LTC1706-61 5-Bit VID Voltage Programmer for AMD Opteron CPUs U FEATURES ■ ■ ■ ■ ■ DESCRIPTIO The LTC®1706-61 is a precision, digitally programmed, resistive ladder which adjusts the output of any 0.6V referenced regulator. Depending on the state of the five VID inputs, an output voltage between 0.8V and 1.55V is programmed in 25mV increments. Programs Regulator Output Voltage Range from 0.8V to 1.55V in 25mV Steps Programs a Wide Range of Linear Technology DC/DC Converters with a 0.6V Reference ±0.35% Accurate Output Voltage Built-In 40k Pull-Up Resistors on VID Inputs Available in MSOP-10 Package The LTC1706-61 is designed specifically to program an entire family of Linear Technology DC/DC converters with on board 0.6V references. U APPLICATIO S ■ ■ ■ The LTC1706-61 programs the following Linear Technology DC/DC converter products: LTC1629-6, LTC3714, LTC3731 and LTC3778. (Consult factory for additional DC/DC converter products.) TM AMD Opteron Processor Power Supply Workstations and Servers Large Memory Array Supply , LTC and LT are registered trademarks of Linear Technology Corporation. AMD Opteron is a trademark of Advanced Micro Devices, Inc. U TYPICAL APPLICATIO 5-Bit VID-Controlled High Current Application (Simplified Block Diagram) VIN 4.5V TO 22V VIN LTC1629-6 VID0 FROM µP INTVCC SENSE VID2 LTC1706-61 VID3 VID4 RSENSE1 VDIFFOUT + BG1 VOUT 0.8V TO 1.55V UP TO 80A COUT VIN PGND SGND FB GND L1 SW1 VCC VID1 TG1 TG2 EAIN L2 RSENSE2 L3 RSENSE3 L4 RSENSE4 SW2 ITH BG2 VIN 4.5V TO 22V VIN LTC1629-6 TG1 SW1 BG1 PGND VIN SGND EAIN ITH TG2 SW2 BG2 1706-61 TA01 170661f 1 LTC1706-61 W U PACKAGE/ORDER INFORMATION U W W W (Note 1) (Voltages Referred to GND Pin) Input Supply Voltage (VCC) ..........................– 0.3V to 7V VID Input Pins .............................................– 0.3V to 7V SENSE Pin ...................................................– 0.3V to 7V FB Pin ..........................................................– 0.3V to 7V Operating Ambient Temperature Range (Note 2) .................................................. – 40°C to 85°C Junction Temperature ........................................... 110°C Storage Temperature Range ................. – 65°C to 150°C Lead Temperature (Soldering, 10 sec).................. 300°C U ABSOLUTE MAXIMUM RATINGS ORDER PART NUMBER TOP VIEW VID0 VID1 VID2 VID3 VCC 1 2 3 4 5 10 9 8 7 6 FB GND NC VID4 SENSE MS PACKAGE 10-LEAD PLASTIC MSOP TJMAX = 110°C, θJA = 120°C/ W LTC1706EMS-61 MS PART MARKING LTK9 Consult LTC Marketing for parts specified with wider operating temperature ranges. ELECTRICAL CHARACTERISTICS The ● denotes specifications which apply over the full operating temperature range, otherwise specifications are TA = 25°C. 2.7V ≤ VCC ≤ 5.5V, VID0 = VID1 = VID2 = VID3 = VID4 = NC unless otherwise specified. SYMBOL VCC IVCC RFB-SENSE VOUT Error % RPULLUP