MICREL MIC862_06

MIC862
Dual Ultra Low Power Op Amp in SOT23-8
General Description
Features
The MIC862 is a dual low power operational amplifier in
SOT23-8 package. It is designed to operate in the 2V to 5V
range, rail-to-rail output, with input common-mode to ground.
The MIC862 provides 3MHz gain-bandwidth product while
consuming only a 31µA/Channel supply current.
With low supply voltage and SOT23-8 packaging, MIC862
provides two channels as general-purpose amplifiers for portable and battery-powered applications. Its package provides
the maximum performance available while maintaining an
extremely slim form factor. The minimal power consumption
of this IC maximizes the battery life potential.
•
•
•
•
•
•
•
•
SOT23-8 packaging
3MHz gain-bandwidth product
5MHz, –3dB bandwidth
31µA supply current
Rail-to-rail output
Ground sensing at input (common mode to GND)
Drive large capactive loads
Unity gain stable
Applications
•
•
•
•
•
•
Portable equipment
Medical Insrument
PDAs
Pagers
Cordless phones
Consumer electronics
Ordering Information
Typical Application
Part Number
Marking
Ambient Temp. Range
Package
MIC862BM8
A34
–40°C to +85°C
SOT23-8
MIC862YM8
A34
34
–40°C to +85°C
SOT23-8
Pb-Free
V+
10µF
0.1µF
510Ω
1/ MIC862
2
1/ MIC862
2
RF
50Ω
VOUT
100pF
Peak Detector Circuit for AM Radio
Micrel, Inc. • 2180 Fortune Drive • San Jose, CA 95131 • USA • tel + 1 (408) 944-0800 • fax + 1 (408) 474-1000 • http://www.micrel.com
August 2006
1
MIC862
MIC862
Micrel
Pin Configuration
OUTA
1
8 V+
INA– 2
7 OUTB
INA+ 3
6 INB–
V– 4
5 INB+
SOT23-8 (M8)
Pin Description
Pin Number
Pin Name
1
OUTA
Output: Amplifier A Output
2
INA–
Amplifier A Inverting (Input)
3
INA+
Amplifier A Non-Inverting (Input)
4
V–
MIC862
Pin Function
Negative Supply
5
INB+
Amplifier B Non-Inverting (Input)
6
INB–
Amplifier B Inverting (Input)
7
OUTB
Output: Amplifier B Output
8
V+
Positive Supply
2
August 2006
MIC862
Micrel
Absolute Maximum Ratings(1)
Operating Ratings(2)
Supply Voltage (VV+ – V–) .......................................... +6.0V
Differential Input Voltage (VIN+ – VIN–), Note 4 ...... +6.0V
Input Voltage (VIN+ – VIN–) ...................V+ + 0.3V, V– –0.3V
Lead Temperature (soldering, 5 sec.) ........................ 260°C
Output Short Circuit Current Duration ...................Indefinite
Operating Temperature............................. –40°C to +125°C
Storage Temperature (TS) ......................................... 150°C
ESD Rating, Note 3
Supply Voltage (V+ – V–) ............................. +2V to +5.25V
Ambient Temperature Range...................... –40°C to +85°C
Package Thermal Resistance........................... PCB boards
θJA (using 4 layer PCB) .......................................... 100°C/W
θJC (using 4 layer PCB) ................................... 70°C/W
Electrical Characteristics
V+ = +2V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
Symbol
Parameter
Condition
Min
Typ
Max
Units
VOS
–6
–5
Input Offset Voltage
Differential Offset Voltage
IB
0.1
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
Input Voltage Range (from V–)
CMRR > 50dB
0.5
1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1V
