 70 80 90 100 FIGURE 36. LARGE SIGNAL TRANSIENT RESPONSE vs RL VS = ±5V, ±15V 130 SMALL SIGNAL TRANSIENT RESPONSE (mV) CROSSTALK (dB) 140 80 1M FIGURE 34. GAIN vs FREQUENCY vs SUPPLY VOLTAGE 180 100 10k 100k FREQUENCY (Hz) 60 50 40 VS =±5, ±15V 30 RL = 10k CL = 4pF AV = +1 VOUT = 50mVP-P 20 10 0 -10 0 5 10 15 20 25 TIME (µs) 30 35 40 FIGURE 38. SMALL SIGNAL TRANSIENT RESPONSE, VS = ±5V, ±15V July 2, 2012 FN7962.0 ISL70417SEH VS = ±15V, VCM = 0V, RL = Open, TA = +25°C, unless otherwise specified. (Continued) INPUT VOLTAGE (V) 0 14 0.24 12 0.20 10 -0.04 OUTPUT @ VS = ±15V -0.08 8 RL = 2k CL = 4pF AV = -100 Rf = 100k, Rg = 1k VIN = 200mVP-P -0.12 -0.16 -0.20 -0.24 6 4 0 -0.28 0 10 20 30 40 50 60 TIME (µs) 70 80 90 -2 100 RL = 2k CL = 4pF AV = -100 Rf = 100k, Rg = 1k VIN = 200mVP-P 0.12 0.08 0.04 -2 -4 -6 0 -8 -0.08 INPUT OUTPUT @ VS = ±15V -0.04 0 10 20 30 40 50 60 -10 70 80 90 -12 100 FIGURE 40. NEGATIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±5V, ±15V 80 6 VS = ±15V RL = 10k AV = 1 VOUT = 50mVP-P 60 5 4 3 O SH O O T VE R 40 - SH O O T + 50 VIN and VOUT (V) 70 VE R 30 20 2 1 Vout @ -55°C 0 -1 Vout @ 25°C -4 10 Vout @ 125°C -5 1 10 100 1k CAPACITANCE (pF) 10k FIGURE 41. % OVERSHOOT vs LOAD CAPACITANCE, VS = ±15V 14 100k RL = 10k CL = 7pF AV = 1 VIn = ±5.9VP-P -2 -3 O OVERSHOOT (%) 0 TIME (µs) FIGURE 39. POSITIVE OUTPUT OVERLOAD RESPONSE TIME, VS = ±5V, ±15V 0 2 OUTPUT @ VS = ±5V 0.16 2 OUTPUT @ VS= ±5V 4 OUTPUT VOLTAGE (V) INPUT INPUT VOLTAGE (V) 0.04 OUTPUT VOLTAGE (V) Typical Performance Curves -6 VS = ±5V Vin 0 0.2 0.4 0.6 0.8 1 1.2 TIME (mS) 1.4 1.6 1.8 2 FIGURE 42. OUTPUT PHASE REVERSAL RESPONSE vs TEMPERATURE July 2, 2012 FN7962.0 ISL70417SEH Post High Dose Radiation Characteristics Unless otherwise specified, VS ± 15V, VCM = 0, VO = 0V, TA = +25°C. This data is typical mean test data post radiation exposure at a high dose rate of 50 - 300rad(Si)/s. This data is intended to show typical parameter shifts due to high dose rate radiation. These are not limits nor are they guaranteed 0.460 6 0.458 4 0.454 2 BIAS VOS (µV) Isupply (mA) 0.456 0.452 0.450 GND 0 -2 0.448 BIAS GND 0.446 -4 0.444 -6 0.442 0.440 0 50 100 150 krad(Si) 200 250 -8 0 300 50 FIGURE 43. SUPPLY CURRENT PER AMP vs HIGH DOSE RATE RADIATION 500 900 400 IB- (pA) 500 GND 400 300 100 GND 0 -100 300 200 -200 100 -300 0 50 100 150 krad(Si) 200 250 -400 300 0 50 100 150 krad(Si) 200 250 300 FIGURE 46. IB- vs HIGH DOSE RATE RADIATION FIGURE 45. IB+ vs HIGH DOSE RATE RADIATION 0 -50 GND -100 -150 IOS (pA) IB+ (pA) 250 200 600 0 200 BIAS 300 BIAS 700 150 krad(Si) FIGURE 44. VOS vs HIGH DOSE RATE RADIATION 1000 800 100 -200 -250 -300 BIAS -350 -400 0 50 100 150 krad(Si) 200 250 300 FIGURE 47. IOSvs HIGH DOSE RATE RADIATION 15 July 2, 2012 FN7962.0 ISL70417SEH Post Low Dose Radiation Characteristics Unless otherwise specified, VS ± 15V, VCM = 0, VO = 0V, TA = +25°C. This data is typical mean test data post radiation exposure at a low dose rate of <10mrad(Si)/s. This data is intended to show typical parameter shifts due to low dose rate radiation. These are not limits nor are they guaranteed 110 0.7 90 0.6 70 BIAS 50 VOS (µV) Isupply (mA) 0.5 0.4 GND 0.3 GND 30 10 -10 BIAS -30 0.2 -50 -70 