16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II 288Mb SIO REDUCED LATENCY (RLDRAM II) MT49H16M18C MT49H32M9C Features Figure 1: 144-Ball FBGA • 288Mb • 400 MHz DDR operation (800 Mb/s/pin data rate) • Organization • 16 Meg x 18, 32 Meg x 9 Separate I/O • 8 banks • Cyclic bank switching for maximum bandwidth • Reduced cycle time (20ns at 400 MHz) • Nonmultiplexed addresses (address multiplexing option available) • SRAM-type interface • Read latency (RL), row cycle time, and burst sequence length • Balanced READ and WRITE latencies in order to optimize data bus utilization • Data mask for WRITE commands • Differential input clocks (CK, CK#) • Differential input data clocks (DKx, DKx#) • On-chip DLL generates CK edge-aligned data and output data clock signals • Data valid signal (QVLD) • 32ms refresh (8K refresh for each bank; 64k refresh command must be issued in total each 32ms) • 144-ball FBGA package • HSTL I/O (1.5V or 1.8V nominal) • 25Ω–60Ω matched impedance outputs • 2.5V VEXT, 1.8V VDD, 1.5V or 1.8V VDDQ I/O • On-die termination (ODT) RTT Options Valid Part Numbers PART NUMBER MT49H16M18CFM-xx MT49H32M9CFM-xx DESCRIPTION 16 Meg x 18 RLDRAM II 32 Meg x 9 RLDRAM II Marking • Clock Cycle Timing 2.5ns (400 MHz) 3.3ns (300 MHz) 5ns (200 MHz) • Configuration 16 Meg x 18 32 Meg x 9 • Package 144-ball FBGA (11mm x 18.5mm) NOTE: Table 1: -25 -33 -5 MT49H16M18CFM MT49H32M9CFM FM BM (lead-free)1 1. Contact Micron for availability of lead-free products. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_1.fm - Rev. F 11/04 EN 1 ©2004 Micron Technology, Inc. All rights reserved. PRODUCTS AND SPECIFICATIONS DISCUSSED HEREIN ARE SUBJECT TO CHANGE BY MICRON WITHOUT NOTICE. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table of Contents Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Marking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Programmable Impedance Output Buffer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Clock Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14 Mode Register Set Command (MRS). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 Write Basic Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Read Basic Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 AUTO REFRESH Command (AREF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 On-Die Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Operation with Multiplexed Addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Address Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Refresh Command in Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 IEEE 1149.1 Serial Boundary Scan (JTAG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Disabling the JTAG Feature. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Test Access Port (TAP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Test Clock (TCK) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Test Mode Select (TMS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Test Data-In (TDI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Test Data-Out (TDO) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 Performing a TAP RESET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TAP Registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Instruction Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Bypass Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Boundary Scan Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Identification (ID) Register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 TAP Instruction Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 EXTEST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 IDCODE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 HIGH-Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 CLAMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 SAMPLE/PRELOAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 BYPASS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Reserved . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Absolute Maximum Ratings* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Data Sheet Designation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18CTOC.fm - Rev. F 11/04 EN 2 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II List of Figures Figure 1: Figure 2: Figure 3: Figure 4: Figure 5: Figure 6: Figure 7: Figure 8: Figure 9: Figure 10: Figure 11: Figure 12: Figure 13: Figure 14: Figure 15: Figure 16: Figure 17: Figure 18: Figure 19: Figure 20: Figure 21: Figure 22: Figure 23: Figure 24: Figure 25: Figure 26: Figure 27: Figure 28: Figure 29: Figure 30: Figure 31: Figure 32: Figure 33: Figure 34: Figure 35: Figure 36: Figure 37: Figure 38: Figure 39: Figure 40: Figure 41: Figure 42: Figure 43: 144-Ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Functional Block Diagram – 16 Meg x 18. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 16 Meg x 18 Ball Assignment (Top View) 144-Ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 32 Meg x 9 Ball Assignment (Top View) 144-Ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Clock/Input Data Clock Command/Address Timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Power-Up Sequence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13 Clock Input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 Mode Register Set Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Mode Register Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 Mode Register Bit Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16 WRITE Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Basic WRITE Burst/DM Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Write Burst Basic Sequence: BL = 2, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Write Burst Basic Sequence: BL = 4, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .19 WRITE Followed By READ: BL = 2, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 WRITE Followed By READ: BL = 4, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 READ Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21 Basic READ Burst Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 READ Burst: BL = 2, RL = 4, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 READ Burst: BL = 4, RL = 4, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23 READ Followed by WRITE, BL = 2, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 READ followed by WRITE, BL = 4, RL = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24 READ/WRITE Interleave: BL = 4, tRC = 4, WL = 5, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 READ/WRITE Interleave: BL = 4, tRC = 6, WL = 7, Configuration 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25 READ/WRITE Interleave: BL = 4, tRC = 8, WL = 9, Configuration 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 AUTO REFRESH Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 AUTO REFRESH Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27 On-Die Termination-Equivalent Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 READ Burst with ODT: BL = 2, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 READ NOP READ with ODT: BL = 2, Configuration 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 READ NOP NOP READ with ODT: BL = 2, Configuration 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 Command Description in Multiplexed Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 Mode Register Set Command in Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Power-Up Sequence in Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Burst Refresh Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 WRITE Burst Basic Sequence: BL = 4, with Multiplexed Addresses, Configuration 1, WL = 6 . . . . . .34 READ Burst Basic Sequence: BL = 4, with Multiplexed Addresses, Configuration 1, RL = 5. . . . . . . .34 TAP Controller State Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TAP Controller Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35 TAP Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Output Test Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Input Waveform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 144-Ball FBGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18CLOF.fm - Rev. F 11/04 EN 3 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II List of Tables Table 1: Table 2: Table 3: Table 4: Table 5: Table 6: Table 7: Table 8: Table 9: Table 10: Table 11: Table 12: Table 13: Table 14: Table 15: Table 16: Table 17: Table 18: Table 19: Table 20: Table 21: Table 22: Valid Part Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Address Widths at Different Burst Lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Command Table1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 Description of Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11 AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 Clock Input Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 RLDRAM Configuration Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17 On-Die Termination DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 Address Mapping in Multiplexed Address Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32 Configuration Table In Multiplexed Address Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 TAP AC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 TAP AC Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 TAP DC Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38 Identification Register Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Scan Register Sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Instruction Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39 Boundary Scan (Exit) Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40 DC Electrical Characteristics and Operating Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 AC Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 Capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 IDD Operating Conditions and Maximum Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18CLOT.fm - Rev. F 11/04 EN 4 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II General Description is referenced to the free-running output data clock. This architecture eliminates the need for high-speed bus turnaround. Commands, addresses, and control signals are registered at every positive edge of the differential input clock, while input data is registered at both positive and negative edges of the input data clock(s). Read and write accesses to the RLDRAM are burstoriented. The burst length is programmable from 2, 4, or 8 by setting the mode register. The device is supplied with 2.5V and 1.8V for the core and 1.5V or 1.8V for the output drivers. Bank-scheduled refresh is supported with row address generated internally. A standard FBGA 144-ball package is used to enable ultra high-speed data transfer rates and a simple upgrade path from former products. The Micron® 288Mb reduced latency DRAM (RLDRAM) II is a high-speed memory device designed for high bandwidth communication data storage. Applications include, but are not limited to, transmitting or receiving buffers in telecommunication systems and data or instruction cache applications requiring large amounts of memory. The chip's eightbank architecture is optimized for high speed and achieves a peak bandwidth of 28.8 Gb/s, using two separate 18-bit double data rate (DDR) parts and a maximum system clock of 400 MHz. The DDR separate I/O interface transfers two 18- or 9-bit wide data word per clock cycle at the I/O balls. The read port has dedicated data outputs to support READ operations, while the write port has dedicated input balls to support WRITE operations. Output data pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 5 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 2: Functional Block Diagram – 16 Meg x 18 Column Decoder Sense Amp and Data Bus Bank 6 Output Buffers Q0–Q17 D0–D17 Memory Array Bank 7 Control Logic and Timing Generator DM Input Buffers Column Decoder Bank 5 Memory Array Sense Amp and Data Bus Memory Array Row Decoder VREF Column Decoder Bank 3 CS# QK[1:0], QK#[1:0] Memory Array REF# QVLD Bank 2 WE# Output Data Clock Memory Array DK Output Data Valid Row Decoder Row Decoder Column Decoder Column Decoder Memory Array Sense Amp and Data Bus Column Decoder Sense Amp and Data Bus Bank 1 Row Decoder Row Decoder Bank 4 Memory Array Sense Amp and Data Bus Bank 0 Column Decoder Memory Array Row Decoder DK# Row Decoder Refresh Counter Row Address Buffer CK Row Decoder , B0, B1, B2 CK# Column Address Buffer 1, 2 Sense Amp and Data Bus Column Address Counter Sense Amp and Data Bus Column Decoder Sense Amp and Data Bus A0–A19 NOTE: 1. When the BL = 8 setting is used, A18 and A19 are “Don’t Care.