VIDTH IVID-LEAK VPULLUP PARAMETER Operating Supply Voltage Range Supply Current Resistance Between SENSE and FB Output Voltage Accuracy VID Input Pull-Up Resistance VID Input Voltage Threshold VID Input Leakage Current VID Pull-Up Voltage CONDITIONS MIN 2.7 (Note 3) ● ● VDIODE = 0.6V (Note 4) VIL (2.7V ≤ VCC ≤ 5.5V) VIH (2.7V ≤ VCC ≤ 5.5V) VCC < VID < 7V (Note 4) VCC = 3.3V VCC = 5V Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. Note 2: The LTC1706EMS-61 is guaranteed to meet performance specifications from 0°C to 70°C. Specifications over the – 40°C to 85°C operating temperature range are assured by design, characterization and correlation with statistical process controls. 6 – 0.35 TYP 0.1 10 MAX 5.5 5 14 + 0.35 40 0.4 1.6 0.01 2.8 4.5 ±1 UNITS V µA kΩ % kΩ V V µA V V Note 3: With all five VID inputs floating, the VCC supply current is simply the device leakage current. However, the VCC supply current will rise and be approximately equal to the number of grounded VID input pins times (VCC – 0.6V)/40k. (See the VID Input Characteristics section for more details.) Note 4: Each built-in pull-up resistor attached to the VID inputs also has a series diode connected to VCC to allow input voltages higher than the VCC supply without damage or clamping. (See Operation section for further details.) 170661f 2 LTC1706-61 U W TYPICAL PERFORMANCE CHARACTERISTICS IVID-PULLUP vs Temperature 1.0 100 80 60 1.5 SUPPLY CURRENT (µA) 120 ALL VID INPUTS OPEN TA = 25°C ALL VID INPUTS OPEN VCC = 5V VID4 = 0V VID0 = VID1 = VID2 = VID3 = OPEN SUPPLY CURRENT (µA) VID PULL-UP CURRENT (µA) Supply Current vs Supply Voltage Supply Current vs Temperature 2.0 140 1.0 VCC = 5V VCC = 3.3V 0.5 VCC = 2.7V 0.5 40 20 –50 0 50 TEMPERATURE (°C) 0 –50 100 0 50 TEMPERATURE (°C) VID 0.35 0.25 0.25 0.15 0.15 –0.05 –0.15 –0.25 –0.25 –0.35 0.775 0.975 1.175 1.375 1.575 VCC = 5.5V 10.05 0.05 –0.15 VSENSE = 0.8V VSENSE = 1.55V 10.00 9.95 –0.35 –60 –40 –20 0 20 40 60 80 100 9.90 –50 TEMPERATURE (°C) SENSE VOLTAGE (V) 6.0 RFB1 vs Temperature VSENSE = 1.15V –0.05 5.5 10.10 RFB1 (kΩ) VIDACCURACY ( %) VIDACCURACY ( %) 0.35 VCC = 2.7V 3.5 4.0 4.5 5.0 SUPPLY VOLTAGE (V) 1706-61 G03 VID Sense Accuracy vs Temperature VID Sense Accuracy VCC = 5.5V 3.0 1706-61 G02 1706-61 G01 0.05 0 2.5 100 1706-61 G04 1706-61 G05 0 50 TEMPERATURE (°C) 100 1706-61 G06 U U U PIN FUNCTIONS VID0 (Pin 1): LSB Programming Input. Low = GND, High = VCC or Float. Grounding VID0 adds 25mV to the output sense voltage. VID1 (Pin 2): 4th MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID1 adds 50mV to the output sense voltage. VID2 (Pin 3): 3rd MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID2 adds 100mV to the output sense voltage. VID3 (Pin 4): 2nd MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID3 adds 200mV to the output sense voltage. VCC (Pin 5): Power Supply Voltage. Range from 2.7V to 5.5V. SENSE (Pin 6): Regulator Output Voltage. Connect directly to regulator output sense node. VID4 (Pin 7): MSB Programming Input. Low = GND, High = VCC or Float. Grounding VID4 adds 400mV to the output sense voltage. NC (Pin 8): No Connect. GND (Pin 9): Ground. Connect to regulator signal ground. FB (Pin 10): Feedback Input. Connect to the 0.6V feedback pin of a compatible regulator. 