0.1 0 -90 -110 0 20 40 60 krad(Si) 80 100 0 5 4 4 1 1 IB- (pA) 2 0 GND -3 -3 -4 -4 20 40 50 60 70 80 90 100 0 -1 -2 0 40 BIAS -2 60 krad(Si) 80 -5 100 GND 0 20 40 60 krad(Si) 80 100 FIGURE 51. IB- vs LOW DOSE RATE RADIATION FIGURE 50. IB+ vs LOW DOSE RATE RADIATION 3 2 1 IOS (pA) IB+ (pA) 3 BIAS 2 -1 30 FIGURE 49. VOS vs LOW DOSE RATE RADIATION 5 -5 20 krad(Si) FIGURE 48. SUPPLY CURRENT PER AMP vs LOW DOSE RATE RADIATION 3 10 GND 0 -1 BIAS -2 -3 0 20 40 60 krad(Si) 80 100 FIGURE 52. IOSvs LOW DOSE RATE RADIATION 16 July 2, 2012 FN7962.0 ISL70417SEH Applications Information V+ Functional Description The ISL70417SEH contains four, low noise precision op amps. These devices are fabricated in a new precision 40V complementary bipolar DI process. A super-beta NPN input stage with input bias current cancellation provides low input bias current (180pA typical), low input offset voltage (13µV typical), low input noise voltage (8nV/√Hz), and low 1/f noise corner frequency (~8Hz). These amplifiers also feature high open loop gain (14kV/mV) for excellent CMRR (145dB) and THD+N performance (0.0005% @ 3.5VRMS, 1kHz into 2kΩ). A complementary bipolar output stage enables high capacitive load drive without external compensation. Operating Voltage Range The devices are designed to operate over the 4.5V (±2.25V) to 40V (±20V) voltage range and are fully characterized at 10V (±5V) and 30V (±15V). The Power Supply Rejection Ratio typically exceeds 140dB over the full operating voltage range and 120dB minimum over the -55°C to +125°C temperature range. The worst case common mode input voltage range over temperature is 2V to each rail. With ±15V supplies, CMRR performance is typically >130dB over-temperature. The minimum CMRR performance over the -55°C to +125°C temperature range is >120dB for power supply voltages from ±5V (10V) to ±15V (30V). Input Performance The super-beta NPN input pair provides excellent frequency response while maintaining high input precision. High NPN beta (>1000) reduces input bias current while maintaining good frequency response, low input bias current and low noise. Input bias cancellation circuits provide additional bias current reduction to <5nA, and excellent temperature stabilization. Figures 6 through 8 show the high degree of bias current stability at ±5V and ±15V supplies that is maintained across the -55°C to +125°C temperature range. The low bias current TC also produces very low input offset current TC, which reduces DC input offset errors in precision, high impedance amplifiers. The +25°C maximum input offset voltage (VOS) is 75µV at ±15V supplies. Input offset voltage temperature coefficients (VOSTC) is a maximum of ±1.0µV/°C. The VOS temperature behavior is smooth (Figures 3 through 4) maintaining constant TC across the entire temperature range. - 500Ω VIN + 500Ω VOUT RL V- FIGURE 53. INPUT ESD DIODE CURRENT LIMITING- UNITY GAIN The series resistors limit the high feed-through currents that can occur in pulse applications when the input dV/dT exceeds the 0.5V/µs slew rate of the amplifier. Without the series resistors, the input can forward-bias the anti-parallel diodes causing current to flow to the output resulting in severe distortion