“ 2. When BL = 4 setting is used, A19 is “Don’t Care.” pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 6 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 3: 16 Meg x 18 Ball Assignment (Top View) 144-Ball FBGA 1 2 3 4 VREF VDD VTT VSS D4 D5 VEXT Q4 Q5 5 6 7 8 9 10 11 12 VSS VSSQ VDDQ VSS VSSQ VDDQ VEXT Q0 Q1 TMS D0 D1 TCK VDD VTT A B C D (A22)1 D6 Q6 VSSQ VSSQ QK0# QK0 VSS E 2 D7 D8 A6 A9 Q7 Q8 A7 VSS VDDQ VSSQ VDD VSS VDDQ VSSQ VDD VSS Q2 Q3 A2 VSS D2 D3 A1 A4 (A20)2 QVLD A0 A3 NF3 DK# CS# A16 D14 D15 QK1 D16 D17 ZQ VDD VDD VSS A17 Q14 Q15 QK1# Q16 Q17 VEXT VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS VDD VDD VSS VDD VSSQ VDDQ VSSQ VDDQ VSSQ VSS VDD VDD VSS A12 Q9 Q10 Q11 Q12 Q13 VEXT B0 B1 A14 A11 D9 D10 D11 D12 D13 TDO CK CK# A13 A10 A19 DM VSS VTT VDD TDI F G H J K L M N P R T U V (A21) A5 A8 B2 NF3 DK REF# WE# A18 A15 VSS VTT VDD VREF NOTE: 1. Reserved for future use. This may optionally be connected to GND. 2. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. This may optionally be connected to GND. 3. No Function. This signal is internally connected and has parasitic characteristics of a clock input signal. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 7 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 4: 32 Meg x 9 Ball Assignment (Top View) 144-Ball FBGA A B C 1 2 VREF VSS 3 4 VEXT 4 5 6 7 8 9 10 11 12 VSS VSS VEXT TMS TCK 4 VDD DNU DNU VSSQ VSSQ Q0 D0 VDD VTT DNU4 DNU4 VDDQ VDDQ Q1 D1 VTT D (A22) 1 DNU4 DNU4 VSSQ VSSQ QK0# QK0 VSS E (A21)2 DNU4 DNU4 VDDQ VDDQ Q2 D2 A20 F A5 A8 B2 DNU4 A6 A9 DNU4 A7 VSS VSSQ VDD VSS VSSQ VDD VSS Q3 A2 VSS D3 A1 A4 QVLD A0 A3 NF3 DK REF# WE# NF3 DK# CS# A16 VDD VDD VSS A17 VDD VDD VSS VDD VDD VDD VSS VDD VDD VDD VSS A12 B0 B1 A14 A11 CK CK# A13 A10 A18 DNU4 DNU4 VSSQ VSSQ Q4 D4 A19 A15 DNU 4 DNU4 VDDQ VDDQ Q5 D5 DM VSS DNU4 DNU4 VSSQ VSSQ Q6 D6 VSS VTT DNU 4 4 DNU VDDQ VDDQ Q7 D7 VTT VDD VREF DNU4 DNU4 ZQ VEXT VSSQ VSS VSSQ VSS Q8 VEXT D8 TDO VDD TDI G H J K L M N P R T U V NOTE: 1. Reserved for future use. This signal is not connected. 2. Reserved for future use. This signal is internally connected and has parasitic characteristics of an address input signal. 3. No Function. This signal is internally connected and has parasitic characteristics of a clock input signal. 4. Do not use. This signal is internally connected and has parasitic characteristics of a I/O. This may optionally be connected to GND. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 8 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 2: Ball Descriptions SYMBOL TYPE DESCRIPTION CK, CK# Input CS# Input WE#, REF# Input A[0:20] Input A21 – A22 DKx, DKx# – Input DM Input BA[0:2] D0–D17 Input Input Q0–Q17 Output QKx, QKx# Output QVLD Output TMS TDI TCK Input Input TDO ZQ Output Input/Output VREF Input VEXT Supply VDD Supply Input Clock: CK and CK# are differential clock inputs. Addresses and commands are latched on the rising edge of CK. CK# is ideally 180 degrees out of phase with CK. Chip Select: CS# enables the command decoder when LOW and disables it when HIGH. When the command decoder is disabled, new commands are ignored, but internal operations continue. Command Inputs: Sampled at the positive edge of CK, WE#, and REF# define (together with CS#) the command to be executed. Address Inputs: A[0:20] define the row and column addresses for READ and WRITE operations. During a MODE REGISTER SET, the address inputs define the register settings. They are sampled at the rising edge of CK. In the x18 configuration, A[20] is reserved for address expansion. These expansion addresses can be treated as address inputs, but they do not affect the operation of the device. Reserved for future use. This signal is internally connected and can be treated as an address input. Reserved for future use. This signal is not connected and may be connected to ground. Input Data Clock: DKx and DKx# are the differential input data clocks. All input data is referenced to both edges of DK. DK# is ideally 180 degrees out of phase with DK. D0– D17 are referenced to DK0 and DK0#. Input Data Mask: The DM signal is the input mask signal for WRITE data. Input data is masked when DM is sampled HIGH, along with the WRITE input data. DM is sampled on both edges of DK. Bank Address Inputs: Select to which internal bank a command is being applied. Data Input: The D signals form the 18-bit input data bus. During WRITE commands, the data is referenced to both edges of DK. Data Output: The Q signals form the 18-bit output data bus. During READ commands, the data is referenced to both edges of QK. Output Data Clocks: QKx and QKx# are opposite polarity, output data clocks. During READs, they are free running and edge-aligned with data output from the RLDRAM. QKx# is ideally 180 degrees out of phase with QKx. QK0 and QK0# are aligned with Q0– Q8 and QK1 and QK1# are aligned with Q9–Q17. Consult the RLDRAM II Design Guide for more details. Data Valid: The QVLD indicates valid output data. QVLD is edge-aligned with QKx and QKx#. IEEE 1149.1 Test Inputs: These balls may be left as No Connects if the JTAG function is not used in the circuit IEEE 1149.1 Clock Input: This ball must be tied to VSS if the JTAG function is not used in the circuit. IEEE 1149.1 Test Output: JTAG output. External Impedance [25Ω–60Ω]: This signal is used to tune the device outputs to the system data bus impedance. Q output impedance is set to 0.2 x RQ, where RQ is a resistor from this signal to ground. Connecting ZQ to GND invokes the minimum impedance mode. Connecting ZQ to VDD invokes the maximum impedance mode. Refer to Figure 10 on page 16 to activate this function. Input Reference Voltage: Nominally VDDQ/2. Provides a reference voltage for the input buffers. Power Supply: 2.5V nominal. See Table 19, DC Electrical Characteristics and Operating Conditions, on page 41 for range. Power Supply: 1.8V nominal. See Table 19, DC Electrical Characteristics and Operating Conditions, on page 41 for range. