FUJITSU MB3876PFV

FUJITSU SEMICONDUCTOR
DATA SHEET
ASSP
DS04-27704-2E
For Power Supply Applications (Lithium ion battery charger)
DC/DC Converter IC for Parallel Charging
MB3874/MB3876
■ DESCRIPTION
The MB3874 and MB3876 are parallel charging DC/DC converter ICs suitable for down-conversion, which uses
pulse width modulation (PWM) for controlling the output voltage and current independently.
These ICs can dynamically control the secondary battery’s charge current by detecting a voltage drop in an AC
adapter in order to keep its power constant (dynamically-controlled charging).
The charging method enables quick charging, for example, with the AC adapter during operation of a notebook PC.
The IC also enable parallel charging, or charging two batteries at the same time, dramatically reducing the charging
time.
With an on-chip output voltage setting resistor which allows the output voltage to be set at high precision, these
ICs are best suited as internal battery chargers for notebook PCs.
The MB3874 support 3-cell battery and the MB3876 support 4-cell battery.
■ FEATURES
• Detecting a voltage drop in the AC adapter and dynamically controlling the charge current (Dynamically-controlled charging)
• High efficiency
: 93 %(In reverse-current preventive diode)
• Wide range of operating supply voltages
: 7 V to 25 V
• Output voltage precision
(Built-in output voltage setting resistor )
: ± 0.8 % (Ta = + 25 °C)
• High precision reference voltage source
: 4.2 V ± 0.8 %
(Continued)
■ PACKAGE
24-pin plastic SSOP
(FPT-24P-M03)
MB3874/MB3876
(Continued)
• Support for frequency setting using an external resistor
(Frequency setting capacitor integrated)
:100 kHz to 500 kHz
• Built-in current detector amplifier with wide in-phase input voltage range
: 0 V to VCC
• Built-in standby current function
: 0 µA (Typ.)
• Built-in soft start function
• Capable of parallel charging (Charging the two battery packs at a time)
• Internal totem-pole output stage supporting P-channel MOS FETs devices
2
MB3874/MB3876
■ PIN ASSIGNMENT
(TOP VIEW)
24 : +INC1
−INC1 : 1
23 : GND
FB2 : 2
−INE2 : 3
22 : CS
+INE2 : 4
21 : VCC
VREF : 5
20 : OUT
CTL : 6
19 : VH
FB1 : 7
18 : OUTM
−INE1 : 8
17 : RT
+INE3 : 9
16 : −INE4
−INE3 : 10
15 : FB4
FB3 : 11
14 : −INE5
−INC2 : 12
13 : +INC2
(FPT-24P-M03)
3
MB3874/MB3876
■ PIN DESCRIPTION
4
Pin No.
Symbol
I/O
Descriptions
1
–INC1
I
Output voltage feedback input pin.
2
FB2
O
Error amplifier (Error Amp. 2) output pin.
3
–INE2
I
Error amplifier (Error Amp. 2) inverted input pin.
4
+INE2
I
Error amplifier (Error Amp. 2) non-inverted input pin.
Input pin for charge current setting voltage
5
VREF
O
Reference voltage output pin.
6
CTL
I
Power supply control pin.
Setting the CTL pin low places the IC in the standby mode.
7
FB1
O
Error amplifier (Error Amp. 1) output pin.
8
–INE1
I
Error amplifier (Error Amp. 1) inverted input pin
Input pin for dynamically-controlled charging voltage setting
9
+INE3
I
Error amplifier (Error Amp. 3) non-inverted input pin.
Input pin for charge current setting voltage
10
–INE3
I
Error amplifier (Error Amp. 3) inverted input pin.
11
FB3
O
Error amplifier (Error Amp. 3) output pin.
12
–INC2
I
Output voltage feedback input pin.
13
+INC2
I
Current detection amplifier (Current Amp. 2) input pin .
14
–INE5
I
Error amplifier (Error Amp. 5) inverted input pin.
15
FB4
O
Error amplifier (Error Amp. 4, 5) output pin.
16
–INE4
I
Error amplifier (Error Amp. 4) inverted input pin.
17
RT
—
Triangular-wave oscillation frequency setting resistor connection pin.
18
OUTM
O
Output pin for dynamically controlled charging identification signal
“H” level: Constant-voltage or constant-current charging mode
“L” level: Dynamically controlled charging mode
19
VH
O
Power supply pin for FET drive circuit (VH = Vcc − 5 V).
20
OUT
O
High-side FET gate drive pin.
21
VCC
—
Power supply pin for reference power supply and control circuit.
22
CS
—
Soft-start capacitor connection pin.
23
GND
—
Ground pin.
24
+INC1
I
Current detection amplifier (Current Amp. 1) input pin .
MB3874/MB3876
■ BLOCK DIAGRAM
<Error Amp.1> VREF
−
208 kΩ
+
−INE1
8
VCC
<MASK Comp.>
−
+
42 kΩ
FB1
−INE2
+INC1
−INC1
+INE2
7
3
24
1
2.5 V
<Current Amp.1> <Error
Amp.2> VREF
+
100 kΩ
× 25
−
−
+
<PWM
Comp.>
+
+
+
+
−
4
2
+INC2
−INC2
+INE3
10
13
12
<Current Amp.2> <Error
Amp.3> VREF
+
100 kΩ
−
× 25
−
+
∗
R2
50 kΩ
R1
∗
R2
50 kΩ
−
+
+
CS
15
22
19
OUT
VH
(VCC − 5 V)
<UVLO>
<Error
Amp.5> VREF
VCC
(VCC UVLO) 215 kΩ
+
−
+
+
35 kΩ
−
0.91 V
(0.77 V)
VREF
(4.2 V)
FB4
20
<Error
Amp.4> VREF
R1
14
Drive
<VH>
11
−INE5
<OUT>
Bias voltage
block
FB3
16
VCC
VCC
9
−INE4
21
VCC
FB2
−INE3
OUTM
18
VREF
ULVO
<SOFT>
VREF
1 µA
bias
2.5 V
1.5 V
CTL
<OSC>
<Ref>
<CTL>
6
(45 pF)
RT
17
VREF
5
GND
23
∗ : MB3874 100 kΩ
MB3876 150 kΩ
5
MB3874/MB3876
■ ABSOLUTE MAXIMUM RATINGS
Parameter
Symbol
Conditions
Power supply voltage
VCC
Output terminal current
Peak output current
OUTM terminal output voltage
Power dissipation
Storage temperature
Rating
Unit
Min.
