ONSEMI MC74HC4538A

MC74HC4538A
Dual Precision Monostable
Multivibrator (Retriggerable,
Resettable)
The MC74HC4538A is identical in pinout to the MC14538B. The
device inputs are compatible with standard CMOS outputs; with
pullup resistors, they are compatible with LSTTL outputs.
This dual monostable multivibrator may be triggered by either the
positive or the negative edge of an input pulse, and produces a
precision output pulse over a wide range of pulse widths. Because the
device has conditioned trigger inputs, there are no trigger–input rise
and fall time restrictions. The output pulse width is determined by the
external timing components, Rx and Cx. The device has a reset
function which forces the Q output low and the Q output high,
regardless of the state of the output pulse circuitry.
http://onsemi.com
MARKING
DIAGRAMS
16
16
PDIP–16
N SUFFIX
CASE 648
• Unlimited Rise and Fall Times Allowed on the Trigger Inputs
• Output Pulse is Independent of the Trigger Pulse Width
• ± 10% Guaranteed Pulse Width Variation from Part to Part (Using
•
•
•
•
•
•
•
the Same Test Jig)
Output Drive Capability: 10 LSTTL Loads
Outputs Directly Interface to CMOS, NMOS and TTL
Operating Voltage Range: 3.0 to 6.0 V
Low Input Current: 1.0 µA
High Noise Immunity Characteristic of CMOS Devices
In Compliance with the Requirements Defined by JEDEC Standard
No. 7A
Chip Complexity: 145 FETs or 36 Equivalent Gates
MC74HC4538AN
AWLYYWW
1
1
16
16
HC4538A
AWLYWW
1
SO–16
D SUFFIX
CASE 751B
1
16
16
HC
4538A
ALYW
1
GND
1
16
VCC
CX1/RX1
2
15
GND
RESET 1
3
14
CX2/RX2
A1
4
13
RESET 2
B1
5
12
A2
Q1
6
11
B2
Q1
7
10
Q2
GND
8
9
Q2
TSSOP–16
DT SUFFIX
CASE 948F
A
L, WL
Y, YY
W, WW
Device
MC74HC4538AN
April, 2001 – Rev. 8
= Assembly Location
= Wafer Lot
= Year
= Work Week
ORDERING INFORMATION
Figure 1. Pin Assignment
 Semiconductor Components Industries, LLC, 2001
1
1
Package
Shipping
PDIP–16
2000/Box
MC74HC4538AD
SOIC–16
48/Rail
MC74HC4538ADR2
SOIC–16
2500/Reel
MC74HC4538ADT
TSSOP–16
96/Rail
MC74HC4538ADTR2
TSSOP–16
2500/Reel
Publication Order Number:
MC74HC4538A/D
MC74HC4538A
CX 1
RX 1
VCC
1
TRIGGER
INPUTS
A1
B1
RESET 1
2
4
6
5
7
Q1
Q1
3
CX 2
RX 2
VCC
15 14
A2
TRIGGER
INPUTS
B2
12
10
11
9
13
PIN 16 = VCC
RESET 2
PIN 8 = GND
RX AND CX ARE EXTERNAL COMPONENTS
PIN 1 AND PIN 15 MUST BE HARD WIRED TO GND
Figure 2. Logic Diagram
FUNCTION TABLE
Inputs
Reset
A
Outputs
B
Q
Q
H
H
H
L
H
H
X
H
L
X
Not Triggered
Not Triggered
H
H
L,H,
L
H
L,H,
Not Triggered
Not Triggered
L
X
X
X
X
L
H
Not Triggered
http://onsemi.com
2
Q2
Q2
MC74HC4538A
MAXIMUM RATINGS (Note 1)
Symbol
Parameter
Value
Unit
0.5 to 7.0
V
0.5 VI VCC 0.5
V
0.5 VO VCC 0.5
V
20
30
mA
25
mA
VCC
DC Supply Voltage
VI
DC Input Voltage
VO
DC Output Voltage
IIK
DC Input Diode Current
IOK
DC Output Diode Current
IO
DC Output Sink Current
25
mA
ICC
DC Supply Current per Supply Pin
100
mA
IGND
DC Ground Current per Ground Pin
100
mA
TSTG
Storage Temperature Range
65 to 150
C
TL
Lead temperature, 1 mm from Case for 10 Seconds
260
C
TJ
Junction temperature under Bias
150
C
JA
Thermal resistance
PDIP
SOIC
TSSOP
78
112
148
C/W
PD
Power Dissipation in Still Air at 85C
PDIP
SOIC
TSSOP
750
500
450
mW
MSL
Moisture Sensitivity
FR
Flammability Rating
VESD
ESD Withstand Voltage
Human Body Model (Note 3)
Machine Model (Note 4)
Charged Device Model (Note 5)
>2000
>100
>500
V
ILatch–Up
Latch–Up Performance
Above VCC and Below GND at 85C (Note 6)
300
mA
(Note 2)
A, B, Reset
CX, RX
Level 1
Oxygen Index: 30% – 35%
UL–94–VO (0.125 in)
1. Absolute maximum continuous ratings are those values beyond which damage to the device may occur. Extended exposure to these
conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum–rated
conditions is not implied.