45
75
dB
Supply voltage change of 2V to 2.7V
50
78
dB
RL = 5kΩ, VOUT = 1.4VP-P
66
74
dB
75
89
dB
RL = 500kΩ, VOUT = 1.4VP-P
85
100
dB
VCM
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
RL = 100kΩ, VOUT = 1.4VP-P
VOUT
Maximum Output Voltage Swing
VOUT
Minimum Output Voltage Swing
GBW
Gain-Bandwidth Product
PM
Phase Margin
RL = 5kΩ
RL = 500kΩ
V+–80mV V+–55mV
V
V+–3mV V+–1.4mV
V
RL = 5kΩ
RL = 500kΩ
V–+14mV V–+ 20mV
mV
V–+0.85mV V–+ 3mV
mV
RL = 20kΩ, CL = 2pF, Av = 11
2.1
MHz
57
°
RL = 1MΩ, CL = 2pF, Av = 1
4.2
MHz
2
V/µs
mA
RL = 20kΩ, CL = 2pF, Av = 11
BW
–3dB Bandwidth
SR
Slew Rate
ISC
Short-Circuit Output Current
Source
1.8
2.6
Sink
1.5
2.2
IS
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
RL = 1MΩ, CL = 2pF, Av = 1,
Positive Slew Rate = 1.5V/µs
27
–100
mA
43
µA
dB
V+ = +2.7V, V– = 0V, VCM = V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Input Offset Voltage
–6
0.1
6
mV
–5
5
Differential Offset Voltage
IB
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
Input Voltage Range
CMRR > 60dB
1
1.8
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 1.35V
65
83
dB
VCM
August 2006
3
MIC862
MIC862
Symbol
Micrel
Parameter
Condition
Min
Typ
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
Supply voltage change of 2.7V to 3V
60
85
dB
RL = 5kΩ, VOUT = 2VP-P
65
77
dB
80
90
dB
RL = 500kΩ, VOUT = 2VP-P
90
101
dB
RL = 20kΩ, CL = 2pF, Av = 11
2.3
MHz
50
°
RL = 1MΩ, CL = 2pF, Av = 1
4.2
MHz
3
V/µs
mA
RL = 100kΩ, VOUT = 2VP-P
GBW
Gain-Bandwidth Product
PM
Phase Margin
RL = 20kΩ, CL = 2pF, Av = 11
BW
–3 dB Bandwidth
SR
Slew Rate
ISC
Short-Circuit Output Current
Source
4.5
6.3
Sink
4.5
6.2
IS
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
RL = 1MΩ, CL = 2pF, Av = 1
Positive Slew Rate 1.5V/µs
28
Max
mA
45
–120
–6
–5
Input Offset Voltage
Differential Offset Voltage
IB
0.1
µA
dB
V+= +5V, V–= 0V, VCM= V+/2; RL= 500kΩ to V+/2; TA= 25°C, unless otherwise noted. Bold values indicate –40°C≤ TA≤ +85°C.
VOS
Units
6
5
mV
0.5
mV
Input Offset Voltage Temp Coefficient
6
µV/°C
Input Bias Current
10
pA
IOS
Input Offset Current
5
pA
Input Voltage Range (from V–)
CMRR > 60dB
3.5
4.1
V
CMRR
Common-Mode Rejection Ratio
0 < VCM < 3.5V,
60
87
dB
Supply voltage change from 3V to 5V
60
92
dB
RL = 5kΩ, VOUT = 4.8VP-P
65
73
dB
80
86
dB
RL = 500kΩ, VOUT = 4.8VP-P
89
96
dB
VCM
PSRR
Power Supply Rejection Ratio
AVOL
Large-Signal Voltage Gain
RL = 100kΩ, VOUT = 4.8VP-P
VOUT
Maximum Output Voltage Swing
RL = 5kΩ
VOUT
Minimum Output Voltage Swing
GBW
Gain-Bandwidth Product
PM
Phase Margin
BW
–3 dB Bandwidth
SR
Slew Rate
ISC
Short-Circuit Output Current
IS
Supply Current (per op amp)
No Load
Channel-to-Channel Crosstalk
Note 5
RL = 500kΩ
V+–50mV V+–37mV
V
V+–3mV V+–1.3mV
V
RL = 5kΩ
RL = 500kΩ
RL = 20kΩ, CL = 2pF, Av = 11
RL = 1MΩ, CL = 2pF, Av = 1
RL = 1MΩ, CL = 2pF, Av = 1
Positive Slew Rate 1.8V/µs
V–+24mV V–+ 40mV
mV
V–+0.7mV V–+ 3mV
mV
3
MHz
45
°
5
MHz
4
V/µs
Source
17
23
mA
Sink
18
27
mA
31
47
–120
Note 1.
Exceeding the absolute maximum rating may damage the device.
Note 2.
The device is not guaranteed to function outside its operating rating.
µA
dB
Note 3.
Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF. Pin 4 is ESD sensitive
Note 4.
Exceeding the maximum differential input voltage will damage the input stage and degrade performance (in particular, input bias current is
likely to increase.
Note 5.
DC signal referenced to input. Refer to Typical Characteristics graphs for AC performance.
MIC862
4
August 2006
MIC862
Micrel
Typical Characteristics
25C
85C
Supply Current
vs. Supply Voltage
85C
25C
0.90
1.06
1.22
1.38
1.54
1.70
1.86
2.02
2.18
2.34
2.50
-40C
SUPPLY VOLTAGE (V)
0.6
V = 1.35V
25C
0.3
2
1.5
1
85C
0.5
-40C
0
-1.5
-1
-0.5
0
0.5
1
COMMON-MODE VOLTAGE (V)
August 2006
V = 2.5V
0.2
0.1
0
-0.1
-40 -20 0 20 40 60 80 100
TEMPERATURE (C)
30
OUTPUT VOLTAGE (V)
1.2
V = 1.35V
35V
0.4
Offset Voltage
vs. Common-Mode Voltage
0.25
25C
0 Sinking
V = 2.5V
-0.25
-0.50
85C
-0.75
-40C
-4
-1.00
-1.25
-1.50
-1.75
-2.00
-2.25
-2.50
16
24
32
40
0
8
OUTPUT CURRENT (mA)
Offset Voltage
vs. Temperature
0.5
SHORT-CIRCUIT CURRENT (mA)
OFFSET VOLTAGE (mV)
2.5
0.7
OFFSET VOLTAGE (mV)
55
50
45
40
35
30
25
20
15
10
5
0
Output Voltage
vs. Output Current
OFFSET VOLTAGE (mV)
85C
6
-12
-18
-24
-30
--6
OUTPUT CURRENT (mA)
0.135
25C
25
-40C
-4
0 Sinking
V = 1.35V
-0.135
85C
-0.270
-0.405
-0.540
-0.675
-0.810
-0.945
-1.080
-1.215
-1.350
0 1 2 3 4 5 6 7 8 9 10
OUTPUT CURRENT (mA)
1
0.6
0.4
25
V = 2.5V
20
15
10
5
V = 1.35V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (C)
5
V = 2.5V
85C
0.2
0
-0.2
25C
-40C
-0.4
-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
COMMON-MODE VOLTAGE (V)
Short Circuit Current
vs. Temperature
Sourcing
Offset Voltage
vs. Common-Mode Voltage
0.8
SHORT-CIRCUIT CURRENT (mA)
Sourcing
-40C
-4
85C
1.485
Sourcing
1.35
1.215
1.08
0.945
25C
0.81
0.675
0.54
0.405
0.27
-4
-40C
0.135
85C
0
0 1 2 3 4 5 6 7 8 9 10
OUTPUT CURRENT (mA)
Output Voltage
vs. Output Current
Output Voltage
vs. Output Current
25C
25C
SUPPLY VOLTAGE (V)
OUTPUT VOLTAGE (V)
2.75
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0
0
SUPPLY CURRENT/CH (A)
OUTPUT VOLTAGE (V)
SUPPLY VOLTAGE (V)
-40C
OUTPUT VOLTAGE (V)
SHORT-CIRCUIT CURRENT (mA)
-40C
33
30 Sourcing
27
24
21
18
15
12
9
6
3
0
0.9
1.06
1.22
1.38
1.54
1.7
1.86
2.02
2.18
2.34
2.5
44
40 Sinking
36
32
28
24
20
16
12
8
4
0
Output Voltage
vs. Output Current
Short Circuit Current
vs. Supply Voltage
0.9
1.06
1.22
1.38
1.54
1.7
1.86
2.02
2.18
2.34
2.5
SHORT-CIRCUIT CURRENT (mA)
Short Circuit Current
vs. Supply Voltage
35
30
25
Short Circuit Current
vs. Temperature
Sinking
V = 2.5V
20
15
10
5
V = 1.35V
0
-40 -20 0 20 40 60 80 100
TEMPERATURE (C)
MIC862
Micrel
PHASE ()
GAIN (dB)
225
180
135
90
45
0
-45
-90
-135
-180
-225
10M
100
90
80
70
60
50
40
30
20
10
0
1
V = 1.35V
PHASE()
20
180
15
135
10
90
5
45
Gain
0
0
-5
-45
-10
-90
Phase
-15 Av = 1
-135
V = 2.5V
-20 C = 2pF
-180
L
-25 R = 5k
-225
L
-30
-270
1k
10k
100k
1M
10M
FREQUENCY (Hz)
PSRR
vs. Frequency
10 100 1k 10k 100k1M 10M
FREQUENCY (Hz)
225
180
135
90
45
0