Max.
—
—
28
V
IOUT
—
—
60
mA
IOUT
Duty ≤ 5% (t =1 / fOSC × Duty)
—
500
mA
VOUTM
—
—
17
V
—
740*
mW
—
–55
+125
°C
PD
Ta ≤ +25°C
Tstg
*: The package is mounted on the dual-sided epoxy board (10 cm × 10 cm).
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current,
temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.
■ RECOMMENDED OPERATING CONDITIONS
Parameter
Symbol
Conditions
Power supply voltage
VCC
Reference voltage output
current
VH pin output current
Input voltage
Value
Unit
Min.
Typ.
Max.
—
7
—
25
V
IREF
—
–1
—
0
mA
IVH
—
0
—
30
mA
V-INC
–INC1, –INC2
0
—
17
V
VINE
–INE1 to –INE5, +INE2
0
—
VCC – 1.8
V
V+INC
+INC1, +INC2
0
—
VCC
V
0
—
25
V
—
CTL pin input voltage
VCTL
Output current
IOUT
OUT pin
–45
—
45
mA
Peak output current
IOUT
Duty ≤ 5% (t =1 / fOSC × Duty)
–450
—
450
mA
OUTM pin output voltage
VOUTM
—
—
3
15
V
OUTM pin output current
IOUTM
—
—
—
1
mA
Oscillator frequency
fOSC
—
100
290
500
kHz
Timing resistor
RT
—
33
47
130
kΩ
Soft-start capacitor
CS
—
—
2200
100000
pF
VH pin capacitor
CVH
—
—
0.1
1.0
µF
Reference voltage output
capacitor
CREF
—
—
0.1
1.0
µF
Ta
—
–30
+25
+85
°C
Operating ambient temperature
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the
semiconductor device. All of the device’s electrical characteristics are warranted when the device is
operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation
outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on
the data sheet. Users considering application outside the listed conditions are advised to contact their
FUJITSU representatives beforehand.
6
MB3874/MB3876
■ ELECTRICAL CHARACTERISTICS
Reference voltage
block (Ref)
Parameter
Symbol Pin No.
Ta = +25°C
4.167
4.200
4.233
V
Ta = –30°C to +85°C
4.158
4.200
4.242
V
VCC = 7 V to 25 V
—
3
10
mV
5
VREF = 0 mA to –1 mA
—
1
10
mV
5
VREF = 1 V
–25
–15
–5
mA
VCC =
6.3
6.6
6.9
V
VCC =
5.3
5.6
5.9
V
0.7
1.0
1.3
V
VREF =
2.6
2.8
3.0
V
VREF=
2.4
2.6
2.8
V
Output voltage
VREF
5
Input stability
Line
5
Load stability
Load
Short-circuit
output current
IOS
VTLH
Under voltage
lockout protection
circuit block (UVLO)
Threshold
voltage
21
VTHL
Hysteresis width
VH
21
VTLH
Threshold
voltage
Soft-start
block
(SOFT)
—
5
VTHL
Triangular waveform
oscillator circuit
block (OSC)
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA)
(MB3876 : Ta = +25°C, VCC = 19 V, VREF = 0 mA)
Value
Conditions
Unit Remarks
Min.
Typ.
Max.
Hysteresis width
VH
5
—
0.05
0.20
0.35
V
Charge current
ICS
22
—
–1.3
–0.8
–0.5
µA
Oscillation
frequency
fOSC
20
RT = 47 kΩ
260
290
320
kHz
∆f/fdt
20
Ta = –30°C to +85°C
—
1*
—
%
Frequency temperature stability
*: Standard design value.
(Continued)
7
MB3874/MB3876
(Continued)
Error amplifier block
(Error Amp.1)
Parameter
Symbol Pin No
FB1 = 2 V,
–INE1 = 2.35 V
14.00
14.20
14.40
V
MB3874
FB1 = 2 V,
–INE1 = 2.83 V
16.80
17.10
17.40
V
MB3876
–100
–30
—
nA
Threshold
voltage
VTH
Input pin current
IIN
8
–INE1= 0 V
Voltage gain
AV
7
DC
—
100*
—
dB
Frequency
bandwidth
BW
7
AV = 0 dB
—
2.0*
—
MHz
VFBH
7
—
3.9
4.1
—
V
VFBL
7
—
—
20
200
mV
ISOURCE
7
FB1 = 2 V
—
–2.0
–0.6
mA
Output sink
current
ISINK
7
FB1 = 2 V
150
300
—
µA
Input offset
voltage
VIO
3,4
9,10
FB2 = FB3 = 2 V
—
1*
—
mV
Input pin
current
IINE
4,9
+INE2 = +INE3 = 0 V
–100
–30
—
nA
Common mode
input voltage
range
VCM
3,4
9,10
0
—
VCC–1.8
V
Voltage gain
AV
2, 11
DC
—
100*
—
dB
Frequency
bandwidth
BW
2, 11
AV = 0 dB
—
2.0*
—
MHz
VFBH
2, 11
—
3.9
4.1
—
V
VFBL
2, 11
—
—
20
200
mV
ISOURCE
2, 11
FB2 = FB3 = 2 V
—
–2.0
–0.6
mA
ISINK
2, 11
FB2 = FB3 = 2 V
150
300
—
µA
Output voltage
Output source
current
Error amplifier block
(Error Amp.2, 3)
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA)
(MB3876 : Ta = +25°C, VCC = 19 V, VREF = 0 mA)
Value
Conditions
Unit Remarks
Min.
Typ.
Max.
Output voltage
Output source
current
Output sink
current
21
—
*: Standard design value.