2. IO absolute maximum rating must be observed.
3. Tested to EIA/JESD22–A114–A.
4. Tested to EIA/JESD22–A115–A.
5. Tested to JESD22–C101–A.
6. Tested to EIA/JESD78.
7. For high frequency or heavy load considerations, see the ON Semiconductor High–Speed CMOS Data Book (DL129/D).
RECOMMENDED OPERATING CONDITIONS
Symbol
Parameter
Min
VCC
DC Supply Voltage (Referenced to GND)
Vin, Vout
DC Input Voltage, Output Voltage (Referenced to GND)
TA
Operating Temperature, All Package Types
tr, tf
Input Rise and Fall Time
(Figure 7)
Max
Unit
3.0*
6.0
V
0
VCC
V
–55
+125
C
VCC = 2.0 V
VCC = 4.5 V
VCC = 6.0 V
0
0
0
–
1000
500
400
No Limit
ns
VCC < 4.5 V
VCC ≥ 4.5 V
1.0
2.0
†
†
k
0
†
F
A or B (Figure 5)
Rx
External Timing Resistor
Cx
External Timing Capacitor
*The HC4538A will function at 2.0 V but for optimum pulse–width stability, VCC should be above 3.0 V.
†The maximum allowable values of Rx and Cx are a function of the leakage of capacitor Cx, the leakage of the HC4538A, and leakage due to board layout
and surface resistance. For most applications, Cx/Rx should be limited to a maximum value of 10 F/1.0 M. Values of Cx > 1.0 F may cause a
problem during power down (see Power Down Considerations). Susceptibility to externally induced noise signals may occur for Rx > 1.0 M.
8. Unused inputs may not be left open. All inputs must be tied to a high–logic voltage level or a low–logic input voltage level.
9. Information on typical parametric values can be found in the ON Semiconductor High–Speed CMOS Data Book (DL129/D).
http://onsemi.com
3
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎ
DC CHARACTERISTICS
Guaranteed Limits
Symbol
Parameter
Test Conditions
–55 to 25C
VCC
Volts
Min
1.5
3.15
4.2
Max
85C
Min
125C
Max
Min
VIH
Minimum High–Level
Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| 20 µA
2.0
4.5
6.0
VIL
Maximum Low–Level
Input Voltage
Vout = 0.1 V or VCC – 0.1 V
|Iout| 20 µA
2.0
4.5
6.0
VOH
Minimum High–Level
Output Voltage
Vin = VIH or VIL
|Iout| 20 µA
2.0
4.5
6.0
1.9
4.4
5.9
1.9
4.4
5.9
1.9
4.4
5.9
4.5
6.0
3.98
5.48
3.84
5.34
3.7
5.2
Vin = VIH or VIL
|Iout| –4.0 mA
|Iout| –5.2 mA
VOL
Maximum Low–Level
Output Voltage
Vin = VIH or VIL
|Iout| 20 µA
1.5
3.15
4.2
Max
1.5
3.15
4.2
0.5
1.35
1.8
0.5
1.35
1.8
Unit
V
0.5
1.35
1.8
V
V
2.0
4.5
6.0
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
Vin = VIH or VIL
|Iout| 4.0 mA
|Iout| 5.2 mA
4.5
6.0
0.26
0.26
0.33
0.33
0.4
0.4
V
Iin
Maximum Input
Leakage Current
(A, B, Reset)
Vin = VCC or GND
6.0
± 0.1
± 1.0
± 1.0
µA
Iin
Maximum Input
Leakage Current
(Rx, Cx)
Vin = VCC or GND
6.0
± 50
± 500
± 500
nA
ICC
Maximum Quiescent
Supply Current
(per package)
Standby State
Vin = VCC or GND
Q1 and Q2 = Low
Iout = 0 µA
6.0
130
220
350
µA
ICC
Maximum Supply
Current
(per package)
Active State
Vin = VCC or GND