170661f 3 LTC1706-61 U U U PIN FUNCTIONS MIN NOMINAL (V) TYP MAX ABSOLUTE MAX (V) MIN MAX PIN NAME DESCRIPTION 1 VID0 LSB Programmable Input 0 VCC – 0.3 7 2 VID1 4th MSB Programmable Input 0 VCC – 0.3 7 3 VID2 3rd MSB Programmable Input 0 VCC – 0.3 7 4 VID3 2nd MSB Programmable Input 0 VCC – 0.3 7 5 VCC Power Supply 2.7 5.5 – 0.3 7 6 SENSE Regulator Output Voltage 0.8 1.55 – 0.3 7 7 VID4 1st MSB Programmable Input 0 VCC – 0.3 7 8 NC 9 GND Ground – 0.3 7 10 FB 0.6V Feedback Input – 0.3 7 0 0 0.6 1.5 W BLOCK DIAGRA VCC 40k VID0 1 VCC VCC 5 6 40k VID1 2 SENSE RFB1 VCC 10 FB SWITCH CONTROL LOGIC RFB2 9 40k GND VID2 3 1706-61 BD VCC VCC 40k VID3 4 40k VID4 7 U OPERATIO The LTC1706-61 is a precision resistive divider designed specifically for use with an entire family of Linear Technology Corporation DC/DC switching regulators with 0.6V internal reference and feedback voltage. The LTC1706-61 produces an output voltage ranging from 0.8V to 1.55V in 25mV steps by closing the loop between the output voltage sense and the feedback input of the regulator with the appropriate resistive divider network. The “top” feedback resistor, RFB1, connected between SENSE and FB, is typically 10k and is not modified by the state of the VID program inputs. The “bottom” feedback resistor, RFB2, however, is modified by the five VID inputs and is precisely ratioed to RFB1. 170661f 4 LTC1706-61 U OPERATIO VID Programming A list of programmed inputs and their corresponding output voltages is shown in Table 1. Programming is accomplished by applying the proper voltage (or float condition) on the five digital VID inputs. Table 1. VID Inputs and Corresponding Output Voltage CODE VID4 VID3 VID2 VID1 VID0 OUTPUT 00000 GND GND GND GND GND 1.550V 00001 GND GND GND GND Float 1.525V 00010 GND GND GND Float GND 1.500V 00011 GND GND GND Float Float 1.475V 00100 GND GND Float GND GND 1.450V 00101 GND GND Float GND Float 1.425V 00110 GND GND Float Float GND 1.400V 00111 GND GND Float Float Float 1.375V 01000 GND Float GND GND GND 1.350V 01001 GND Float GND GND Float 1.325V 01010 GND Float GND Float GND 1.300V 01011 GND Float GND Float Float 1.275V 01100 GND Float Float GND GND 1.250V 01101 GND Float Float GND Float 1.225V 01110 GND Float Float Float GND 1.200V 01111 GND Float Float Float Float 1.175V 10000 Float GND GND GND GND 1.150V 10001 Float GND GND GND Float 1.125V 10010 Float GND GND Float GND 1.100V 10011 Float GND GND Float