(Continued)
8
MB3874/MB3876
(Continued)
Parameter
Threshold
voltage
Symbol Pin No
FB4 = 2 V,
Ta = +25 °C
VTH
1, 12
FB1 = 2 V,
Ta = –30 °C to +85 °C
IINEH
1, 12
Input current
Error amplifier block
(Current Amp.4, 5)
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA)
(MB3876 : Ta = +25°C, VCC = 19 V, VREF = 0 mA)
Value
Conditions
Unit Remarks
Min.
Typ.
Max.
IINEL
1, 12
12.500 12.600 12.700
V
MB3874
16.666 16.800 16.934
V
MB3876
12.474 12.600 12.726
V
MB3874
16.632 16.800 16.968
V
MB3876
–INC1 = –INC2 = 12.6 V
—
84
150
µA MB3874
–INC1 = –INC2 = 16.8 V
—
84
150
µA MB3876
VCC = 0 V,
–INC1 = –INC2 = 12.6 V
—
0
1
µA MB3874
VCC = 0 V,
–INC1 = –INC2 = 16.8 V
—
0
1
µA MB3876
70
100
130
kΩ MB3874
105
150
195
kΩ MB3876
35
50
65
kΩ
R1
1, 12
—
R2
14, 16
—
Voltage gain
AV
15
DC
—
100*
—
dB
Frequency
bandwidth
BW
15
AV = 0 dB
—
2.0*
—
MHz
VFBH
15
—
3.9
4.1
—
V
VFBL
15
—
—
20
200
mV
ISOURCE
15
FB4 = 2 V
—
–2.0
–0.6
mA
ISINK
15
FB4 = 2 V
150
300
—
µA
Input resistor
Output voltage
Output source
current
Output sink
current
*: Standard design value.
(Continued)
9
MB3874/MB3876
(Continued)
Parameter
Symbol Pin No.
I+INCH
13, 24
Input current
I+INCL
Current detection amplifier block
(Current Amp.1, 2)
V-INE1
Current detection
voltage
Common mode
input voltage range
Voltage gain
Constant power
detection block
(MASK Comp.)
PWM comparator
block
(PWM Comp.)
Output voltage
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA)
(MB3876 : Ta = +25°C, VCC = 19 V, VREF = 0 mA)
Value
Conditions
Unit Remarks
Min.
Typ.
Max.
V-INE2
13, 24
3, 10
3, 10
+INC1= +INC2=12.7 V,
–INC1= –INC2=12.6 V
—
10
20
µA MB3874
+INC1= +INC2=16.9 V,
–INC1= –INC2=16.8 V
—
10
20
µA MB3876
+INC1= +INC2= 0.1 V,
–INC1= –INC2= 0 V
–130
–65
—
µA
+INC1= +INC2=12.7 V,
–INC1= –INC2=12.6 V
2.25
2.50
2.75
V
MB3874
+INC1= +INC2=16.9 V,
–INC1= –INC2=16.8 V
2.25
2.50
2.75
V
MB3876
+INC1= +INC2=12.63V,
–INC1= –INC2=12.6 V
0.50
0.75
1.00
V
MB3874
+INC1= +INC2=16.83 V,
–INC1= –INC2=16.8 V
0.50
0.75
1.00
V
MB3876
V-INE3
3, 10
+INC1= +INC2= 0.1 V ,
–INC1= –INC2= 0 V
1.25
2.50
3.75
V
V-INE4
3, 10
+INC1= +INC2= 0.03 V,
–INC1= –INC2= 0 V
0.125
0.750
1.375
V
VCM
1, 12,
13, 24
—
0
—
VCC
V
+INC1= +INC2=12.7 V,
–INC1= –INC2=12.6 V
22.5
25
27.5
V/V MB3874
+INC1= +INC2=16.9 V,
–INC1= –INC2=16.8 V
22.5
25
27.5
V/V MB3876
AV
3, 10
VOUTCH
3, 10
—
3.9
4.1
—
V
VOUTCL
3, 10
—
—
20
200
mV
VTL
2, 7,
Duty cycle = 0 %
11, 15
1.4
1.5
—
V
VTH
2, 7,
Duty cycle = 100 %
11, 15
—
2.5
2.6
V
Threshold voltage
VTLH
18
FB1 =
2.7
2.8
2.9
V
VTHL
18
FB1 =
2.4
2.5
2.6
V
VH
18
0.2
0.3
0.4
V
Output leak current
ILEAK
18
OUTM = 5 V
—
0
1
µA
Output voltage
VOL
18
OUTM = 1 mA
—
0.15
0.4
V
Threshold voltage
Hysteresis width
—
(Continued)
10
MB3874/MB3876
(Continued)
(MB3874 : Ta = +25°C, VCC = 16 V, VREF = 0 mA)
(MB3876 : Ta = +25°C, VCC = 19 V, VREF = 0 mA)
Parameter
Output source
current
Symbol Pin No.
ISOURCE
20
Conditions
Typ.
Max.
OUT = 11 V,
Duty ≤ 5 %
—
–200*
—
mA MB3874
OUT = 14 V,
Duty ≤ 5 %
—
–200*
—
mA MB3876
OUT = 16 V,
Duty ≤ 5 %
—
200*
—
mA MB3874
OUT = 19 V,
Duty ≤ 5 %
—
200*
—
mA MB3876
(t = 1/fosc × Duty )
Output block
(OUT)
Control block
(CTL)
Bias
voltage
block (VH)
20
(t = 1/fosc × Duty )
(t = 1/fosc × Duty )
ROH
20
OUT = −45 mA
—
8.0
16.0
Ω
ROL
20
OUT = 45 mA
—
6.5
13.0
Ω
Rise time
tr1
20
—
70*
—
ns
Fall time
tf1
20
—
60*
—
ns
VON
6
Active mode
2.0
—
25.0
V
VOFF
6
Standby mode
0
—
0.8
V
ICTLH
6
CTL = 5 V
—
100
200
µA
ICTLL
6
CTL = 0 V
—
0
1
µA
Output voltage
VH
19
VCC = 7 V to 25 V,
VH = 0 to 30 mA
VCC –
5.5
VCC –
5.0
VCC –
4.5
V
Standby current
ICCS
21
CTL = 0 V
—
0
10
µA
Power supply
current
ICC
21
CTL = 5 V
—
6.0
9.0
mA MB3874
—
6.5
9.5
mA MB3876
Output ON resistor
General
ISINK
Unit Remarks
Min.
