MIC862 Dual Ultra Low Power Op Amp in SOT23-8 General Description Features The MIC862 is a dual low power operational amplifier in SOT23-8 package. It is designed to operate in the 2V to 5V range, rail-to-rail output, with input common-mode to ground. The MIC862 provides 3MHz gain-bandwidth product while consuming only a 31µA/Channel supply current. With low supply voltage and SOT23-8 packaging, MIC862 provides two channels as general-purpose amplifiers for portable and battery-powered applications. Its package provides the maximum performance available while maintaining an extremely slim form factor. The minimal power consumption of this IC maximizes the battery life potential. • • • • • • • • SOT23-8 packaging 3MHz gain-bandwidth product 5MHz, –3dB bandwidth 31µA supply current Rail-to-rail output Ground sensing at input (common mode to GND) Drive large capactive loads Unity gain stable Applications • • • • • • Portable equipment Medical Insrument PDAs Pagers Cordless phones Consumer electronics Ordering Information Typical Application Part Number Marking Ambient Temp. Range Package MIC862BM8 A34 –40°C to +85°C SOT23-8 MIC862YM8 A34 34 –40°C to +85°C SOT23-8 Pb-Free V+ 10µF 0.1µF 510Ω 1/ MIC862 2 1/ MIC862 2 RF 50Ω VOUT 100pF Peak Detector Circuit for AM Radio Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com August 2006 1 MIC862 MIC862 Micrel Pin Configuration OUTA 1 8 V+ INA– 2 7 OUTB INA+ 3 6 INB– V– 4 5 INB+ SOT23-8 (M8) Pin Description Pin Number Pin Name 1 OUTA Output: Amplifier A Output 2 INA– Amplifier A Inverting (Input) 3 INA+ Amplifier A Non-Inverting (Input) 4 V– MIC862 Pin Function Negative Supply 5 INB+ Amplifier B Non-Inverting (Input) 6 INB– Amplifier B Inverting (Input) 7 OUTB Output: Amplifier B Output 8 V+ Positive Supply 2 August 2006 MIC862 Micrel Absolute Maximum Ratings(1) Operating Ratings(2) Supply Voltage (VV+ – V–) .......................................... +6.0V Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V Input Voltage (VIN+ – VIN–) ...................V+ + 0.3V, V– –0.3V Lead Temperature (soldering, 5 sec.) ........................ 260°C Output Short Circuit Current Duration ...................Indefinite Operating Temperature............................. –40°C to +125°C Storage Temperature (TS) ......................................... 150°C ESD Rating, Note 3 Supply Voltage (V+ – V–) ............................. +2V to +5.25V Ambient Temperature Range...................... –40°C to +85°C Package Thermal Resistance........................... PCB boards θJA (using 4 layer PCB) .......................................... 100°C/W θJC (using 4 layer PCB) ................................... 70°C/W Electrical Characteristics V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. Symbol Parameter Condition Min Typ Max Units VOS –6 –5 Input Offset Voltage Differential Offset Voltage IB 0.1 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C Input Bias Current 10 pA IOS Input Offset Current 5 pA Input Voltage Range (from V–) CMRR > 50dB 0.5 1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1V 45 75 dB Supply voltage change of 2V to 2.7V 50 78 dB RL = 5kΩ, VOUT = 1.4VP-P 66 74 dB 75 89 dB RL = 500kΩ, VOUT = 1.4VP-P 85 100 dB VCM PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain RL = 100kΩ, VOUT = 1.4VP-P VOUT Maximum Output Voltage Swing VOUT Minimum Output Voltage Swing GBW Gain-Bandwidth Product PM Phase Margin RL = 5kΩ RL = 500kΩ V+–80mV V+–55mV V V+–3mV V+–1.4mV V RL = 5kΩ RL = 500kΩ V–+14mV V–+ 20mV mV V–+0.85mV V–+ 