and possible diode failure. Figure 36 provides an example of distortion free large signal response using a 4VP-P input pulse with an input rise time of <1ns. The series resistors enable the input differential voltage to be equal to the maximum power supply voltage (40V) without damage. In applications where one or both amplifier input terminals are at risk of exposure to high voltages beyond the power supply rails, current limiting resistors may be needed at the input terminal to limit the current through the power supply ESD diodes to 20mA max. Output Current Limiting The output current is internally limited to approximately ±45mA at +25°C and can withstand a short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only 1 amplifier at a time for the quad op amp. Continuous operation under these conditions may degrade long term reliability. Figures 15 and 16 show the current limit variation with temperature. Output Phase Reversal Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL70417SEH is immune to output phase reversal, even when the input voltage is 1V beyond the supplies. Input ESD Diode Protection Power Dissipation The input terminals (IN+ and IN-) have internal ESD protection diodes to the positive and negative supply rails, series connected 500Ω current limiting resistors and an anti-parallel diode pair across the inputs (Figure 53). It is possible to exceed the +150°C maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (TJMAX) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1: T JMAX = T MAX + θ JA xPD MAXTOTAL (EQ. 1) where: • PDMAXTOTAL is the sum of the maximum power dissipation of each amplifier in the package (PDMAX) 17 July 2, 2012 FN7962.0 ISL70417SEH • PDMAX for each amplifier can be calculated using Equation 2: V OUTMAX PD MAX = V S × I qMAX + ( V S - V OUTMAX ) × ---------------------------R L (EQ. 2) where: • TMAX = Maximum ambient temperature • θJA = Thermal resistance of the package • PDMAX = Maximum power dissipation of 1 amplifier • VS = Total supply voltage • IqMAX = Maximum quiescent supply current of 1 amplifier • VOUTMAX = Maximum output voltage swing of the application 18 July 2, 2012 FN7962.0 ISL70417SEH Package Characteristics TOP METALLIZATION Type: AlCu (99.5%/0.5%) Thickness: 30kÅ Weight of Packaged Device 0. 6043 Grams (Typical) BACKSIDE FINISH Lid Characteristics Silicon Finish: Gold Potential: Unbiased Case Isolation to Any Lead: 20 x 109 Ω (min) PROCESS Dielectrically Isolated Complementary Bipolar - PR40 ASSEMBLY RELATED INFORMATION Die Characteristics SUBSTRATE POTENTIAL Die Dimensions Floating 2028µm x 2568µm (80mils x 101mils) Thickness: 483µm ± 25µm (19mils ± 1 mil) ADDITIONAL INFORMATION Interface Materials WORST CASE CURRENT DENSITY < 2 x 105 A/cm2 GLASSIVATION Type: Nitrox Thickness: 15kÅ Metallization Mask Layout -IN_A OUT_A OUT_D -IN_D +IN_A +IN_D PLACE HOLDER V+ V- +IN_B +IN_C -IN_B 19 OUT_B OUT_C -IN_C July 2, 2012 FN7962.0 ISL70417SEH TABLE 1. DIE LAYOUT X-Y COORDINATES PAD NAME PAD NUMBER X (µm) Y (µm) dX (µm) dY (µm) BOND WIRES PER PAD OUT_A 3 -256 1152 70 70 1 -IN_A 4 -661 1152 70 70 1 +IN_A 5 -867.5 948.5 70 70 1 V+ 9 -880.5 0 70 70 1 +IN_B 13 -867.5 -948.5 70 70 1 -IN_B 14 -661 -1152 