Float 1.075V 10100 Float GND Float GND GND 1.050V 10101 Float GND Float GND Float 1.025V 10110 Float GND Float Float GND 1.000V 10111 Float GND Float Float Float 0.975V 11000 Float Float GND GND GND 0.950V 11001 Float Float GND GND Float 0.925V 11010 Float Float GND Float GND 0.900V 11011 Float Float GND Float Float 0.875V 11100 Float Float Float GND GND 0.850V 11101 Float Float Float GND Float 0.825V 11110 Float Float Float Float GND 0.800V 11111 Float Float Float Float Float *0.775V *Represents codes without a defined output (shutdown) voltage as specified in AMD specifications. The LTC1706-61 interprets these codes as a valid input and produces an output voltage as follows: (11111) = 0.775V. When all five VID inputs are high or floating, such as when no CPU is present in a system, a regulated 0.775V output is generated at VSENSE. Each VID input pin is pulled up by a 40k resistor in series with a diode connected to VCC. Therefore, it should be grounded (or driven low) to produce a digital low input. It can either be floated or connected to VCC to get a digital high input. The series diode is included to prevent the input from being damaged or clamped when it is driven higher than VCC. Voltage Sensing and Feedback Pins The FB pin is a high impedance node that requires minimum layout distance to reduce extra loading and unwanted stray pickup. When used with the LTC1629-6, the LTC1706-61’s FB, SENSE, VCC and GND pins should be connected, respectively, with the EAIN, VDIFFOUT, INTVCC and SGND pins of the LTC1629-6. The result of this application is a precisely controlled, variable output voltage supply to any low voltage, high current system such as a powerful personal computer, workstation or network server. VID Input Characteristics The VID inputs should be driven with a maximum VIL of 0.4V and a minimum VIH of 1.6V. However, the VID input range is not limited to values less than VCC. Because of the internal diode between VCC and the pull-up resistor, the inputs can go higher than VCC without being clamped to VCC or damaging the input. This allows the LTC1706-61 to be fully logic compatible and operational over a higher input voltage range (less than the 7V absolute maximum rating). When a VID input is grounded, there will be a higher quiescent current flow from VCC because of a resistor from VCC through a series diode to each one of the inputs. This increase in quiescent current is calculated from: IQ = N(VCC – VDIODE)/RPULLUP N is the number of grounded VID inputs. VDIODE is typically 0.6V while RPULLUP has a typical pull-up resistance of 40kΩ. 170661f 5 LTC1706-61 U OPERATIO In other words, each VID input has a typical pull-up current of 68µA for a 3.3V system. Besides the LTC1629-6, the LTC1706-61 also programs a whole family of LTC DC/DC converters that have an onboard 0.6V reference. The LTC3714, LTC3778 