Q1 and Q2 = High
Iout = 0 µA
Pins 2 and 14 = 0.5 VCC
25C
6.0
http://onsemi.com
4
400
–45C to 85C
600
–55C to 125C
800
µA
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
Î
ÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
AC CHARACTERISTICS (CL = 50 pF, Input tr = tf = 6.0 ns)
Guaranteed Limits
Symbol
VCC
Volts
Parameter
–55 to 25C
Min
Max
85C
Min
Max
125C
Min
Max
Unit
tPLH
Maximum Propagation Delay
Input A or B to Q
(Figures 6 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tPHL
Maximum Propagation Delay
Input A or B to NQ
(Figures 6 and 8)
2.0
4.5
6.0
195
39
33
245
49
42
295
59
50
ns
tPHL
Maximum Propagation Delay
Reset to Q
(Figures 7 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tPLH
Maximum Propagation Delay
Reset to NQ
(Figures 7 and 8)
2.0
4.5
6.0
175
35
30
220
44
37
265
53
45
ns
tTLH,
tTHL
Maximum Output Transition Time, Any Output
(Figures 7 and 8)
2.0
4.5
6.0
75
15
13
95
19
16
110
22
19
ns
Cin
Maximum Input Capacitance
—
10
25
10
25
10
25
pF
(A. B, Reset)
(Cx, Rx)
10. For propagation delays with loads other than 50 pF, and information on typical parametric values, see the ON Semiconductor High–Speed
CMOS Data Book (DL129/D).
Typical @ 25°C, VCC = 5.0 V
CPD
150
Power Dissipation Capacitance (per Multivibrator)*
*Used to determine the no–load dynamic power consumption:
High–Speed CMOS Data Book (DL129/D).
P D = CPD VCC2 f + ICC VCC .
pF
For load considerations, see the ON Semiconductor
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
TIMING CHARACTERISTICS (Input tr = tf = 6.0 ns)
Guaranteed Limits
Symbol
VCC
Volts
Parameter
–55 to 25C
Min
Max
85C
Min
Max
125C
Min
Max
Unit
trec
Minimum Recovery Time, Inactive to A or B
(Figure 7)
2.0
4.5
6.0
0
0
0
0
0
0
0
0
0
ns
tw
Minimum Pulse Width, Input A or B
(Figure 6)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
tw
Minimum Pulse Width, Reset
(Figure 7)
2.0
4.5
6.0
60
12
10
75
15
13
90
18
15
ns
tr, tf
Maximum Input Rise and Fall Times, Reset
(Figure 7)
2.0
4.5
6.0
A or B
(Figure 7)
2.0
4.5
6.0
http://onsemi.com
5
1000
500
400
1000
500
400
No Limit
1000
500
400
ns
MC74HC4538A
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎ
ÎÎ
ÎÎÎÎ
ÎÎÎÎÎÎÎ
ÎÎÎÎÎÎÎÎÎ
ÎÎÎ
ÎÎÎÎÎÎÎÎÎÎÎÎÎÎÎ
OUTPUT PULSE WIDTH CHARACTERISTICS (CL = 50 pF)t
Conditions
Symbol
Parameter
Guaranteed Limits
Timing Components
VCC
Volts
Rx = 10 kΩ, Cx = 0.1 µF
5.0
85C
–55 to 25C
125C
Min
Max
Min
Max
Min
Max
Unit
0.63
0.77
0.6
0.8
0.59
0.81
ms
τ
Output Pulse Width*
(Figures 6 and 8)
—
Pulse Width Match
Between Circuits in the
same Package
—
—
± 5.0
%
—
Pulse Width Match
Variation (Part to Part)
—
—
± 10
%
0.8
10 s
TA = 25°C
1s
OUTPUT PULSE WIDTH (τ)
k, OUTPUT PULSE WIDTH CONSTANT
(TYPICAL)
*For output pulse widths greater than 100 µs, typically τ = kRxCx, where the value of k may be found in Figure 3.