3mV mV RL = 20kΩ, CL = 2pF, Av = 11 2.1 MHz 57 ° RL = 1MΩ, CL = 2pF, Av = 1 4.2 MHz 2 V/µs mA RL = 20kΩ, CL = 2pF, Av = 11 BW –3dB Bandwidth SR Slew Rate ISC Short-Circuit Output Current Source 1.8 2.6 Sink 1.5 2.2 IS Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 RL = 1MΩ, CL = 2pF, Av = 1, Positive Slew Rate = 1.5V/µs 27 –100 mA 43 µA dB V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Input Offset Voltage –6 0.1 6 mV –5 5 Differential Offset Voltage IB 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C Input Bias Current 10 pA IOS Input Offset Current 5 pA Input Voltage Range CMRR > 60dB 1 1.8 V CMRR Common-Mode Rejection Ratio 0 < VCM < 1.35V 65 83 dB VCM August 2006 3 MIC862 MIC862 Symbol Micrel Parameter Condition Min Typ PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain Supply voltage change of 2.7V to 3V 60 85 dB RL = 5kΩ, VOUT = 2VP-P 65 77 dB 80 90 dB RL = 500kΩ, VOUT = 2VP-P 90 101 dB RL = 20kΩ, CL = 2pF, Av = 11 2.3 MHz 50 ° RL = 1MΩ, CL = 2pF, Av = 1 4.2 MHz 3 V/µs mA RL = 100kΩ, VOUT = 2VP-P GBW Gain-Bandwidth Product PM Phase Margin RL = 20kΩ, CL = 2pF, Av = 11 BW –3 dB Bandwidth SR Slew Rate ISC Short-Circuit Output Current Source 4.5 6.3 Sink 4.5 6.2 IS Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 RL = 1MΩ, CL = 2pF, Av = 1 Positive Slew Rate 1.5V/µs 28 Max mA 45 –120 –6 –5 Input Offset Voltage Differential Offset Voltage IB 0.1 µA dB V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C. VOS Units 6 5 mV 0.5 mV Input Offset Voltage Temp Coefficient 6 µV/°C Input Bias Current 10 pA IOS Input Offset Current 5 pA Input Voltage Range (from V–) CMRR > 60dB 3.5 4.1 V CMRR Common-Mode Rejection Ratio 0 < VCM < 3.5V, 60 87 dB Supply voltage change from 3V to 5V 60 92 dB RL = 5kΩ, VOUT = 4.8VP-P 65 73 dB 80 86 dB RL = 500kΩ, VOUT = 4.8VP-P 89 96 dB VCM PSRR Power Supply Rejection Ratio AVOL Large-Signal Voltage Gain RL = 100kΩ, VOUT = 4.8VP-P VOUT Maximum Output Voltage Swing RL = 5kΩ VOUT Minimum Output Voltage Swing GBW Gain-Bandwidth Product PM Phase Margin BW –3 dB Bandwidth SR Slew Rate ISC Short-Circuit Output Current IS Supply Current (per op amp) No Load Channel-to-Channel Crosstalk Note 5 RL = 500kΩ V+–50mV V+–37mV V V+–3mV V+–1.3mV V RL = 5kΩ RL = 500kΩ RL = 20kΩ, CL = 2pF, Av = 11 RL = 1MΩ, CL = 2pF, Av = 1 RL = 1MΩ, CL = 2pF, Av = 1 Positive Slew Rate 1.8V/µs V–+24mV V–+ 40mV mV V–+0.7mV V–+ 3mV mV 3 MHz 45 ° 5 MHz 4 V/µs Source 17 23 mA Sink 18 27 mA 31 47 –120 Note 1. Exceeding the absolute maximum rating may damage the device. Note 2. The device is not guaranteed to function outside its operating rating. µA dB Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive Note 4. Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is likely to increase. Note 5. DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance. MIC862 4 August 2006 MIC862 Micrel Typical Characteristics 25C 85C Supply Current vs. Supply Voltage 85C 25C 0.90 1.06 1.22 1.38 1.54 1.70 1.86 2.02 2.18 2.34 2.50 -40C SUPPLY VOLTAGE (V) 0.6 V = 1.35V 25C 0.3 2 1.5 1 85C 0.5 -40C 0 -1.5 -1 -0.5 0 0.5 1 COMMON-MODE VOLTAGE (V) August 2006 V = 2.5V 0.2 0.1 0 -0.1 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 30 OUTPUT VOLTAGE (V) 1.2 V = 1.35V 35V 0.4 Offset Voltage vs. Common-Mode Voltage 0.25 25C 0 Sinking V = 2.5V -0.25 -0.50 85C -0.75 -40C -4 -1.00 -1.25 -1.50 -1.75 -2.00 -2.25 -2.50 16 24 32 40 0 8 OUTPUT CURRENT (mA) Offset Voltage vs. Temperature 0.5 SHORT-CIRCUIT CURRENT (mA) OFFSET VOLTAGE (mV) 2.5 0.7 OFFSET VOLTAGE (mV) 55 50 45 40 35 30 