(t = 1/fosc × Duty )
Output sink current
Value
CTL input voltage
Input current
OUT = 3300 pF
(Equivalent to Si4435DY)
OUT = 3300 pF
(Equivalent to Si4435DY)
*: Standard design value
11
MB3874/MB3876
■ TYPICAL CHARACTERISTICS
Reference voltage vs. power supply voltage
10
10
Ta = +25 °C
CTL = 5 V
8
6
4
2
0
Reference voltage VREF (V)
Power supply current ICC (mA)
Power supply current vs. power supply voltage
Ta = +25 °C
CTL = 5 V
VREF = 0 mA
8
6
4
2
0
0
5
10
15
20
0
25
15
20
25
Reference voltage vs. VREF load current
Reference voltage vs. ambient temperature
10
2.0
Ta = +25 °C
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
CTL = 5 V
8
6
4
2
Reference voltage ∆VREF (%)
Reference voltage VREF (V)
10
Power supply voltage VCC (V)
Power supply voltage VCC (V)
0
5
10
15
20
25
1.0
0.5
0.0
-0.5
-1.0
-1.5
30
Reference voltage vs. CTL pin voltage
0
20
40
60
80
100
CTL pin current vs. CTL pin voltage
6
4
2
1.0
CTL pin current ICTL (µA)
Ta = +25 °C
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
VREF = 0 mA
8
-20
Ambient temperature Ta (°C)
VREF load current IREF (mA)
10
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
CTL = 5 V
VREF = 0 mA
1.5
-2.0
-40
0
Reference voltage VREF (V)
5
Ta = +25 °C
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
0.8
0.6
0.4
0.2
0.0
0
0
5
10
15
CTL pin voltage VCTL(V)
20
25
0
5
10
15
20
25
CTL pin voltage VCTL (V)
(Continued)
12
MB3874/MB3876
Triangular wave oscillator frequency vs.
timing resistor
1M
Ta = +25 °C
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
CTL = 5 V
100 k
10 k
10 k
100 k
1M
Timing resistor RT (Ω)
Triangular wave oscillator frequency fOSC(kHz)
Triangular wave oscillator frequency fOSC(Hz)
(Continued)
Triangular wave oscillator frequency vs.
power supply voltage
350
Ta = +25 °C
CTL = 5 V
RT = 47 kΩ
340
330
320
310
300
290
280
270
260
250
0
330
320
310
300
290
280
270
260
250
−40
−20
0
20
40
60
Ambient temperature Ta (°C)
15
20
25
80
100
Error amplifier threshold voltage vs.
ambient temperature
Error amplifier threshold voltage ∆VTH(%)
Triangular wave oscillator frequency fOSC(kHz)
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
CTL = 5 V
RT = 47 kΩ
340
10
Power supply voltage VCC (V)
Triangular wave oscillator frequency vs.
ambient temperature
350
5
5.0
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
CTL = 5 V
4.0
3.0
2.0
1.0
0.0
−1.0
−2.0
−3.0
−4.0
−5.0
−40
−20
0
20
40
60
80
100
Ambient temperature Ta (°C)
13
MB3874/MB3876
(Continued)
Error amplifier gain and phase vs. frequency
Ta = +25 °C
AV
4.2 V
φ
20
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
180
90
Phase φ (deg)
Gain AV (dB)
40
0
0
−20
−90
−40
−180
100
1k
10 k
100 k
1M
240 kΩ
IN 1 µF
− +
10 kΩ
2.4 kΩ
10 kΩ
3 −
(10)
OUT
2
(11)
4 +
(9)
2.088 V Error Amp.2
(Error Amp.3)
10 M
Frequency f (Hz)
Current detection amplifier gain and phase vs. frequency
Ta = +25 °C
40
VCC = 16 V (MB3874)
VCC = 19 V (MB3876)
180
20
90
0
0
φ
−20
−90
−40
−180
100
1k
10 k
100 k
Phase φ (deg)
Gain AV (dB)
AV
1M
Frequency f (Hz)
Power dissipation PD (mW)
Power dissipation vs. ambient temperature
800
740
700
600
500
400
300
200
100
0
−40
−20
0
20
40
60
Ambient temperature Ta (°C)
14
80
100
IN
0.1 V
∗
24
(13)
1
(12)
+
× 25
−
100 kΩ
3 OUT
(10)
Current Amp.1
(Current Amp.2)
∗ : MB3874 12.6 V
MB3876 16.8 V
MB3874/MB3876
■ FUNCTIONAL DESCRIPTION
1. DC/DC Converter Unit
(1) Reference voltage block (Ref)
The reference voltage generator uses the voltage supplied from the Vcc terminal (pin 21) to generate a temperature-compensated, stable voltage ( =: 4.2 V) used as the reference supply voltage for the IC’s internal circuitry.
The reference voltage can be output, up to 1 mA, to an external device through the VREF terminal (pin 5).
(2) Triangular wave oscillator block (OSC)
The triangular wave oscillator generates a triangular waveform with a frequency setting resistor connected to
the internal frequency setting capacitor via the RT terminal (pin 17).
The triangular wave is input to the PWM comparator on the IC.
(3) Error amplifier block (Error Amp.1)
This error amplifier (Error Amp.1) detects a voltage drop in the AC adapter and outputs a PWM control signal
as well as a signal to the dynamically controlled charging detection block (MASK Comp.).
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB1
terminal (pin 7) to the −INE1 terminal (pin 8) of the error amplifier, enabling stable phase compensation to the
system.
(4) Error amplifier block (Error Amp.2, 3)
These error amplifiers (Error Amp.2, Error Amp.3) detect the output signals from the current detector amplifiers
(Current Amp.1, Current Amp.2), compare them with the +INE2 terminal (pin 4) and +INE3 terminal (pin 9), and
output PWM control signals to control the charge current.