0.7
0.6
0.5
0.4
0.3
1
2
3
4
5
6
VCC = 5 V, TA = 25°C
100 ms
10 ms
1 ms
100 µs
1 MΩ
10 µs
100 kΩ
1 µs
10 kΩ
1 kΩ
100 ns
0.00001 0.0001 0.001
7
VCC, POWER SUPPLY VOLTAGE (VOLTS)
0.01
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 5 V NUMBER)
Rx = 100 kΩ
Cx = 1000 pF
TA = 25°C
0.9
0.8
Rx = 1 MΩ
Cx = 0.1 µF
0.6
0.5
1
10
100
Figure 4. Output Pulse Width versus Timing Capacitance
1.1
0.7
1
CAPACITANCE (µF)
Figure 3. Typical Output Pulse Width Constant,
k, versus Supply Voltage
(For output pulse widths > 100 µs: τ = kRxCx)
1
0.1
2
3
4
5
6
VCC, POWER SUPPLY VOLTAGE (VOLTS)
7
Figure 5. Normalized Output Pulse Width versus Power Supply Voltage
http://onsemi.com
6
MC74HC4538A
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 25C NUMBER)
1.1
1.05
1
VCC = 6 V
Rx = 10 kΩ
Cx = 0.1 µF
0.95
0.9
0.85
VCC = 3 V
0.8
–75 –50
–25
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (°C)
Figure 6. Normalized Output Pulse Width versus Power Supply Voltage
OUTPUT PULSE WIDTH (τ)
(NORMALIZED TO 25C NUMBER)
1.03
1.02
Rx = 10 kΩ
Cx = 0.1 µF
1.01
1
0.99
VCC = 5.5 V
VCC = 5 V
0.98
VCC = 4.5 V
0.97
–75 –50
–25
0
25
50
75
100
125
150
TA, AMBIENT TEMPERATURE (°C)
Figure 7. Normalized Output Pulse Width versus Power Supply Voltage
tw(H)
VCC
50%
A
GND
tw(L)
B
VCC
50%
GND
τ
tPLH
tPLH
τ
50%
Q
τ
tPHL
tPHL
Q
50%
Figure 8. Switching Waveform
http://onsemi.com
7
τ
MC74HC4538A
tr
tf
VCC
90%
10%
A
GND
trr
VCC
50%
GND
B
tf
tf
GND
trec
τ + trr
tPHL
90%
50%
50%
10%
Q
tTHL
Q
10%
tw(L)
tTLH
VCC
90%
50%
RESET
tPLH
90%
10%
50%
Figure 9. Switching Waveform
TEST POINT
OUTPUT
DEVICE
UNDER
TEST
CL *
*Includes all probe and jig capacitance
Figure 10. Test Circuit
http://onsemi.com
8
(RETRIGGERED PULSE)
MC74HC4538A
PIN DESCRIPTIONS
capacitors (see the Block Diagram). Polystyrene capacitors
are recommended for optimum pulse width control.
A1, A2 (Pins 4, 12)
Electrolytic capacitors are not recommended due to high
Positive–edge trigger inputs. A rising–edge signal on
leakages associated with these type capacitors.
either of these pins triggers the corresponding multivibrator
GND (Pins 1 and 15)
when there is a high level on the B1 or B2 input.
External ground. The external timing capacitors discharge
B1, B2 (Pins 5, 11)
to ground through these pins.
Negative–edge trigger inputs. A falling–edge signal on
either of these pins triggers the corresponding multivibrator
OUTPUTS
when there is a low level on the A1 or A2 input.
INPUTS
Reset 1, Reset 2 (Pins 3, 13)
Q1, Q2 (Pins 6, 10)
Reset inputs (active low). When a low level is applied to
one of these pins, the Q output of the corresponding
multivibrator is reset to a low level and the Q output is set to
a high level.
Noninverted monostable outputs. These pins (normally
low) pulse high when the multivibrator is triggered at either
the A or the B input. The width of the pulse is determined by
the external timing components, RX and CX.
CX1/RX1 and CX2/RX2 (Pins 2 and 14)
Q1, Q2 (Pins 7, 9)
Inverted monostable outputs. These pins (normally high)
pulse low when the multivibrator is triggered at either the A
or the B input. These outputs are the inverse of Q1 and Q2.