25 20 15 10 5 0 Output Voltage vs. Output Current OFFSET VOLTAGE (mV) 85C 6 -12 -18 -24 -30 --6 OUTPUT CURRENT (mA) 0.135 25C 25 -40C -4 0 Sinking V = 1.35V -0.135 85C -0.270 -0.405 -0.540 -0.675 -0.810 -0.945 -1.080 -1.215 -1.350 0 1 2 3 4 5 6 7 8 9 10 OUTPUT CURRENT (mA) 1 0.6 0.4 25 V = 2.5V 20 15 10 5 V = 1.35V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) 5 V = 2.5V 85C 0.2 0 -0.2 25C -40C -0.4 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 COMMON-MODE VOLTAGE (V) Short Circuit Current vs. Temperature Sourcing Offset Voltage vs. Common-Mode Voltage 0.8 SHORT-CIRCUIT CURRENT (mA) Sourcing -40C -4 85C 1.485 Sourcing 1.35 1.215 1.08 0.945 25C 0.81 0.675 0.54 0.405 0.27 -4 -40C 0.135 85C 0 0 1 2 3 4 5 6 7 8 9 10 OUTPUT CURRENT (mA) Output Voltage vs. Output Current Output Voltage vs. Output Current 25C 25C SUPPLY VOLTAGE (V) OUTPUT VOLTAGE (V) 2.75 2.50 2.25 2.00 1.75 1.50 1.25 1.00 0.75 0.50 0.25 0 0 SUPPLY CURRENT/CH (A) OUTPUT VOLTAGE (V) SUPPLY VOLTAGE (V) -40C OUTPUT VOLTAGE (V) SHORT-CIRCUIT CURRENT (mA) -40C 33 30 Sourcing 27 24 21 18 15 12 9 6 3 0 0.9 1.06 1.22 1.38 1.54 1.7 1.86 2.02 2.18 2.34 2.5 44 40 Sinking 36 32 28 24 20 16 12 8 4 0 Output Voltage vs. Output Current Short Circuit Current vs. Supply Voltage 0.9 1.06 1.22 1.38 1.54 1.7 1.86 2.02 2.18 2.34 2.5 SHORT-CIRCUIT CURRENT (mA) Short Circuit Current vs. Supply Voltage 35 30 25 Short Circuit Current vs. Temperature Sinking V = 2.5V 20 15 10 5 V = 1.35V 0 -40 -20 0 20 40 60 80 100 TEMPERATURE (C) MIC862 Micrel PHASE () GAIN (dB) 225 180 135 90 45 0 -45 -90 -135 -180 -225 10M 100 90 80 70 60 50 40 30 20 10 0 1 V = 1.35V PHASE() 20 180 15 135 10 90 5 45 Gain 0 0 -5 -45 -10 -90 Phase -15 Av = 1 -135 V = 2.5V -20 C = 2pF -180 L -25 R = 5k -225 L -30 -270 1k 10k 100k 1M 10M FREQUENCY (Hz) PSRR vs. Frequency 10 100 1k 10k 100k1M 10M FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225 Unity Gain Frequency Response GAIN (dB) Unity Gain Frequency Response 20 180 15 135 10 90 5 45 Gain 0 0 -5 -45 -10 -90 Phase -15 Av = 1 -135 V = 1.35V -20 C = 2pF -180 L -25 R = 5k -225 L -30 -270 10k 1M 1k 100k 10M FREQUENCY (Hz) 25 20 15 10 5 0 Av = 2 -5 V = 1.35V -10 CL = 2pF -15 RL = 5k -20 RF = 20k -25 10k 100k 1M 10M FREQUENCY (Hz) PHASE () Gain Frequency Response GAIN (dB) PHASE () GAIN (dB) 225 180 135 90 45 0 -45 -90 -135 -180 -225 PSRR (dB) 10M Gain Bandwidth and Phase Margin 50 40 30 20 10 0 -10 Av = 11 -20 V + = +1.5V V – = –0.5V -30 C = 1.7pF L -40 R = 1M L -50 10k 100k 1M FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225 PHASE () GAIN (dB) Gain Frequency Response 25 20 15 10 5 0 -5 Av = 2 V = 2.5V -10 CL = 2pF -15 RL = 5k -20 R = 20k F -25 100k 1M 10k FREQUENCY (Hz) 50 40 30 20 10 0 -10 -20 Av = 11 V = 2.5V -30 C = 2pF L -40 R = 1M L -50 10k 100k 1M 10M FREQUENCY (Hz) PHASE() 10M GAIN (dB) Av = 11 V = 1.35V CL = 2pF RL = 1M 100k 1M FREQUENCY (Hz) 225 180 135 90 45 0 -45 -90 -135 -180 -225 Gain Bandwidth and Phase Margin PSRR (dB) 50 40 30 20 10 0 -10 -20 -30 -40 -50 Gain Bandwidth and Phase Margin PHASE () GAIN (dB) MIC862 100 90 80 70 60 50 40 30 20 10 0 1 PSRR vs. Frequency V = 2.5V 10 100 1k 10k 100k1M 10M FREQUENCY (Hz) Channel to Channel Crosstalk -30 -35 -40 -45 -50 -55 -60 10 MIC862 100 FREQUENCY (kHz) 6 1000 August 2006 MIC862 Micrel Functional Characteristics Small Signal Response Small Signal Response INPUT 50mV/div OUTPUT 50mV/div TIME 500ns/div TIME 500ns/div Small Signal Response Small Signal Response INPUT 50mV/div AV = 1 V� = �2.5V CL = 50pF RL = 500� OUTPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V� = �1.35V CL = 50pF RL = 500� TIME 1�s/div TIME 1�s/div Small Signal Response Small Signal Response INPUT 50mV/div AV = 1 V� = �2.5V CL = 1000pF RL = 500� OUTPUT 50mV/div OUTPUT 50mV/div INPUT 50mV/div AV = 1 V� = �1.35V CL = 1000pF RL = 500� TIME 500ns/div August 2006 AV = 1 V� = �2.5V CL = 1.7pF RL = 1M� OUTPUT 50mV/div INPUT 50mV/div AV = 1 V� = �1.35V CL = 1.7pF RL = 1M� TIME 500ns/div 7 MIC862 MIC862 Micrel Small Signal Pulse Response OUTPUT 50mV/div INPUT 50mV/div AV = 1 V+ = +1.5V V– = –0.5V CL = 1.7pF RL = 1M� TIME 500ns/div MIC862 8 August 2006 MIC862 Micrel Large Signal Response Large Signal Response AV = 1 V� = �2.5V CL = 1.7pF RL = 1M� OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V� = �1.35V CL = 1.7pF RL = 1M� Positive Slew Rate = 1.5V/�s Negative Slew Rate = 2.0V/�s Positive Slew Rate = 1.8V/�s Negative Slew Rate = 4.1V/�s TIME 5�s/div TIME 5�s/div Large Signal Response Large Signal Response AV = 1 V� = �2.5V CL = 50pF RL = 500� OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V� = �1.35V CL = 50pF RL = 500� Positive Slew Rate = 1.5V/�s Negative Slew Rate = 2.8V/�s Positive Slew Rate = 1.8V/�s Negative Slew Rate = 4.7V/�s TIME 5�s/div TIME 5�s/div Large Signal Pulse Response Large Signal Pulse Response AV = 1 V� = �2.5V CL = 1000pF RL = 500� OUTPUT 1V/div OUTPUT 500mV/div AV = 1 V� = �1.35V CL = 1000pF RL = 500� Positive Slew Rate = 1.3V/�s Negative Slew Rate = 3.6V/�s Positive Slew Rate = 1.3V/�s Negative Slew Rate = 3.6V/�s TIME 5�s/div August 2006 TIME 5�s/div 9 MIC862 MIC862 Micrel Large Signal Pulse Response V+ AV = 1 V+ = +1.5V V– = –0.5V CL = 1.7pF RL = 1M� RL CL OUTPUT 20mV/div V— Positive Slew Rate = 1.17V/�s Negative Slew Rate = 2.0V/�s TIME 5�s/div INPUT 500mV/div �V = 2.7VP-P Rail to Rail Operation Rail to Rail Operation �V = 2.7VP-P AV = 2 V� = �2.5V CL = 2 pF RL = 5k� RF = 20k� �V = 5VP-P OUTPUT 2V/div AV = 2 V� = �1.35V CL = 2 pF RL = 5k� RF = 20k� INPUT 1V/div TIME 250�s/div OUTPUT 1V/div INPUT 500mV/div �V = 5VP-P TIME 250�s/div TIME 250�s/div MIC862 AV = 2 V� = �2.5V CL = 2pF RL = 1M� RF = 20k� OUTPUT 1V/div AV = 2 V� = �1.35V CL = 2pF RL = 1M� RF = 20k� Rail to Rail Operation OUTPUT 1V/div INPUT 500mV/div Rail to Rail Operation TIME 250�s/div 10 August 2006 MIC862 Micrel Applications Information Under the above conditions, if the load is less than 20kOhm and the output swing is greater than 1V(peak), there may be some instability when the output is sinking current. Capacitive Load When driving a large capacitive load, a resistor of 500Ω is recommended to be connected between the op-amp output and the capacitive load to avoid oscillation. Power Supply Bypassing Regular supply bypassing techniques are recommended. A 10µF capacitor in parallel with a 0.1µF capacitor on both the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close to the op amp as possible and all capacitors should be low ESL (equivalent series inductance), ESR (equivalent series resistance). Surface-mount ceramic capacitors are ideal. Supply and Loading Resistive Considerations The MIC862 is intended for single supply applications configured with a grounded load. It is not advisable to operate the MIC862 under either of the following conditions: 1. A grounded load and split supplies (+/-V) 2. A single supply where the load is terminated above ground. August 2006 11 MIC862 MIC862 Micrel Package Information SOT-23-8 (M8) MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2004 Micrel, Incorporated. MIC862 12 August 2006