-45
-90
-135
-180
-225
Unity Gain Frequency
Response
GAIN (dB)
Unity Gain Frequency
Response
20
180
15
135
10
90
5
45
Gain 0
0
-5
-45
-10
-90
Phase
-15 Av = 1
-135
V = 1.35V
-20 C = 2pF
-180
L
-25 R = 5k
-225
L
-30
-270
10k
1M
1k
100k
10M
FREQUENCY (Hz)
25
20
15
10
5
0
Av = 2
-5
V = 1.35V
-10 CL = 2pF
-15 RL = 5k
-20 RF = 20k
-25
10k
100k
1M
10M
FREQUENCY (Hz)
PHASE ()
Gain Frequency Response
GAIN (dB)
PHASE ()
GAIN (dB)
225
180
135
90
45
0
-45
-90
-135
-180
-225
PSRR (dB)
10M
Gain Bandwidth
and Phase Margin
50
40
30
20
10
0
-10 Av = 11
-20 V + = +1.5V
V – = –0.5V
-30 C = 1.7pF
L
-40 R = 1M
L
-50
10k
100k
1M
FREQUENCY (Hz)
225
180
135
90
45
0
-45
-90
-135
-180
-225
PHASE ()
GAIN (dB)
Gain Frequency Response
25
20
15
10
5
0
-5 Av = 2
V = 2.5V
-10
CL = 2pF
-15
RL = 5k
-20 R = 20k
F
-25
100k
1M
10k
FREQUENCY (Hz)
50
40
30
20
10
0
-10
-20 Av = 11
V = 2.5V
-30 C = 2pF
L
-40 R = 1M
L
-50
10k
100k
1M
10M
FREQUENCY (Hz)
PHASE()
10M
GAIN (dB)
Av = 11
V = 1.35V
CL = 2pF
RL = 1M
100k
1M
FREQUENCY (Hz)
225
180
135
90
45
0
-45
-90
-135
-180
-225
Gain Bandwidth and
Phase Margin
PSRR (dB)
50
40
30
20
10
0
-10
-20
-30
-40
-50
Gain Bandwidth and
Phase Margin
PHASE ()
GAIN (dB)
MIC862
100
90
80
70
60
50
40
30
20
10
0
1
PSRR
vs. Frequency
V = 2.5V
10 100 1k 10k 100k1M 10M
FREQUENCY (Hz)
Channel to
Channel Crosstalk
-30
-35
-40
-45
-50
-55
-60
10
MIC862
100
FREQUENCY (kHz)
6
1000
August 2006
MIC862
Micrel
Functional Characteristics
Small Signal Response
Small Signal Response
INPUT
50mV/div
OUTPUT
50mV/div
TIME 500ns/div
TIME 500ns/div
Small Signal Response
Small Signal Response
INPUT
50mV/div
AV = 1
V� = �2.5V
CL = 50pF
RL = 500�
OUTPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V� = �1.35V
CL = 50pF
RL = 500�
TIME 1�s/div
TIME 1�s/div
Small Signal Response
Small Signal Response
INPUT
50mV/div
AV = 1
V� = �2.5V
CL = 1000pF
RL = 500�
OUTPUT
50mV/div
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V� = �1.35V
CL = 1000pF
RL = 500�
TIME 500ns/div
August 2006
AV = 1
V� = �2.5V
CL = 1.7pF
RL = 1M�
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V� = �1.35V
CL = 1.7pF
RL = 1M�
TIME 500ns/div
7
MIC862
MIC862
Micrel
Small Signal Pulse Response
OUTPUT
50mV/div
INPUT
50mV/div
AV = 1
V+ = +1.5V
V– = –0.5V
CL = 1.7pF
RL = 1M�
TIME 500ns/div
MIC862
8
August 2006
MIC862
Micrel
Large Signal Response
Large Signal Response
AV = 1
V� = �2.5V
CL = 1.7pF
RL = 1M�
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V� = �1.35V
CL = 1.7pF
RL = 1M�
Positive Slew Rate = 1.5V/�s
Negative Slew Rate = 2.0V/�s
Positive Slew Rate = 1.8V/�s
Negative Slew Rate = 4.1V/�s
TIME 5�s/div
TIME 5�s/div
Large Signal Response
Large Signal Response
AV = 1
V� = �2.5V
CL = 50pF
RL = 500�
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V� = �1.35V
CL = 50pF
RL = 500�
Positive Slew Rate = 1.5V/�s
Negative Slew Rate = 2.8V/�s
Positive Slew Rate = 1.8V/�s
Negative Slew Rate = 4.7V/�s
TIME 5�s/div
TIME 5�s/div