External timing components. These pins are tied to the
common points of the external timing resistors and
RxCx
UPPER
REFERENCE
CIRCUIT
–
+ Vre,
UPPER
VCC
VCC
OUTPUT
LATCH
LOWER
REFERENCE
CIRCUIT
M1
2 kΩ
–
+
M2
Q
Vre,
LOWER
M3
Q
TRIGGER
CONTROL CIRCUIT
A
C
CB
B
Q
TRIGGER CONTROL
RESET CIRCUIT
R
RESET
POWER
ON
RESET
RESET LATCH
Figure 11. Logic Detail (1/2 the Device)
http://onsemi.com
9
MC74HC4538A
CIRCUIT OPERATION
TRIGGER OPERATION
Figure 12 shows the HC4538A configured in the
retriggerable mode. Briefly, the device operates as follows
(refer to Figure 10): In the quiescent state, the external
timing capacitor, Cx, is charged to VCC. When a trigger
occurs, the Q output goes high and Cx discharges quickly to
the lower reference voltage (Vref Lower 1/3 VCC). Cx
then charges, through Rx, back up to the upper reference
voltage (Vref Upper 2/3 VCC), at which point the
one–shot has timed out and the Q output goes low.
The following, more detailed description of the circuit
operation refers to both the logic detail (Figure 9) and the
timing diagram (Figure 10).
The HC4538A is triggered by either a rising–edge signal
at input A (#7) or a falling–edge signal at input B (#8), with
the unused trigger input and the Reset input held at the
voltage levels shown in the Function Table. Either trigger
signal will cause the output of the trigger–control circuit to
go high (#9).
The trigger–control circuit going high simultaneously
initiates two events. First, the output latch goes low, thus
taking the Q output of the HC4538A to a high state (#10).
Second, transistor M3 is turned on, which allows the
external timing capacitor, Cx, to rapidly discharge toward
ground (#11). (Note that the voltage across Cx appears at the
input of both the upper and lower reference circuit
comparator).
When Cx discharges to the reference voltage of the lower
reference circuit (#12), the outputs of both reference circuits
will be high (#13). The trigger–control reset circuit goes high,
resetting the trigger–control circuit flip–flop to a low state
(#14). This turns transistor M3 off again, allowing Cx to begin
to charge back up toward VCC, with a time constant t = RxCx
(#15). Once the voltage across Cx charges to above the lower
reference voltage, the lower reference circuit will go low
allowing the monostable multivibrator to be retriggered.
QUIESCENT STATE
In the quiescent state, before an input trigger appears, the
output latch is high and the reset latch is high (#1 in
Figure 10). Thus the Q output (pin 6 or 10) of the monostable
multivibrator is low (#2, Figure 10).
The output of the trigger–control circuit is low (#3), and
transistors M1, M2, and M3 are turned off. The external
timing capacitor, Cx, is charged to VCC (#4), and both the
upper and lower reference circuit has a low output (#5).
In addition, the output of the trigger–control reset circuit
is low.
QUIESCENT
STATE
TRIGGER CYCLE
(A INPUT)
TRIGGER CYCLE
(B INPUT)
RESET
RETRIGGER
trr
7
TRIGGER INPUT A
(PIN 4 OR 12)
TRIGGER INPUT B
(PIN 5 OR 11)
8
24
9
TRIGGER-CONTROL
CIRCUIT OUTPUT
3
14
11
4
RX/CX INPUT
(PIN 2 OR 14)
15
21
17
23
12
Vref LOWER
UPPER REFERENCE
CIRCUIT
5
LOWER REFERENCE
CIRCUIT
6
Vref UPPER
13
25
18
13
16
RESET INPUT
(PIN 3 OR 13)
20
1
RESET LATCH
22
10
Q OUTPUT
(PIN 6 OR 10)
2
19
τ
τ
Figure 12. Timing Diagram
http://onsemi.com
10
τ + trr
MC74HC4538A
occurs, the output of the reset latch goes low (#22), turning
on transistor M1. Thus Cx is allowed to quickly charge up to
VCC (#23) to await the next trigger signal.
On power up of the HC4538A the power–on reset circuit
will be high causing a reset condition. This will prevent the
trigger–control circuit from accepting a trigger input during
this state. The HC4538A’s Q outputs are low and the Q not
outputs are high.
When Cx charges up to the reference voltage of the upper
reference circuit (#17), the output of the upper reference
circuit goes low (#18). This causes the output latch to toggle,
taking the Q output of the HC4538A to a low state (#19), and
completing the time–out cycle.
POWER–DOWN CONSIDERATIONS
Large values of Cx may cause problems when powering
down the HC4538A because of the amount of energy stored
in the capacitor. When a system containing this device is
powered down, the capacitor may discharge from VCC
through the input protection diodes at pin 2 or pin 14.