In addition, these amplifiers allow an arbitrary loop gain to be set by connecting a feedback resistor and capacitor
from the FB2 terminal (pin 2) to −INE2 terminal (pin 3) and from the FB3 terminal (pin 11) to −INE3 terminal (pin
10) of the error amplifiers, enabling stable phase compensation to the system.
(5)
Error amplifier block (Error Amp.4, 5)
This error amplifier (Error Amp.4, Error Amp.5) detects the output voltage from the switching rerulator and outputs
the PWM control signal. The error amplifier inverted input pin is connected to the output voltage setting resistor
in the IC, eliminating the need for an external resistor for setting the output voltage. The MB3874 and MB3876
are set to output voltage of 12.6 V (for a 3-cell battery) and 16.8 V (for a 4-cell battery), respectively; these ICs
are suitable for use in equipment that uses a lithium-ion battery.
In addition, an arbitrary loop gain can be set by connecting a feedback resistor and capacitor from the FB4
terminal (pin 15) to the −INE4 terminal (pin 16) to the −INE5 terminal (pin 14) of the error amplifier, enabling
stable phase compensation to the system.
Connecting a soft-start capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on.
Using an error amplifier for soft start detection makes the soft start time constant, independent of the output load.
(6) Current detector amplifier block (Current Amp.1, 2)
The current detection amplifier (Current Amp.1, Current Amp.2) detects a voltage drop which occurs between
both ends of the output sense resistor (RS1) due to the flow of the charge current, using the +INC1 terminal
(pin 24) and
−INC1 terminal (pin 1). Then it outputs the signal amplified by 25 times to the error amplifier (Error Amp.2) at
the next stage.The amplifiers also detect a voltage drop which occurs at both ends of the output sense resistor
15
MB3874/MB3876
(RS2) using the +INC2 terminal (pin 13) and −INC2 terminal (pin 12) and output the signal amplified by 25 times
to the error amplifier (Error Amp. 3) at the next stage.
(7) PWM comparator block (PWM Comp.)
The PWM comparator circuit is a voltage-pulse width converter for controlling the output duty of the error
amplifiers (Error Amp. 1 to Error Amp. 5) depending on their output voltage.
The PWM comparator circuit compares the triangular wave generated by the triangular wave oscillator to the
error amplifier output voltage and turns on the external output transistor during the interval in which the triangular
wave voltage is lower than the error amplifier output voltage.
(8)
Output block (OUT)
The output circuit uses a totem-pole configuration capable of driving an external P-channel MOS FET.
The output “L” level sets the output amplitude to 5 V (typical) using the voltage generated by the bias voltage
block (VH).
This results in increasing conversion efficiency and suppressing the withstand voltage of the connected external
transistor in a wide range of input voltages.
(9)
Control block (CTL)
Setting the CTL terminal (pin 6) low places the IC in the standby mode. (The supply current is 10 µA at maximum
in the standby mode.)
(10) Bias voltage block (VH)
The bias voltage circuit outputs Vcc − 5 V (typical) as the minimum potential of the output circuit. In the standby
mode, this circuit outputs the potential equal to Vcc.
2. Protection Functions
Low-Vcc malfunction preventive circuit (UVLO)
The transient state or a momentary decrease in supply voltage or internal reference voltage (VREF), which
occurs when the power supply is turned on, may cause malfunctions in the control IC, resulting in breakdown
or degradation of the system. To prevent such malfunction, the low-Vcc malfunction preventive circuit detects
a supply voltage or internal reference voltage drop and fixes the OUT terminal (pin 20) to the “H” level. The
system restores voltage supply when the supply voltage or internal reference voltage reaches the threshold
voltage of the low-Vcc malfunction preventive circuit.
3. Soft Start Function
Soft start block (SOFT)
Connecting a capacitor to the CS terminal (pin 22) prevents surge currents when the IC is turned on. Using an
error amplifier for soft start detection makes the soft start time constant, independent of the output load of the
DC/DC converter.
4. Additional Functions
Dynamically controlled charging detection block (MASK Comp.)
The dynamically controlled charging detection block (MASK Comp.) usually output the “H” level signal. The
OUTM signal becomes low (“L” level) when the output voltage of the error amplifier (Error Amp. 1) that detects
the input voltage (Vcc) becomes lower than the crest value (2.5 V) of the triangular waveform generator (OSC).
The OUTM signal return high (“H” level) when the input voltage reaches 2.8 V or more.
16
MB3874/MB3876
■ METHOD OF SETTING THE CHARGING CURRENT
The charge current (output control current) value can be set with the voltage at the +INE2, +INE3 terminal.
If a current exceeding the set value attempts to flow, the charge voltage drops according to the set current value.
Battery 1 charge current setting voltage : +INE2
+INE2 (V) = 25 × I1 (A) × RS1 (Ω)
Battery 2 charge current setting voltage : +INE3
+INE3 (V) = 25 × I2 (A) × RS 2 (Ω)
■ METHOD OF SETTING THE SOFT START TIME
Upon activation, the IC starts charging the capacitor (Cs) connected to the CS terminal .
The error amplifier causes soft start operation to be performed with the output voltage in proportion to the CS
pin voltage regardless of the load current of the DC/DC converter.
Soft start time ts (Time taken for the output voltage to reach 100 %)
ts (s) =: 4.2 × CS (µF)
■ METHOD OF SETTING THE TRIANGULAR WAVE OSCILLATOR FREQUENCY SETTING
The trianguar wave oscillator frequency can be set by the timing resistor (RT) connected the RT terminal (pin 17).
Triangular wave oscillator frequency fOSC
fOSC (kHz) =: 14444 / RT (kΩ)
■ AC ADAPTER VOLTAGE DETECTION
When partial potential point A of the AC adapter voltage (Vcc) becomes lower than the voltage at the –INE1
pin, the IC enters the constant-power mode to reduce the charge current in order to keep AC adapter power
constant.