and LTC3731 are just a few of the high efficiency step-down switching regulators that will work equally well with the LTC1706-61. U TYPICAL APPLICATIO 2-Phase 12V Input, 0.8V to 1.55V/45A Max Power Supply with Adjustable Overvoltage Protection VCC VDD_CORE+ LTC1706-61 SENSE – OVP TO SYSTEM OVERVOLTAGE PROTECTION VID0 VID1 VID2 VID3 VID4 LOGIC FB OVP THRESHOLD FROM µP + COMPARATOR PWRGD ENABLE RUN/SS D1 BAT54 C3 1nF C1 0.1µF TG1 3 SENSE1– SW1 6 7 C9 4.7nF R6 2.2k 8 C10 220pF 9 R24 107k C14 470pF INTVCC Q9 (OPT) 2N7002 C17 1nF VID0 VID1 PGOOD SENSE1+ 5 CLK1 RUN/SS 2 4 R23 48.7k R1 10Ω LTC3719 1 10 EAIN PLLFLTR PLLIN BOOST1 VIN BG1 FCB EXTVCC ITH INTVCC SGND VDIFFOUT PGND BG2 11 VOS– BOOST2 12 VOS+ SW2 13 SENSE2 – TG2 14 SENSE2 + ATTENIN 15 16 17 18 ATTENOUT VBIAS NO_CPU VID4 VID0 VID3 VID1 VID2 36 35 34 C5 0.47µF 33 32 C7 1µF 31 30 29 28 INTVCC C11 2.2µF + 27 D3 BAT54A C12 10µF C15 0.47µF 26 25 R12 10Ω 5 6 7 8 Q3 Si7448DP 1 2 3 ×2 C13 0.47µF L2 0.8µH C2 0.47µF 10Ω L1 0.8µH 12VIN CIN1 10Ω GND R5 0.002Ω D2 B320A C8 0.47µF VDD_CORE+ + COUT1 R7 0.002Ω R8 50Ω C16 0.47µF D4 B320A 10Ω 22 21 5 6 7 8 Q2 Si7448DP 1 2 3 ×3 5 6 7 8 Q4 Si7448DP 1 2 3 ×3 24 23 5 6 7 8 Q1 Si7448DP 1 2 3 ×2 GND R9 50Ω COREFB_H 10Ω C18 0.1µF 20 19 VID2 VID3 VID4 COREFB_L CIN1: SIX 10µF 16V CERAMIC CAPACITORS COUT1: TEN 22µF 6.3V CERAMIC CAPACITORS L1, L2: SUMIDA CEP125-1R0MC-H 1706-61 TA03 170661f 6 LTC1706-61 U TYPICAL APPLICATIO 0.8V to 1.55V VID Programmable 15A Power Supply 1µF X5R CMDSH-3 1 2 100k 3 4 1500pF 20k 5 6 22pF 7 0.01µF 8 9 330k 10 RUN/SS VON BOOST LTC3778 PGOOD TG SW VRNG SENSE + ITH SENSE – FCB PGND SGND BG ION DRVCC VFB INTVCC EXTVCC VIN 20 19 0.22µF 18 VIN 12V 10µF 16V X5R ×4 IRF7811 0.68µH 17 16 B320A 15 VOUT 0.8V TO 1.55V 15A SP 270µF 2V ×3 22µF 6.3V X5R IRF7811 14 13 4.7µF X5R 6.3V 12 1Ω 11 VIN 5V 0.1µF 5 FROM µP 1 2 3 4 7 VCC 6 VID0 SENSE VID1 VID2 LTC1706-61 VID3 FB VID4 GND 10 9 1706-61 TA02 U PACKAGE DESCRIPTION MS Package 10-Lead Plastic MSOP (Reference LTC DWG # 05-08-1661) 3.00 ± 0.102 (.118 ± .004) (NOTE 3) 0.889 ± 0.127 (.035 ± .005) 10 9 8 7 6 5.23 (.206) MIN 3.2 – 3.45 (.126 – .136) 0.254 (.010) 0.50 0.305 ± 0.038 (.0197) (.0120 ± .0015) BSC TYP RECOMMENDED SOLDER PAD LAYOUT 3.00 ± 0.102 (.118 ± .004) NOTE 4 4.90 ± 0.15 (1.93 ± .006) DETAIL “A” 0.497 ± 0.076 (.0196 ± .003) REF 0° – 6° TYP GAUGE PLANE 1 2 3 4 5 0.53 ± 0.01 (.021 ± .006) DETAIL “A” 0.86 (.034) REF 1.10 (.043) MAX 0.18 (.007) NOTE: 1. DIMENSIONS IN MILLIMETER/(INCH) 2. DRAWING NOT TO SCALE 3. DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS OR GATE BURRS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 4. DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSIONS. INTERLEAD FLASH OR PROTRUSIONS SHALL NOT EXCEED 0.152mm (.006") PER SIDE 5. LEAD COPLANARITY (BOTTOM OF LEADS AFTER FORMING) SHALL BE 0.102mm (.004") MAX SEATING PLANE 0.17 – 0.27 (.007 – .011) TYP 0.50 (.0197) BSC 0.13 ± 0.076 (.005 ± .003) MSOP (MS) 0802 170661f Information furnished by Linear Technology Corporation is believed to be accurate and reliable. However, no responsibility is assumed for its use. Linear Technology Corporation makes no representation that the interconnection of its circuits as described herein will not infringe on existing patent rights. 