Large Signal Pulse Response
Large Signal Pulse Response
AV = 1
V� = �2.5V
CL = 1000pF
RL = 500�
OUTPUT
1V/div
OUTPUT
500mV/div
AV = 1
V� = �1.35V
CL = 1000pF
RL = 500�
Positive Slew Rate = 1.3V/�s
Negative Slew Rate = 3.6V/�s
Positive Slew Rate = 1.3V/�s
Negative Slew Rate = 3.6V/�s
TIME 5�s/div
August 2006
TIME 5�s/div
9
MIC862
MIC862
Micrel
Large Signal Pulse Response
V+
AV = 1
V+ = +1.5V
V– = –0.5V
CL = 1.7pF
RL = 1M�
RL
CL
OUTPUT
20mV/div
V—
Positive Slew Rate = 1.17V/�s
Negative Slew Rate = 2.0V/�s
TIME 5�s/div
INPUT
500mV/div
�V = 2.7VP-P
Rail to Rail Operation
Rail to Rail Operation
�V = 2.7VP-P
AV = 2
V� = �2.5V
CL = 2 pF
RL = 5k�
RF = 20k�
�V = 5VP-P
OUTPUT
2V/div
AV = 2
V� = �1.35V
CL = 2 pF
RL = 5k�
RF = 20k�
INPUT
1V/div
TIME 250�s/div
OUTPUT
1V/div
INPUT
500mV/div
�V = 5VP-P
TIME 250�s/div
TIME 250�s/div
MIC862
AV = 2
V� = �2.5V
CL = 2pF
RL = 1M�
RF = 20k�
OUTPUT
1V/div
AV = 2
V� = �1.35V
CL = 2pF
RL = 1M�
RF = 20k�
Rail to Rail Operation
OUTPUT
1V/div
INPUT
500mV/div
Rail to Rail Operation
TIME 250�s/div
10
August 2006
MIC862
Micrel
Applications Information
Under the above conditions, if the load is less than 20kOhm
and the output swing is greater than 1V(peak), there may be
some instability when the output is sinking current.
Capacitive Load
When driving a large capacitive load, a resistor of 500Ω is
recommended to be connected between the op-amp output
and the capacitive load to avoid oscillation.
Power Supply Bypassing
Regular supply bypassing techniques are recommended.
A 10µF capacitor in parallel with a 0.1µF capacitor on both
the positive and negative supplies are ideal. For best performance all bypassing capacitors should be located as close
to the op amp as possible and all capacitors should be low
ESL (equivalent series inductance), ESR (equivalent series
resistance). Surface-mount ceramic capacitors are ideal.
Supply and Loading Resistive Considerations
The MIC862 is intended for single supply applications configured with a grounded load. It is not advisable to operate
the MIC862 under either of the following conditions:
1. A grounded load and split supplies (+/-V)
2. A single supply where the load is terminated
above ground.
August 2006
11
MIC862
MIC862
Micrel
Package Information
SOT-23-8 (M8)
MICREL, INC.
2180 FORTUNE DRIVE
SAN JOSE, CA 95131
USA
TEL + 1 (408) 944-0800 FAX + 1 (408) 474-1000 WEB http://www.micrel.com
The information furnished by Micrel in this data sheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.
Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.
Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can
reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into
the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser’s
use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser’s own risk and Purchaser agrees to fully indemnify
Micrel for any damages resulting from such use or sale.
© 2004 Micrel, Incorporated.
MIC862
12
August 2006