Current through the protection diodes must be limited to 30
mA; therefore, the turn–off time of the VCC power supply
must not be faster than t = VCCCx /(30 mA). For example,
if VCC = 5.0 V and Cx = 15 µF, the VCC supply must turn off
no faster than t = (5.0 V)(15 µF)/30 mA = 2.5 ms. This is
usually not a problem because power supplies are heavily
filtered and cannot discharge at this rate.
When a more rapid decrease of VCC to zero volts occurs,
the HC4538A may sustain damage. To avoid this possibility,
use an external damping diode, Dx, connected as shown in
Figure 11. Best results can be achieved if diode Dx is chosen
to be a germanium or Schottky type diode able to withstand
large current surges.
RETRIGGER OPERATION
When used in the retriggerable mode (Figure 12), the
HC4538A may be retriggered during timing out of the
output pulse at any time after the trigger–control circuit
flip–flop has been reset (#24), and the voltage across Cx is
above the lower reference voltage. As long as the Cx voltage
is below the lower reference voltage, the reset of the
flip–flop is high, disabling any trigger pulse. This prevents
M3 from turning on during this period resulting in an output
pulse width that is predictable.
The amount of undershoot voltage on RxCx during the
trigger mode is a function of loop delay, M3 conductivity,
and VDD. Minimum retrigger time, trr (Figure 7), is a
function of 1) time to discharge Rx Cx from VDD to lower
reference voltage (Tdischarge); 2) loop delay (Tdelay); 3)
time to charge Rx Cx from the undershoot voltage back to the
lower reference voltage (Tcharge).
Figure 13 shows the device configured in the
non–retriggerable mode.
For additional information, please see Application Note
(AN1558/D) titled Characterization of Retrigger Time in
the HC4538A Dual Precision Monostable Multivibrator.
RESET AND POWER ON RESET OPERATION
A low voltage applied to the Reset pin always forces the
Q output of the HC4538A to a low state.
The timing diagram illustrates the case in which reset
occurs (#20) while Cx is charging up toward the reference
voltage of the upper reference circuit (#21). When a reset
DX
CX
VCC
RX
Q
A
B
Q
RESET
Figure 13. Discharge Protection During Power Down
http://onsemi.com
11
MC74HC4538A
TYPICAL APPLICATIONS
CX
RISING–EDGE
TRIGGER
RX
CX
RX
RISING–EDGE
TRIGGER
VCC
Q
A
B
VCC
Q
A
Q
B
Q
B = VCC
RESET = VCC
RESET = VCC
CX
RX
CX
FALLING–EDGE
TRIGGER
VCC
A = GND
VCC
Q
Q
B
RX
A
B
Q
Q
FALLING–EDGE
TRIGGER
RESET = VCC
RESET = VCC
Figure 14. Retriggerable Monostable Circuitry
Figure 15. Non–retriggerable Monostable Circuitry
GND
N/C
A = GND
VCC
RX CX
Q
N/C
B
Q
RESET
N/C
Figure 16. Connection of Unused Section
ONE–SHOT SELECTION GUIDE
100 ns
MC14528B
MC14536B
MC14538B
MC14541B
HC4538A*
1 µs 10 µs 100 µs 1 ms 10 ms 100 ms 1 s
10 s
23 HR
5 MIN
*Limited operating voltage (2–6 V)
TOTAL OUTPUT PULSE WIDTH RANGE
RECOMMENDED PULSE WIDTH RANGE
http://onsemi.com
12
MC74HC4538A
PACKAGE DIMENSIONS
PDIP–16
N SUFFIX
CASE 648–08
ISSUE R
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.