AC adapter detected voltage setting Vth
Vth (V) = (208k + 42k) / 42k × − INE1 =: 5.95 × − INE1
− INE1 setting voltage range : 1.176 V to 4.2 V (equivalent to 7 V to 25 V for Vcc)
<Error Amp.1>
−INE1
−
8
A
VCC
+
208 kΩ
42 kΩ
17
MB3874/MB3876
■ OPERATION TIMING DIAGRAM
2.8 V
2.5 V
Err Amp.2, 3 FB2,3
Err Amp.4, 5 FB4
Err Amp.1 FB1
1.5 V
OUT
AC adapter dynamicallycontrolled charging
Constant voltage
control
Constant current control
AC adapter dynamicallycontrolled charging
OUTM
About the OUTM signal
The OUTM signal becomes low when the output voltage of the error amplifier (Error Amp. 1) that detects the
AC adapter voltage (Vcc) becomes lower than the crest value (2.5 V) of the triangular waveform generator (OSC).
If the sum of the current consumption by the system and that by the charger exceeds the current capacity of the
AC adapter, the IC detects a voltage drop in the AC adapter output and switches to the dynamically-controlled
charging mode from C.V.C.C (constant-voltage/constant-current charging control) mode.
In the dynamically-controlled charging mode, the OUTM pin outputs the L level signal to distinguish between
the case in which the charge current has become small as the system current consumption has increased and
the case in which it has become small as battery charging has been finished.
L: Dynamically-controlled charging
H: C.V.C.C (constant-voltage/constant-current charging control) or IC standby mode
ISYS
System
Power
VIN
AC
Adaptor
Mode
Signal
Battery
Charger
MB3874
MB3876
Ichg
Battery
18
MB3874/MB3876
■ NOTE ON AN EXTERNAL REVERSE-CURRENT PREVENTIVE DIODE
If there is an imbalance in charge current (I1, I2) under constant-voltage control, voltage is controled at the side
with a lower battery voltage and thus the battery voltage at one side is higher than that at the other by the voltage
difference between the reverse-current preventive diodes (D1, D2) and between the sense resistors (Rs1, Rs2)
Pay attention to the voltage/current characteristics of the reverse-current preventive diode (D1, D2) not to let it
exceed the overcharge stop voltage.
VCC
21
VIN
(16 V/19 V)
to 24 pin to 1 pin
A
OUT
20
B
BATT1
RS1 12.6 V/16.8 V
I1
D1
19
VH
Battery 1
to 13 pin to 12 pin
C
I2
D
BATT2
RS2 12.6 V/16.8 V
D2
Battery 2
19
MB3874/MB3876
■ APPLICATION EXAMPLE
R10
∗2
8
6800 pF
C8
R8
47 kΩ
R11
30 kΩ
R6
330 kΩ
<Error Amp.1> VREF
−
208 kΩ
+
−INE1
VCC
7
3900 pF −INE2
C9 +INC1
R16
22 kΩ
A
24
B
1
R9 −INC1
150 kΩ
R14
5.6 kΩ
0.1 µF
C13
R19
200 kΩ
3
2.5 V
(2.8 V)
<Current Amp.1> <Error
Amp.2> VREF
+
100 kΩ
× 25
−
−
+
<PWM
Comp.>
+
+
+
+
−
2
Q2
SW1
R15
5.6 kΩ
R18
200 kΩ
Q3
3900 pF −INE3
10
33 kΩ
C7 +INC2
R12
C
13
R17
22 kΩ
D
12
R7 −INC2
150 kΩ
9
0.1 µF
+INE3
C12
FB3
11
∗3
14
C6
3900 pF
C5
3900 pF
R4
200 kΩ
R3
200 kΩ
FB4
CS
CS
2200 pF
15
22
∗1
50 kΩ
C10
0.1 µF
I1
27 µH
C3
100 µF
VH
D1
+
−
D2
C4
100 µF
+
−
Pin 13 Pin 12
VCC
C
35 kΩ
−
VREF
ULVO
CTL
<OSC>
<Ref>
<CTL>
RT
RT
17
VREF
47 kΩ
5
GND
23
6
∗1 : MB3874 100 kΩ
MB3876 150 kΩ
∗2 : MB3874 22 kΩ
MB3876 15 kΩ
∗3 : MB3874 16 V
MB3876 19 V
∗4 : MB3874 12.6 V
MB3876 16.8 V
∗4
0.075Ω
Battery 2
bias
2.5 V
1.5 V
BATT2
RS2
D3
<SOFT>
VREF
1 µA
D
I2
0.91 V
(0.77 V)
VREF
(4.2 V)
0.075Ω
Battery 1
(VCC UVLO) 215 kΩ
+
−
+
+
B
BATT1
RS1 ∗4
L1
(45 pF)
20
−
A
<UVLO>
<Error
Amp.5> VREF
+
−
Q1
VCC
−
+
+
+
Pin 24 Pin 1
OUT
20
<Error
Amp.4> VREF
50 kΩ
−INE5
Drive
<VH>
16
VIN SW2
C14
0.1 µF
<OUT>
Bias voltage
19
block
(VCC − 5 V)
∗1
−INE4
33 kΩ
R13
<Current Amp.2> <Error
Amp.3> VREF
+
100 kΩ
−
× 25
−
+
C1
C2
22 µF 22 µF
VCC
21
VCC
4
+INE2
FB2
OUTM
+
42 kΩ
FB1
18
<MASK Comp.>
−
MB3874/MB3876
■ PARTS LIST
COMPONET
ITEM
SPECIFICATION
VENDOR
PARTS NO.
Q1
Q2, Q3
FET
FET
Si4435DY
2N7002
VISHAY SILICONIX
VISHAY SILICONIX
Si4435DY
2N7002
D1
D2, D3
Diode
Diode
MBRS130LT3
RB151L-40F
MOTOROLA
ROHM
MBRS130LT3
RB151L-40F
L1
Coil
27 µH
2.8 A, 80 mΩ
SUMIDA
CDRH127-27µH
C1, C2
C3, C4
OS Condensor
OS Condensor
22 µF
100 µF
C5, C6
C7
C8
C9
C10
CS
C12, C13
C14
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
Ceramics Condensor
3900 pF
3900 pF
6800 pF
3900 pF
0.1 µF
2200 µF
0.1 µF
0.1 µF
25 V (10 %)
16 V (10 %)
25 V (10 %)
10 %
10 %
10 %
10 %
25 V
10 %
16 V
16 V
—
—
R1, R2
R3, R4
RT
R6
R7
R8
R9
R10
R11, R12
R13
R14, R15
R16, R17
R18, R19
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
Resistor
0.075 Ω
200 kΩ
47 kΩ
330 kΩ
150 kΩ
47 kΩ
150 kΩ
22 kΩ
30 kΩ
30 kΩ
5.6 kΩ
22 kΩ
200 kΩ
1.0 %
1.0 %
1.0 %
5%
1.0 %
1.0 %
1.0 %
0.5 %
0.5 %
0.5 %
0.5 %
0.5 %
5%
—
—
Note: VISHAY SILICONIX : VISHAY Intertechnology, Inc.