7 LTC1706-61 U TYPICAL APPLICATION VID Controlled High Current 70A 4-Phase Application OPTIONAL SYNC CLOCK IN 0.33µF RUN/SS SENSE1+ TG1 3 SENSE1– SW1 1000pF 4 5 1 2 FROM µP 3 4 VCC SENSE VID2 47k LTC1706-61 FB GND PHASMD 8 ITH 9 LTC1629-6 EXTVCC INTVCC 10 VOS– 11 VOS+ VOS– BOOST2 12 VOS+ SW2 SENSE2– TG2 SENSE2+ AMPMD VID3 VID4 6800pF VIN BG1 100pF VDIFFOUT 100pF 7 PLLIN 7 6 BOOST1 PLLFLTR 6 0.33µF VID1 EAIN 5 VID0 CLKOUT 2 10 SGND VDIFFOUT 1000pF 13 9 14 PGND BG2 L1 28 27 5V 0.003Ω 26 0.47µF 25 M1 10Ω 24 M2 1µF 23 22 21 D7 20 D8 1µF 25V + 1 22µF 6.3V M3 150µF, 16V ×2 + + GND M4 0.47µF 17 M5 16 VOUT 0.8V TO 1.55V 70A COUT 470µF, 6.3V ×3 19 18 D1 MBRS 340T3 M6 15 D2 MBRS 340T3 0.003Ω L2 75k 1 2 1000pF 3 47pF 4 10k 5 0.01µF 6 RUN/SS SENSE1+ SENSE1– EAIN PLLFLTR PLLIN 7 47pF VDIFFOUT VOS– VOS+ 1000pF M1 TO M12: FDS7760A L1 TO L4: 1µH SUMIDA CEPH149-IROMC D7 TO D10: CENTROI CMDSH-3TR COUT: KEMET T510X477M006AS fSW: 200kHz CLKOUT TG1 SW1 BOOST1 VIN BG1 EXTVCC PHASMD 8 LTC1629-6 INTVCC ITH 9 PGND SGND 10 BG2 VDIFFOUT 11 BOOST2 VOS– 12 SW2 VOS+ 13 TG2 SENSE2– 14 AMPMD SENSE2+ L3 28 27 5V 0.003Ω 26 25 0.47µF 10Ω 24 M7 22 21 D9 20 D10 1µF 25V M9 M8 1µF 23 + 24k COUT 470µF, 6.3V ×3 150µF, 16V ×2 22µF 6.3V + D3 MBRS 340T3 + GND VIN 12V 19 18 17 0.47µF M10 M12 M11 16 15 D4 MBRS 340T3 0.003Ω L4 1706-61 TA04 RELATED PARTS PART NUMBER DESCRIPTION COMMENTS LTC1629-6 PolyPhase® Synchronous Step-Down Controller Up to 12-Phase Operation, Up to 200A Power Supply LTC3714 Single Phase Synchronous Step-Down Controller with VID 0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 25A LTC3716 2-Phase Synchronous Step-Down Controller with VID 0.6V ≤ VOUT ≤ 1.75V, IOUT ≤ 40A LTC3719 AMD Opteron CPU Power Supply 0.8V ≤ VOUT ≤ 1.55V, IOUT ≤ 40A LTC3731 3-Phase, 60A Synchronous Step-Down Controller Single IC 60A Solution with Onboard MOSFET Drivers, ±5% Output Current Matching for Optimum Thermal Performance and Reliability LTC3733 3-Phase, 60A Synchronous Step-Down Controller for AMD Opteron Processors On-Board VID and MOSFET Drivers, 0.8V ≤ VOUT ≤ 1.55V, IOUT ≤ 60A LTC3778 Optional RSENSE Synchronous Step-Down Controller 4V ≤ VIN ≤ 36V, 0.6V ≤ VOUT ≤ (0.9)VIN, IOUT ≤ 25A PolyPhase is a registered trademark of Linear Technology Corporation. 170661f 8 Linear Technology Corporation LT/TP 0603 1K • PRINTED IN USA 1630 McCarthy Blvd., Milpitas, CA 95035-7417 (408) 432-1900 ● FAX: (408) 434-0507 ● www.linear.com LINEAR TECHNOLOGY CORPORATION 2002