70 70 1 OUT_B 15 -256 -1152 70 70 1 OUT_C 16 256 -1152 70 70 1 -IN_C 17 661 -1152 70 70 1 +IN_C 18 867.5 -948.5 70 70 1 V- 22 880.5 0 70 70 1 +IN_D 26 867.5 948.5 70 70 1 -IN_D 1 661 1152 70 70 1 OUT_D 2 256 1152 70 70 1 NOTE: 6. Origin of coordinates is the center of die. For additional products, see www.intersil.com/product_tree Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries. For information regarding Intersil Corporation and its products, see www.intersil.com 20 July 2, 2012 FN7962.0 ISL70417SEH Revision History The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to web to make sure you have the latest Revision. DATE REVISION July 2, 2012 FN7962.0 CHANGE Initial Release Products Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to www.intersil.com/products for a complete list of Intersil product families. For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: ISL70417SEH To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff FITs are available from our website at http://rel.intersil.com/reports/search.php 21 July 2, 2012 FN7962.0 ISL70417SEH Package Outline Drawing Ceramic Metal Seal Flatpack Packages (Flatpack) K14.A MIL-STD-1835 CDFP3-F14 (F-2A, CONFIGURATION B) A e 14 LEAD CERAMIC METAL SEAL FLATPACK PACKAGE A INCHES PIN NO. 1 ID AREA -A- D -B- S1 b MILLIMETERS SYMBOL MIN MAX MIN MAX NOTES A 0.045 0.115 1.14 2.92 - b 0.015 0.022 0.38 0.56 - b1 0.015 0.019 0.38 0.48 - c 0.004 0.009 0.10 0.23 - c1 0.004 0.006 0.10 D - 0.390 0.15 - 9.91 3 E1 0.004 M H A-B S D S 0.036 Q M H A-B S D S C E -D- A -C- E 0.235 0.260 E1 - 0.290 5.97 E2 0.125 - 3.18 - - E3 0.030 - 0.76 - 7 0.015 0.20 - 6.60 - 7.11 3 -HE2 L E3 SEATING AND BASE PLANE - c1 L E3 e k LEAD FINISH BASE METAL (c) b1 M 0.050 BSC 0.008 1.27 BSC - 0.38 2 L 0.270 0.370 6.86 9.40 - Q 0.026 0.045 0.66 1.14 8 S1 0.005 - 0.13 M - 0.0015 - - 0.04 6 - M (b) SECTION A-A N 14 14 Rev. 0 5/18/94 NOTES: 1. Index area: A notch or a pin one identification mark shall be located adjacent to pin one and shall be located within the shaded area shown. The manufacturer’s identification shall not be used as a pin one identification mark. Alternately, a tab (dimension k) may be used to identify pin one. 2. If a pin one identification mark is used in addition to a tab, the limits of dimension k do not apply. 3. This dimension allows for off-center lid, meniscus, and glass overrun. 4. Dimensions b1 and c1 apply to lead base metal only. Dimension M applies to lead plating and finish thickness. The maximum limits of lead dimensions b and c or M shall be measured at the centroid of the finished lead surfaces, when solder dip or tin plate lead finish is applied. 5. N is the maximum number of terminal positions. 6. Measure dimension S1 at all four corners. 7. For bottom-brazed lead packages, no organic or polymeric materials shall be molded to the bottom of the package to cover the leads. 8. Dimension Q shall be measured at the point of exit (beyond the meniscus) of the lead from the body. Dimension Q minimum shall be reduced by 0.0015 inch (0.038mm) maximum when solder dip lead finish is applied. 9. Dimensioning and tolerancing per ANSI Y14.5M - 1982. 10. Controlling dimension: INCH. 22 July 2, 2012 FN7962.0