MOTOROLA : Motorola Japan Ltd.
ROHM : RHOM CO., LTD
SUMIDA : SUMIDA ELECTRIC CO., Ltd.
21
MB3874/MB3876
■ REFERENCE DATA
• MB3874
Conversion efficiency vs. charge current
(Fixed voltage mode)
100
BATT1 charge voltage = 12.6V,
fOSC = 286.37kHz, BATT2 = OPEN
η(%)=(VBATT1 × IBATT1)/(Vin × Iin) × 100
98
96
94
Conversion effciency η(%)
Conversion efficiency η(%)
100
Conversion efficiency vs. charge voltage
(Fixed current mode)
Vin = 16 V
92
90
88
86
84
82
98
BATT2= OPEN,
BATT1: Electronic load,
96
(Product of KIKUSUI PLZ-150W)
94
92
88
86
84
82
80
80
10 m
100 m
1
Vin = 16 V
R10 = 22 kΩ
90
10
0
2
100
IBATTI = IBATT2
Vin = 16 V
92
90
88
86
84
82
100 m
1
10
12
DCC MODE
8
6
4
2
0
0.0 0.2
0.4
DCC : Dynamically-Controlled Charging
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
BATT1 charge current IBATT1 (A)
Note: KIKUSUI : KIKUSUI Electronics Corp.
22
16
88
86
84
82
80
0
2
4
6
8
10
12
14
16
BATT voltage vs. BATT charge current
18
BATT1 voltage VBATT1 (V)
BATT1 voltage VBATT1 (V)
Vin = 16V, BATT2= OPEN,
BATT1 : Electronic load,
(Product of KIKUSUI PLZ-150W)
Dead Battery MODE
14
90
BATT voltage vs. BATT charge current
10
12
BATT1 charge voltage VBATT1 (V)
18
14
10
Paralle charging,
98 BATT1: Electronic load,
96 (Product of KIKUSUI PLZ-150W),
IBATTI = IBATT2
94
Vin = 16 V
R10 = 22 kΩ
92
BATT1 charge current IBATT1 (A)
16
8
100
Conversion effciency η(%)
Conversion efficiency η(%)
Paralle charging, BATT1 charge voltage = 12.6V
98 fOSC = 286.37kHz
96 η(%)=((VBATT1 × IBATT1)+(VBATT2 × IBATT2))/(Vin × Iin) × 100
80
10 m
6
Conversion efficiency vs. charge voltage
(Fixed current mode)
Conversion efficiency vs. charge current
(Fixed voltage mode)
94
4
BATT1 charge voltage VBATT1 (V)
BATT1 charge current IBATT1 (A)
16
Paralle charging, Vin = 16V,
BATT1 : Electronic load,
14
(Product of KIKUSUI PLZ-150W),
IBATTI=IBATT2
12
10
Dead Battery MODE
DCC MODE
8
6
4
2
0
0.0 0.2
0.4
DCC : Dynamically-Controlled Charging
0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
BATT1 charge current IBATT1 (A)
MB3874/MB3876
(Continued)
Soft start operating waveforms
DC/DC converter switching waveforms
Vin = 16 V
Load : BATT1 = 20 Ω
− INE1 = 0 V
BATT2 = OPEN
Vin = 16 V
FOSC = 286.7 kHz
Load : BATT1 = 1A
BATT2 = OPEN
5V
5V
BATT1 (V)
20
15
CTL (V)
20
10
5
OUT (V)
20
15
0
15
10
10
5
5
1 µs
0
0
5V
0
40
20 ms
80
120
160
−5
200
t (ms)
0
2
4
6
8
10
t (µs)
23
MB3874/MB3876
• MB3876
Conversion efficiency vs. charge voltage
(Fixed current mode)
Conversion efficiency vs.charge current
(Fixed voltage mode)
96
Vin = 19 V
94
92
90
88
86
84
82
98
96
1
96
94
92
Vin = 19 V
R10 = 15 kΩ
90
88
86
84
82
10
0
2
4
6
8
10
12
14
16
18
BATT1 charge current IBATT1 (A)
BATT1 charge voltage VBATT1 (V)
Conversion efficiency vs.charge current
(Fixed voltage mode)
Conversion efficiency vs. charge voltage
(Fixed current mode)
100
Parallel charging, BATT1 Charge voltage =16.8 V,
fOSC = 282.71 kHz,
η(%)=((VBATT1 × IBATT1)+(VBATT2 × IBATT2))/(Vin × Iin) × 100,
IBATTI = IBATT2
94
Vin = 19 V
92
90
88
86
84
82
100 m
1
Parallel charging,
BATT1 : Electronic load,
(Prouct of KIKUSUI PLZ-150W),
98
96
IBATTI = IBATT2
94
92
Vin = 19 V
R10 = 15 kΩ
90
88
86
84
82
80
80
10 m
10
0
2
4
6
8
10
12
14
16
BATT1 charge current IBATT1 (A)
BATT1 charge voltage VBATT1 (V)
BATT voltage vs. BATT charge current
BATT voltage vs. BATT charge current
20
Vin = 19V,
BATT2 = open,
BATT1:Electronic load,
(Product of KIKUSUI
PLZ-150W)
18
16
14
12
10
Dead Battery MODE
DCC MODE
8
6
4
2
0
BATT2 = OPEN,
BATT1 : Electronic load,
(Prouct of KIKUSUI PLZ-150W)
98
80
100 m
Conversion efficiency η(%)
Conversion efficiency η(%)
100
BATT1 voltage VBATT1 (V)
Conversion efficiency η(%)
98
80
10 m
DCC : Dynamically-Controlled Charging
0.0 0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
BATT1 charge current IBATT1 (A)
Note: KIKUSUI : KIKUSUI Electronics Corp.