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 9 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 2: Ball Descriptions (continued) SYMBOL TYPE VDDQ Supply VSS VSSQ VTT Supply Supply Supply NF DNU – – DESCRIPTION DQ Power Supply: Nominally, 1.5V or 1.8V. Isolated on the device for improved noise immunity. See Table 19: “DC Electrical Characteristics and Operating Conditions” on page 41 for range. Ground. DQ Ground: Isolated on the device for improved noise immunity. Power Supply: Isolated Termination Supply. Nominally, VDDQ/2. See Table 19, DC Electrical Characteristics and Operating Conditions, on page 41 for range. No Function: These balls may be connected to ground. Do Not Use: These balls may be connected to ground. Commands Table 3: According to the functional signal description, the following command sequences are possible. All input states or sequences not shown are illegal or reserved. All command and address inputs must meet setup and hold times around the rising edge of CK. Table 4: Address Widths at Different Burst Lengths CONFIGURATION BURST LENGTH x18 x9 BL = 2 BL = 4 BL = 8 19:0 18:0 17:0 20:0 19:0 18:0 Command Table1 OPERATION Device DESELECT/No Operation MRS: Mode Register Set READ WRITE AUTO REFRESH CODE CS# WE# REF# A(20:0) B(2:0) NOTES DESEL/NOP MRS READ WRITE AREF H L L L L X L H L H X L H H L X OPCODE A A X X X BA BA BA 2 3 3 NOTE: 1. X represents a “Don’t Care”; H represents a logic HIGH; L represents a logic LOW; A represents a valid address; and BA represents a valid bank address. 2. Only A[17:0] are used for the MRS command. 3. See Table 3 above. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 10 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 5: Description of Commands COMMAND DESCRIPTION DESEL/NOP1 The NOP command is used to perform a no operation to the RLDRAM, which essentially deselects the chip. Use the NOP command to prevent unwanted commands from being registered during idle or wait states. Operations already in progress are not affected. Output values depend on command history. The mode register is set via the address inputs A(17:0). See Figure 10 on page 16 for further information. The MRS command can only be issued when all banks are idle and no bursts are in progress. The READ command is used to initiate a burst read access to a bank. The value on the BA(2:0) inputs selects the bank, and the address provided on inputs A(20:0) selects the data location within the bank. The WRITE command is used to initiate a burst write access to a bank. The value on the BA(2:0) inputs selects the bank, and the address provided on inputs A(20:0) selects the data location within the bank. Input data appearing on the DS is written to the memory array subject to the DM input logic level appearing coincident with the data. If the DM signal is registered LOW, the corresponding data will be written to memory. If the DM signal is registered HIGH, the corresponding data inputs will be ignored (i.e., this part of the data word will not be written). The AREF is used during normal operation of the RLDRAM to refresh the memory content of a bank. The command is nonpersistent, so it must be issued each time a refresh is required. The value on the BA(2:0) inputs selects the bank. The refresh address is generated by an internal refresh controller, effectively making each address bit a “Don’t Care” during the AREF command. The RLDRAM requires 64K cycles at an average periodic interval of 0.49µs2 (MAX). To improve efficiency, eight AREF commands (one for each bank) can be posted to the RLDRAM at periodic intervals of 3.9µs3. MRS READ WRITE AREF NOTE: 1. When the chip is deselected, internal NOP commands are generated and no commands are accepted. 2. Actual refresh is 32ms/8K/8 = 0.488µs. 3. Actual refresh is 32ms/8k = 3.90µs. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 11 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 6: AC Electrical Characteristics Note 1 -25 DESCRIPTION -33 -5 SYMBOL MIN MAX MIN MAX MIN MAX UNITS Clock Clock cycle time tCK, tDK 2.5 5.7 3.3 5.7 5.0 5.7 ns System frequency f 175 400 175 300 175 f CK, DK 0.15 0.20 200 MHz 0.25 ns Clock phase jitter tCKVAR Clock HIGH time tCKH, tDKH 0.45 0.55 0.45 0.55 0.45 0.55 tCK Clock LOW time t CKL, tDKL 0.45 0.55 0.45 0.55 0.45 0.55 t Clock to input data clock tCKDK -0.3 0.5 -0.3 1.0 -0.3 1.5 Mode register set cycle time to any command Setup Times Address/command and input setup time Data-in and data mask to DK setup time Hold Times Address/command and input hold time Data-in and data mask to DK hold time Data and Data Strobe Output data clock HIGH time t NOTES 2 CK ns MRSC 6 6 6 tAS/tCS 0.4 0.5 0.8 ns tDS 0.25 0.3 0.4 ns AH/tCH 0.4 0.5 0.8 ns tDH 0.25 0.3 0.4 ns tQKH 0.9 1.1 0.9 1.1 0.9 1.1 tCKH t QKL 0.9 1.1 0.9 1.1 0.9 1.1 t QK edge to clock edge skew tCKQK -0.25 0.25 -0.3 0.3 -0.5 0.5 CKL ns QK edge to output data edge t QKQ0, QKQ1 -0.2 0.2 -0.25 0.25 -0.3 0.3 ns 3 tQKQ -0.3 0.3 -0.35 0.35 -0.4 0.4 ns 4 tQKVLD -0.3 0.3 -0.35 0.35 -0.4 0.4 ns t Output data clock LOW time t CK t QK edge to any output data edge QK edge to QVLD NOTE: 1. All timing parameters are measured relative to the crossing point of CK/CK#, DK/DK# and to the crossing point with VREF of the command, address, and data signals. 2. Clock phase jitter is the variance from clock rising edge to the next expected clock rising edge. 3. tQKQ0 is referenced to Q0–Q8 in x18. tQKQ1 is referenced to Q9–Q17 in x18. 4. tQKQ takes into account the skew between any QKx and any Q. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 12 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 5: Clock/Input Data Clock Command/Address Timings tCK tCKH Initialization The RLDRAM must be powered up and initialized in a predefined manner. Operational procedures other than those specified may result in undefined operations or permanent damage to the device. The following sequence is used for power-up: 1. Apply power (VEXT, VDD, VDDQ, VREF, VTT) and start clock as soon as the supply voltages are stable. Apply VDD and VEXT before or at the same time as VDDQ. Apply VDDQ before or at the same time as VREF and VTT. Although there is no timing relation between VEXT and VDD, the chip starts the power-up sequence only after both voltages are at their nominal levels. The pad supply must not be applied before the core supplies. Maintain all remaining balls in NOP conditions. 