–A–
16
9
1
8
B
F
C
L
S
–T–
SEATING
PLANE
K
H
G
D
M
J
16 PL
0.25 (0.010)
M
T A
M
http://onsemi.com
13
DIM
A
B
C
D
F
G
H
J
K
L
M
S
INCHES
MIN
MAX
0.740
0.770
0.250
0.270
0.145
0.175
0.015
0.021
0.040
0.70
0.100 BSC
0.050 BSC
0.008
0.015
0.110
0.130
0.295
0.305
0
10 0.020
0.040
MILLIMETERS
MIN
MAX
18.80
19.55
6.35
6.85
3.69
4.44
0.39
0.53
1.02
1.77
2.54 BSC
1.27 BSC
0.21
0.38
2.80
3.30
7.50
7.74
0
10 0.51
1.01
MC74HC4538A
PACKAGE DIMENSIONS
SOIC–16
D SUFFIX
CASE 751B–05
ISSUE J
–A–
16
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
9
–B–
1
P
8 PL
0.25 (0.010)
8
M
B
S
G
R
K
F
X 45 C
–T–
SEATING
PLANE
J
M
D
16 PL
0.25 (0.010)
M
T B
S
A
S
http://onsemi.com
14
DIM
A
B
C
D
F
G
J
K
M
P
R
MILLIMETERS
MIN
MAX
9.80
10.00
3.80
4.00
1.35
1.75
0.35
0.49
0.40
1.25
1.27 BSC
0.19
0.25
0.10
0.25
0
7
5.80
6.20
0.25
0.50
INCHES
MIN
MAX
0.386
0.393
0.150
0.157
0.054
0.068
0.014
0.019
0.016
0.049
0.050 BSC
0.008
0.009
0.004
0.009
0
7
0.229
0.244
0.010
0.019
MC74HC4538A
PACKAGE DIMENSIONS
TSSOP–16
DT SUFFIX
CASE 948F–01
ISSUE O
16X K REF
0.10 (0.004)
0.15 (0.006) T U
M
T U
V
S
S
S
K
ÉÉ
ÇÇ
ÇÇ
ÉÉ
K1
2X
L/2
16
9
J1
B
–U–
L
SECTION N–N
J
PIN 1
IDENT.
8
1
N
0.15 (0.006) T U
S
0.25 (0.010)
A
–V–
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS D AND E DO NOT INCLUDE MOLD
FLASH OR PROTRUSIONS AND ARE MEASURED
AT THE PARTING LINE. MOLD FLASH OR
PROTRUSIONS SHALL NOT EXCEED 0.15 (0.006)
PER SIDE.
4. TERMINAL NUMBERS ARE SHOWN FOR
REFERENCE ONLY.
5. THE LEAD WIDTH DIMENSION (b) DOES NOT
INCLUDE DAMBAR PROTRUSION. ALLOWABLE
DAMBAR PROTRUSION SHALL BE 0.08 (0.003)
TOTAL IN EXCESS OF THE LEAD WIDTH
DIMENSION AT MAXIMUM MATERIAL CONDITION.
DAMBAR CANNOT BE LOCATED ON THE LOWER
RADIUS OR THE FOOT. MINIMUM SPACE
BETWEEN PROTRUSIONS AND ADJACENT LEAD
TO BE 0.46 ( 0.018).
M
N
F
DETAIL E
http://onsemi.com
15
DIM
A
B
C
D
F
MILLIMETERS
MIN
MAX
4.90
5.10
4.30
4.50
--1.20
0.05
0.15
0.50
0.75
INCHES
MIN
MAX
0.193
0.200
0.169
0.177
--0.047
0.002
0.006
0.020
0.030
MC74HC4538A
ON Semiconductor and
are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes
without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular
purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,
including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be
validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.
SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or
death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold
SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable
attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim
alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.
PUBLICATION ORDERING INFORMATION
NORTH AMERICA Literature Fulfillment:
Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA
Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada
Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada
Email: [email protected]
Fax Response Line: 303–675–2167 or 800–344–3810 Toll Free USA/Canada
N. American Technical Support: 800–282–9855 Toll Free USA/Canada
EUROPE: LDC for ON Semiconductor – European Support
German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–[email protected]
French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)
Email: ONlit–[email protected]
English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)
Email: [email protected]
CENTRAL/SOUTH AMERICA:
Spanish Phone: 303–308–7143 (Mon–Fri 8:00am to 5:00pm MST)
Email: ONlit–[email protected]
Toll–Free from Mexico: Dial 01–800–288–2872 for Access –
then Dial 866–297–9322
ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support
Phone: 1–303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)
Toll Free from Hong Kong & Singapore:
001–800–4422–3781
Email: ONlit–[email protected]
JAPAN: ON Semiconductor, Japan Customer Focus Center
4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031
Phone: 81–3–5740–2700
Email: [email protected]
ON Semiconductor Website: http://onsemi.com
EUROPEAN TOLL–FREE ACCESS*: 00–800–4422–3781
*Available from Germany, France, Italy, UK, Ireland
For additional information, please contact your local
Sales Representative.
http://onsemi.com
16
MC74HC4538A/D