24
100
BATT1 charge voltage =16.8V,
fOSC = 282.71kHz, BATT2 = OPEN,
η(%)=(VBATT1 × IBATT1)/(Vin × Iin) × 100
1.8
2.0
20
BATT1 voltage VBATT1 (V)
Conversion efficiency η(%)
100
18
Parallel charging,
Vin = 19V,
BATT1: Electronic load,
(Product of KIKUSUI
PLZ-150W),
IBATTI = IBATT2
18
16
14
12
10
Dead Battery MODE
DCC MODE
8
6
4
2
0
DCC : Dynamically-Controlled Charging
0.0 0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
BATT1 charge current IBATT1 (A)
1.8
2.0
MB3874/MB3876
(Continued)
Soft start operating waveforms
DC/DC converter switching waveforms
Vin = 19 V
FOSC = 282.6 kHz
Load : BATT1 = 1 A
BATT2 = OPEN
Vin = 19 V
Load : BATT1 = 50 Ω
− INE1 = 0 V
BATT2 = OPEN
10 V
15
1 µs
5V
BATT1 (V)
20
CTL (V)
10
20
OUT (V)
20
0
15
10
10
5
5
0
0
5V
0
40
20 ms
80
120
160
−5
200
t (ms)
0
2
4
6
8
10
t (µs)
25
MB3874/MB3876
■ USAGE PRECAUTIONS
1. Never use settings exceeding maximum rated conditions.
Exceeding maximum rated conditions may cause permanent damage to the LSI.
Also, it is recommended that recommended operating conditions be observed in normal use.
Exceeding recommended operating conditions may adversely affect LSI reliability.
2. Use this device within recommended operating conditions.
Recommended operating conditions are values within which normal LSI operation is warranted. Standard electrical characteristics are warranted within the range of recommended operating conditions and within the listed
conditions for each parameter.
3. Printed circuit board ground lines should be set up with consideration for common impedance.
4. Take appropriate static electricity measures.
•
•
•
•
Containers for semiconductor materials should have anti-static protection or be made of conductive material.
After mounting, printed circuit boards should be stored and shipped in conductive bags or containers.
Work platforms, tools, and instruments should be properly grounded.
Working personnel should be grounded with resistance of 250 kΩ to 1 MΩ between body and ground.
5. Do not apply negative voltages.
The use of negative voltages below –0.3 V may create parasitic transistors on LSI lines, which can cause
abnormal operation
■ ORDERING INFORMATION
Part number
MB3874PFV
MB3876PFV
26
Package
24-pin plastic SSOP
(FPT-24P-M03)
Remarks
MB3874/MB3876
■ PACKAGE DIMENSION
24-pin plastic SSOP
(FPT-24P-M03)
* : These dimensions do not include resin protrusion.
+0.20
* 7.75±0.10(.305±.004)
* 7.75±0.10(.305±.004)
1.25 +0.20
–0.10
1.25 –0.10
+.008
–.004
.049 +.008
.049 –.004
(Mounting height)
(Mounting height)
0.10(.004)
0.10(.004)
INDEX
INDEX
0.65±0.12(.0256±.0047)
0.65±0.12(.0256±.0047)
7.15(.281)REF
7.15(.281)REF
CC
**5.60±0.10
5.60±0.10
(.220±.004)
(.220±.004)
+0.10
+0.10
0.22
0.22–0.05
–0.05
+.004
+.004
.009
–.002
.009 –.002
7.60±0.20
7.60±0.20
(.299±.008)
(.299±.008)
"A"
"A"
6.60(.260)
6.60(.260)
NOM
NOM
+0.05
+0.05
0.15 –0.02
–0.02
+.002
.006 +.002
–.001
–.001
Details of
of "A"
"A" part
part
Details
0.10±0.10(.004±.004)
0.10±0.10(.004±.004)
(STANDOFF)
OFF)
(STAND
10°
00 10°
0.50±0.20
0.50±0.20
(.020±.008)
(.020±.008)
1994FUJITSU
FUJITSULIMITED
LIMITEDF24018S-2C-2
F24018S-2C-2
1994
Dimensions in: mm (inches)
27
MB3874/MB3876
FUJITSU LIMITED
For further information please contact:
Japan
FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/
Europe
FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/
F0001
 FUJITSU LIMITED Printed in Japan
All Rights Reserved.
The contents of this document are subject to change without
notice. Customers are advised to consult with FUJITSU sales
representatives before ordering.
The information and circuit diagrams in this document are
presented as examples of semiconductor device applications,
and are not intended to be incorporated in devices for actual use.
Also, FUJITSU is unable to assume responsibility for
infringement of any patent rights or other rights of third parties
arising from the use of this information or circuit diagrams.
FUJITSU semiconductor devices are intended for use in
standard applications (computers, office automation and other
office equipment, industrial, communications, and
measurement equipment, personal or household devices, etc.).
CAUTION:
Customers considering the use of our products in special
applications where failure or abnormal operation may directly
affect human lives or cause physical injury or property damage,
or where extremely high levels of reliability are demanded
(such as aerospace systems, atomic energy controls, sea floor
repeaters, vehicle operating controls, medical devices for life
support, etc.) are requested to consult with FUJITSU sales
representatives before such use. The company will not be
responsible for damages arising from such use without prior
approval.
Any semiconductor devices have an inherent chance of
failure. You must protect against injury, damage or loss from
such failures by incorporating safety design measures into your
facility and equipment such as redundancy, fire protection, and
prevention of over-current levels and other abnormal operating
conditions.
If any products described in this document represent goods or
technologies subject to certain restrictions on export under the
Foreign Exchange and Foreign Trade Law of Japan, the prior
authorization by Japanese government will be required for
export of those products from Japan.