2. Maintain stable conditions for 200µs (MIN). 3. Issue three MRS commands: two dummies plus one valid MRS. 4. tMRSC after the valid MRS, issue eight Auto Refresh commands, one on each bank and separated by 2,048 cycles. Initial bank refresh order does not matter. 5. After tRC, the chip is ready for normal operation. tCKL CK# CK CMD, ADDR VALID VALID tCKDK VALID tCKDK tAS tAH DKx# DKx tDK tDKH tDKL DON’T CARE Figure 6: Power-Up Sequence VEXT VDD VDDQ VREF VTT CK# CK CMD NOP NOP MRS MRS MRS NOP RF0 RF1 RF7 AC ADD 200µs MIN tMRSC MRS: MRS command RFx: REFRESH Bank x AC: Any command pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 2,048 cycles MIN 6 × 2,048 cycles MIN tRC DON’T CARE 13 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Programmable Impedance Output Buffer Output impedance updates may be required because, over time, variations may occur in supply voltage and temperature. The device samples the value of RQ. An impedance update is transparent to the system and does not affect device operation. All data sheet timing and current specifications are met during an update. The RLDRAM II is equipped with programmable impedance output buffers. This allows a user to match the driver impedance to the system. To adjust the impedance, an external precision resistor (RQ) is connected between the ZQ ball and VSS. The value of the resistor must be five times the desired impedance. For example, a 300Ω resistor is required for an output impedance of 60Ω. To ensure that output impedance is one fifth the value of RQ (within 15 percent), the range of RQ is 125Ω to 300Ω. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN Clock Considerations The RLDRAM II utilizes internal delay-locked loops for maximum output, data valid windows. It can be placed into a stopped-clock state to minimize power with a modest restart time of 1,024 cycles. 14 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 7: Clock Input Operating Conditions Notes 1–8 PARAMETER/CONDITION Clock Input Voltage Level; CK and CK# Clock Input Differential Voltage; CK and CK# Clock Input Differential Voltage; CK and CK# Clock Input Crossing Point Voltage; CK and CK# SYMBOL MIN MAX UNITS NOTES VIN(DC) VID(DC) VID(AC) VIX(AC) -0.3 0.2 0.4 VDDQ/2 - 0.15 VDDQ + 0.3 VDDQ + 0.6 VDDQ + 0.6 VDDQ/2 + 0.15 V V V V 9 9 10 Figure 7: Clock Input VIN(DC) MAX Maximum Clock Level CK# X VDDQ/2 + 0.15 VIX(AC) MAX VID(DC)12 VDDQ/2 VDDQ/2 - 0.15 11 X VID(AC) 13 VIX(AC) MIN CK Minimum Clock Level VIN(DC) MIN NOTE: 1. DKx and DKx# have the same requirements as CK and CK#. 2. All voltages referenced to VSS. 3. Tests for AC timing, IDD, and electrical AC and DC characteristics may be conducted at nominal reference/supply voltage levels, but the related specifications and device operations are tested for the full voltage range specified. 4. Outputs (except for IDD measurements) measured with equivalent load. 5. AC timing and IDD tests may use a VIL-to-VIH swing of up to 1.5V in the test environment, but input timing is still referenced to VREF (or to the crossing point for CK/CK#), and parameter specifications are tested for the specified AC input levels under normal use conditions. The minimum slew rate for the input signals used to test the device is 2 V/ns in the range between VIL(AC) and VIH(AC). 6. The AC and DC input level specifications are as defined in the HSTL Standard (i.e., the receiver will effectively switch as a result of the signal crossing the AC input level, and will remain in that state as long as the signal does not ring back above [below] the DC input LOW [HIGH] level). 7. The CK/CK# input reference level (for timing referenced to CK/CK#) is the point at which CK and CK# cross. The input reference level for signals other than CK/CK# is VREF. 8. CK and CK# input slew rate must be ≥ 2 V/ns (≥4 V/ns if measured differentially). 9. VID is the magnitude of the difference between the input level on CK and the input level on CK#. 10. The value of VIX is expected to equal VDDQ/2 of the transmitting device and must track variations in the DC level of the same. 11. CK and CK# must cross within this region. 12. CK and CK# must meet at least VID(DC) MIN when static and centered around VDDQ/2. 13. Minimum peak-to-peak swing. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 15 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Mode Register Set Command (MRS) Figure 9: Mode Register Set The mode register stores the data for controlling the operating modes of the memory. It programs the RLDRAM configuration, burst length, test mode, and I/O options. During a MRS command, the address inputs A(17:0) are sampled and stored in the mode register. tMRSC must be met before any command can be issued to the RLDRAM. The mode register may be set at any time during device operation. However, any pending operations are not guaranteed to successfully complete. See the RLDRAM II design guide for more details. CK# CK CS# WE# REF# Figure 8: Mode Register Set Timing A(17:0) COD CK# A(20:18) CK CMD MRS NOP NOP AC BA(2:0) DON’T CARE tMRSC DON’T CARE NOTE: COD: code to be loaded into the register. NOTE: MRS: MRS command and AC: any command. Figure 10: Mode Register Bit Map A(17:10) Reserved1 A9 A8 Impedance On-Die Termination Matching On-Die Termination A9 0 1 A7 A6 A5 DLL Reset Unused Address Mux DLL Reset Termination Disabled (default) Enabled A3 A2 A1 Burst Length A0 Configuration Configuration Burst Length A7 DLL Reset A4 A3 BL A2 A1 A0 RLDRAM Configuration 0 DLL reset (default) 0 0 2 (default) 0 0 0 12 (default) 0 1 4 0 0 1 12 1 0 82 0 1 0 2 1 1 not valid 0 1 1 3 1 0 0 reserved 1 DLL enabled Impedance Matching A8 Resistor 0 internal 50Ω3 (default) 1 A4 external Address Mux A5 Address Mux 1 0 1 reserved 0 nonmultiplexed (default) 1 1 0 reserved 1 1 1 reserved 1 address multiplexed NOTE: 1. Bits A(17:10) must be set to zero. 2. BL = 8 is not available for configuration 1. 3. ±15% temperature variation. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 16 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II cycle times (tRC) are shown in clock cycles as well as in nanoseconds. The shaded areas correspond to configurations that are not allowed. Configuration Table Table 8 shows, for different operating frequencies, the different RLDRAM configurations that can be programmed into the mode register. The READ and WRITE latency (tRL and tWL) values along with the row Table 8: RLDRAM Configuration Table CONFIGURATION FREQUENCY 400 MHz 300 MHz 200 MHz 1 SYMBOL 1 2 3 UNIT tRC 4 6 8 cycles tRL 4 6 8 cycles tWL 5 7 9 cycles tRC 20.0 ns tRL 20.0 ns tWL 22.5 ns tRC 20.0 26.7 ns tRL 20.0 26.7 ns tWL 23.3 30.0 ns 30.0 40.0 ns tRC 20.0 tRL 20.0 30.0 40.0 ns tWL 25.0 35.0 45.0 ns NOTE: 1. BL = 8 is not available for configuration 1. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 17 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Write Basic Information Figure 11: WRITE Command Write accesses are initiated with a WRITE command, as shown in Figure 11. Row and bank addresses are provided together with the WRITE command. During WRITE commands, data will be registered at both edges of DK according to the programmed burst length (BL). A WRITE latency (WL) one cycle longer than the programmed READ latency (RL + 1) is present, with the first valid data registered at the first rising DK edge WL cycles after the WRITE command. Any WRITE burst may be followed by a subsequent READ command. Figures 15 and 16 illustrate the timing requirements for a WRITE followed by a READ for bursts of two and four, respectively. Setup and hold times for incoming D relative to the DK edges are specified as tDS and tDH. The input data is masked if the corresponding DM signal is HIGH. The setup and hold times for data mask are also tDS and t DH. CK# CK CS# WE# REF# A(20:0) A BA(2:0) BA NOTE: A: address; BA: bank address. Figure 12: Basic WRITE Burst/DM Timing CK# CK tCKDK DKx# DKx WRITE Latency tDS tDH D tDS tDH D0 D1 D2 D3 DM Data masked tDS Data masked tDH DON’T CARE Timing Parameters -25 MAX -33 MAX MIN -25 SYMBOL MIN tDS 0.25 0.3 0.4 ns tDH 0.25 0.3 0.4 ns pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN MIN -5 MAX UNITS 18 -33 -5 SYMBOL MIN MAX MIN MAX MIN tCKDK -0.3 0.5 -0.3 1.0 -0.3 MAX UNITS 1.5 ns Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 13: Write Burst Basic Sequence: BL = 2, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 8 CMD WR WR WR WR WR WR WR WR WR ADDR A BA0 A BA1 A BA2 A BA3 A BA0 A BA4 A BA5 A BA6 A BA7 CK# CK RC = 4 WL = 5 DK# DK D D0a D0b D1a D1b D2a D2b D3a D3 Figure 14: Write Burst Basic Sequence: BL = 4, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 8 CMD WR NOP WR NOP WR NOP WR NOP WR ADDR A BA0 CK# CK A BA1 A BA0 A BA3 A BA0 RC = 4 WL = 5 DK# DK D D0a D0b D0c D0d D1a D1b D1c D1 DON’T CARE NOTE: 1. A/BAx: Address A of bank x WR: WRITE command Dxy: Data y to bank x RC: Row cycle time WL: WRITE latency 2. Any free bank may be used in any given CMD. The sequence shown is only one example of a bank sequence. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 19 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 15: WRITE Followed By READ: BL = 2, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 8 9 CMD WR RD RD NOP NOP NOP NOP NOP NOP NOP ADDR A BA0 A BA1 A BA2 CK# CK WL = 5 RL = 4 DK# DK D D0a D0b Q1a Q1b Q2a Q2b Q QKx QKx# DON’T CARE Figure 16: WRITE Followed By READ: BL = 4, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 8 9 CMD WR RD WR RD NOP NOP NOP NOP NOP NOP ADDR A BA0 A BA1 A BA2 A BA3 D0c D0d D2a CK# CK WL = 5 RL = 4 DK# DK D0a D Q D0b Q1a Q1b Q1c D2b D2c D2d Q1d Q3a Q3b Q3c Q3d QKx QKx# DON’T CARE WL: WRITE latency RD: READ Qxy: Data y from bank x RL: READ latency NOTE: A/BAx: Address A of bank x WR: WRITE Dxy: Data y to bank x pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 20 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Read Basic Information Figure 17: READ Command Read accesses are initiated with a READ command, as shown in Figure 17. Row and bank addresses are provided with the READ command. During READ bursts, the memory device drives the read data edge-aligned with the QK signal. After a programmable read latency, data is available at the outputs. The data valid signal indicates that valid data will be present in the next half clock cycle. The skew between QK and the crossing point of CK is specified as tCKQK. tQKQ0 is the skew between QK0 and the last valid data edge considered over all the data generated at the Q signals. tQKQ1 is the skew between QK1 and the last valid data edge considered over all the data generated at the Q signals. tQKQx is derived at each QKx clock edge and is not cumulative over time. tQKQ is the maximum of tQKQ0 and tQKQ1. After completion of a burst, assuming no other commands have been initiated, output data (Q) will go High-Z. Back-to-back READ commands are possible, producing a continuous flow of output data. The data valid window is derived from each QK transition and is defined as: MIN (tQKH, tQKL) - 2(tQKQ [MAX]). Any READ burst may be followed by a subsequent WRITE command. Figures 21 and 22 illustrate the timing requirements for a READ followed by a WRITE. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN CK# CK CS# WE# REF# A(20:0) A BA(2:0) BA DON’T CARE NOTE: A: address; BA: bank address. 21 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 18: Basic READ Burst Timing tCKH tCKL tCK CK# CK tQKL tCKQK tQKH QKx QKx# tQKVLD tQKVLD QVLD Q Q0 Q1 Q2 Q3 tQKQ tQKQ tQKQ Note 1 UNDEFINED Timing Parameters -25 SYMBOL tCK -33 -5 MIN MAX MIN MAX MIN 2.5 5.7 3.3 5.7 5.0 -25 MAX UNITS 5.7 ns -33 -5 SYMBOL MIN MAX MIN MAX MIN tQKQ0, -0.2 0.2 -0.25 0.25 -0.3 MAX UNITS 0.3 ns tCKH 0.45 0.55 0.45 0.55 0.45 0.55 tCK t t 0.45 0.55 0.45 0.55 0.45 0.55 t CK tQKVLD -0.3 0.3 -0.35 0.35 -0.4 0.4 1.1 0.9 1.1 0.9 1.1 t 1.1 0.9 1.1 0.9 1.1 tCKL CKL tCKQK t QKQ QKQ1 -0.25 0.25 -0.3 0.3 -0.5 0.5 ns t QKH 0.9 -0.3 0.3 -0.35 0.35 -0.4 0.4 ns tQKL 0.9 ns CKH NOTE: 1. Minimum data valid window can be expressed as MIN (tQKH, tQKL) - 2 x tQKQx (MAX). 2. tQKQ0 is referenced to Q0–Q8 in x18. t QKQ1 is referenced to Q9–Q17 in x18. 3. tQKQ takes into account the skew between any QKx and any Q. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 22 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 19: READ Burst: BL = 2, RL = 4, Configuration 1 0 1 2 3 4 5 6 7 8 CMD RD RD RD RD RD RD RD RD RD ADDR A BA0 A BA1 A BA2 A BA3 A BA0 A BA7 A BA6 A BA5 A BA4 CK# CK RC = RL = 4 QKx QKx# QVLD Q0a Q0b Q1a Q1b Q2a Q2b Q3a Q3b Q0a Q DON’T CARE UNDEFINED Figure 20: READ Burst: BL = 4, RL = 4, Configuration 1 0 1 2 3 4 5 6 7 8 CMD RD NOP RD NOP RD NOP RD NOP RD ADDR A BA0 CK# CK A BA1 A BA0 A BA1 A BA3 RC = RL = 4 QKx QKx# QVLD Q0a Q0b Q0c Q0d Q1a Q1b Q1c Q1d Q0a Q DON’T CARE UNDEFINED NOTE: A/BAx: Address A of bank x RD: READ Dxy: Data y to bank x RC: Row cycle time RL: READ latency pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 23 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 21: READ Followed by WRITE, BL = 2, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 CMD RD WR WR NOP NOP NOP NOP NOP ADDR A BA0 A BA1 A BA2 D1a D1b D2a CK# CK WL = 5 RL = 4 DK# DK D Q Q0a D2b Q0b QKx QKx# DON’T CARE Figure 22: READ followed by WRITE, BL = 4, RL = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 CMD RD WR RD NOP NOP NOP NOP NOP ADDR A BA0 A BA1 A BA2 D1a D1b D1c CK# CK WL = 5 RL = 4 DK# DK D Q0a Q0b Q0c Q Q0d D1d Q2a Q2b Q2c QKx QKx# DON’T CARE NOTE: A/BAx: Address A of bank x WR: WRITE command Dxy: Data y to bank x RD: READ command Qxy: Data y from bank x WL: WRITE latency pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN RL: READ latency 24 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 23: READ/WRITE Interleave: BL = 4, tRC = 4, WL = 5, Configuration 1 0 1 2 3 4 5 6 7 8 9 10 CMD RD WR RD WR RD WR RD WR RD WR RD ADDR A BA0 A BA1 A BA2 A BA3 A BA0 A BA1 A BA2 A BA3 A BA0 A BA1 A BA2 CK# CK WL = 5 tRC = 4 D D1a D1b D1c D1d D3a D3b D3c D3d D1a D RL = 4 QKx# QKx Q0a Q0b Q0c Q0d Q2a Q2b Q2c Q2d Q0a Q0b Q0c Q0d Q2a Q UNDEFINED DON’T CARE Figure 24: READ/WRITE Interleave: BL = 4, tRC = 6, WL = 7, Configuration 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 CMD RD WR RD WR RD WR RD WR RD WR RD RD WR RD WR RD ADDR A BA0 A BA1 A BA2 A BA3 A BA4 A BA5 A BA0 A BA1 A BA2 A BA3 AA BA4 BA2 A BA5 A BA0 A BA1 A BA2 CK# CK WL = 7 tRC = 6 D5c D5d D1a D1 D1a D1b D1c D1d D3a D3b D3c D3d D5a D5b D D RL = 6 QKx# QKx Q Q0a Q0b Q0c Q0d Q2a Q0a Q0b Q0c Q0d Q2a Q2b Q2c Q2d Q4a Q4b Q4c Q4d Q2a DON’T CARE NOTE: A/BAx: Address A of bank x WR: WRITE command Dxy: Data y to bank x Qxy: Data y from bank x RL: READ latency tRC: Row cycle time WL: WRITE latency RD: READ command pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN UNDEFINED 25 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 25: READ/WRITE Interleave: BL = 4, tRC = 8, WL = 9, Configuration 3 0 1 2 7 8 9 10 11 12 13 14 15 16 17 CMD RD WR RD RD WR RD WR RD WR RD WR RD WR RD ADDR A BA0 A BA1 A BA2 A BA7 A BA0 A BA1 A BA2 A BA3 A BA4 A BA5 A BA6 A BA7 A BA0 A BA1 CK# CK WL = 9 tRC = 8 D1a D1b D1c D1d D3a D3b D3c D3d D5a D5b D D5c D5d D7a D7b D7c D7 D RL = 8 QKx# QKx Q Q0a Q0b Q0c Q0d Q2a Q2b Q2c Q2d Q4a Q4b Q4c Q4d Q6a Q6b Q6c Q6d Q0a Q0b Q0c DON’T CARE NOTE: A/BAx: Address A of bank x WR: WRITE command Dxy: Data y to bank x Qxy: Data y from bank x RL: READ latency tRC: Row cycle time WL: WRITE latency RD: READ command pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN UNDEFINED 26 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II AUTO REFRESH Command (AREF) Figure 26: AUTO REFRESH Command AREF is used to perform a refresh cycle on one row in a specific bank. The row addresses are generated by an internal refresh counter for each bank; external address balls are “Don’t Care.” The delay between the AREF command and a subsequent command to the same bank must be at least tRC. Within a period of 32ms (tREF), the entire memory must be refreshed. Figure 27 illustrates an example of a continuous refresh sequence. Other refresh strategies, such as burst refresh, are also possible. CK# CK CS# WE# REF# A(20:0) BA BA(2:0) NOTE: BA: Bank address. Figure 27: AUTO REFRESH Cycle CK# CK CMD ARFx ACy ACx ACy tRC ARFx ACy DON’T CARE NOTE: 1. ACx: Any command on bank x ARFx: Auto Refresh bank x ACy: Any command on different bank 2. tRC is configuration-dependent. Refer to Table 8, RLDRAM Configuration Table, on page 17. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 27 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II On-Die Termination Figure 28: On-Die TerminationEquivalent Circuit On-die termination (ODT) is enabled by setting A9 to “1” during an MRS command. With ODT on, all the DQs and DM are terminated to VTT with a resistance RTT. The command, address, and clock signals are not terminated. Figure 28 below shows the equivalent circuit of a Q driver with ODT. ODTs are dynamically switched off during READ commands and are designed to be off prior to the RLDRAM driving the bus. Similarly, ODTs are designed to switch on after the RLDRAM has issued the last piece of data. ODT at the D inputs and DM are always on. Table 9: DESCRIPTION VTT sw RTT Q Driver On-Die Termination DC Parameters SYM MIN MAX UNITS NOTES Termination Voltage VTT 0.95 X VREF 1.05 X VREF V 1, 2 On-Die Termination RTT 135 165 Ω 3 NOTE: 1. All voltages referenced to VSS (GND). 2. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF. 3. The RTT value is measured at 70°C TC. Figure 29: READ Burst with ODT: BL = 2, Configuration 1 0 1 2 3 4 5 6 7 8 CMD RD RD RD NOP NOP NOP NOP NOP NOP ADDR A BA0 A BA1 A BA2 CK# CK RL = 4 QKx QKx# QVLD Q0a Q0b Q1a Q1b Q2a Q2b Q ODT ODT ON ODT OFF DON’T CARE NOTE: A/BAx: address A of bank x RD: READ Qxy: Data y to bank x pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN ODT ON UNDEFINED RL: READ latency 28 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 30: READ NOP READ with ODT: BL = 2, Configuration 1 0 1 2 3 4 5 6 7 8 CMD RD NOP RD NOP NOP NOP NOP NOP NOP ADDR A BA0 CK# CK A BA2 RL = 4 QKx QKx# QVLD Q0a Q0b Q ODT ODT ON ODT OFF Q2a Q2b ODT ON ODT ON ODT OFF UNDEFINED DON’T CARE Figure 31: READ NOP NOP READ with ODT: BL = 2, Configuration 1 0 1 2 3 4 5 6 7 8 CMD RD NOP NOP RD NOP NOP NOP NOP NOP ADDR A BA0 9 CK# CK A BA2 RL = 4 QKx QKx# QVLD Q0a Q0b Q ODT ODT ON ODT OFF Q2a Q2b ODT ON ODT OFF DON’T CARE ODT ON UNDEFINED NOTE: A/BAx: address A of bank x RD: READ Qxy:Data y to bank x RL: READ latency pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 29 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Operation with Multiplexed Addresses RLDRAM at the same time as the write command and the first address part, Ax. This option is available by setting bit A5 to “1” in the mode register. Once this bit is set, the READ, WRITE, and MRS commands follow the format described in Figure 32. See Figure 34 on page 31 for the power-up sequence. In multiplexed address mode, the address can be provided to the RLDRAM in two parts that are latched into the memory with two consecutive rising clock edges. This provides the advantage that a maximum SP of 11 address balls are required to control the RLDRAM, reducing the number of balls on the controller side. The bank addresses are delivered to the Figure 32: Command Description in Multiplexed Address Mode READ WRITE MRS CK# CK CS# WE# REF# A<20:0> Ax BA<2:0> BA Ay Ax BA Ay Ax Ay BA DON’T CARE NOTE: 1. Ax, Ay: Address BA: Bank Address 2. The minimum setup and hold times of the two address parts are defined tAS and tAH. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 30 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 33: Mode Register Set Command in Multiplexed Address Mode The addresses A0, A3, A4, A5, A8, and A9 must be set as follows in order to activate the mode register in the multiplexed address mode. Ax A9 A8 A5 Ay Impedance On-Die Termination Matching On-Die Termination A9x Termination 0 1 A9 A8 DLL Reset Unused DLL Reset 0 DLL reset (default) 1 Address Mux DLL enabled Resistor 0 internal 50Ω3 (default) 1 A3 Burst Length Configuration Configuration A4x A3x Impedance Matching A8x A0 Burst Length A9y Enabled A3 A4 DLL Reset Disabled (default) A4 BL A4y A3y A0x RLDRAM Configuration 0 0 2 (default) 0 0 0 12 (default) 0 1 4 0 0 1 12 1 0 82 0 1 0 2 1 1 not valid 0 1 1 3 1 0 0 reserved A5x Address Mux 1 0 1 reserved 0 nonmultiplexed (default) 1 1 0 reserved 1 1 1 reserved external 1 address multiplexed NOTE: 1. Bits A(17:10) must be set to zero. 2. BL = 8 is not available for configuration 1. 3. ±15% temperature variation. Figure 34: Power-Up Sequence in Multiplexed Address Mode The following sequence must be respected in order to power up the RLDRAM in the multiplexed address mode. VEXT VDD VDDQ VREF VTT CK# CK CMD NOP NOP MRS MRS MRS NOP A1) ADD 200µs MIN MRS: MRS command RFx: REFRESH Bank x AC: any command 1 cycle MIN 1 cycle MIN tMRSC MRS NOP Ax2) Ay tMRSC RF0 RF1 RF7 2,048 cycles 6 × 2,048 MIN cycles MIN AC tRC DON’T CARE NOTE: 1. Address A5 must be set HIGH (muxed address mode setting when RLDRAM is in normal mode of operation). 2. Address A5 must be set HIGH (muxed address mode setting when RLDRAM is already in muxed address mode). pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 31 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Address Mapping The address mapping is described in Table 10 as a function of data width and burst length. Table 10: Address Mapping in Multiplexed Address Mode Note 1 ADDRESSES DATA BURST WIDTH LENGTH x18 BL = 2 BL = 4 BL = 8 x9 BL = 2 BL = 4 BL = 8 BALL A02 A3 A4 A53 A8 A9 A10 A13 A14 A17 A18 Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay Ax Ay A0 X A0 X A0 X A0 A20 A0 X A0 X A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A3 A1 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A4 A2 A5 X A5 X A5 X A5 X A5 X A5 X A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A8 A6 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A9 A7 A10 A19 A10 X A10 X A10 A19 A10 A19 A10 X A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A13 A11 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A14 A12 A17 A16 A17 A16 A17 A16 A17 A16 A17 A16 A17 A16 A18 A15 A18 A15 X A15 A18 A15 A18 A15 A18 A15 NOTE: 1. X means “Don’t Care.” 2. Reserved for A20 expansion in multiplexed mode. 3. Reserved for A21 expansion in multiplexed mode. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 32 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Configuration Table In this mode, the READ and WRITE latencies are increased by one clock cycle. The RLDRAM cycle time remains the same, as described in Table 11. Table 11: Configuration Table In Multiplexed Address Mode CONFIGURATION FREQUENCY SYMBOL 11 2 3 UNIT tRC 4 6 8 cycles tRL 5 7 9 cycles t 6 8 400 MHz 300 MHz 200 MHz 10 cycles tRC 20.0 ns t RL 22.5 ns tWL 25.0 ns WL tRC 20.0 26.7 ns tRL 23.3 30.0 ns tWL 26.7 33.3 ns 30.0 40.0 ns 20.0 tRC tRL 25.0 35.0 45.0 ns tWL 35.0 40.0 50.0 ns NOTE: 1. BL = 8 is not available for configuration 1. Refresh Command in Multiplexed Address Mode address is required for AREF, the next command can be applied on the following clock. The operation of the AREF command and any other command is represented in Figure 35. Similar to other commands, the refresh command is executed on the next rising clock edge when in the multiplexed address mode. However, since only bank Figure 35: Burst Refresh Operation 0 1 2 3 4 5 6 7 8 9 10 AREF AREF AREF AREF AREF AREF AREF AREF AC 11 CK# CK CMD AC ADDR Ax BADDR BAk Ax Ay BA0 BA1 BA2 BA3 BA4 BA5 BA6 BA7 Ay BAk DON’T CARE Ax: First part Ax of address Ay: Second part Ay of address BAk: Bank k; k is chosen so that tRC is met NOTE: AREF: AUTO REFRESH AC: Any command pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 33 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 36: WRITE Burst Basic Sequence: BL = 4, with Multiplexed Addresses, Configuration 1, WL = 6 0 1 2 3 4 5 6 7 8 CMD WR NOP WR NOP WR NOP WR NOP WR ADDR Ax BA0 Ay Ax BA1 Ay Ax BA2 Ay Ax BA3 Ay Ax BA0 D0a D0b D0c CK# CK WL = 6 DKx# DKx D D0d D1a D1 Figure 37: READ Burst Basic Sequence: BL = 4, with Multiplexed Addresses, Configuration 1, RL = 5 0 1 2 3 4 5 6 7 8 CMD RD NOP RD NOP RD NOP RD NOP RD ADDR Ax BA0 Ay Ax BA1 Ay Ax BA2 Ay Ax BA0 Ay Ax BA1 CK# CK RL = 5 QKx QKx# QVLD Q0a Q0b Q0c Q0d Q1a Q1b Q1c Q DON’T CARE UNDEFINED NOTE: Ax/BAk: Address Ax of bank k Ay: Address Ay of bank k WR: WRITE Djk: Data k to bank j WL: WRITE latency Qjk: Data k to bank j RD: READ RL: READ Latency pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 34 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II IEEE 1149.1 Serial Boundary Scan (JTAG) Figure 38: TAP Controller State Diagram RLDRAM incorporates a serial boundary scan test access port (TAP). This port operates in accordance with IEEE Standard 1149.1-2001. The TAP operates using logic levels associated with the VDDQ supply. RLDRAM contains a TAP controller, instruction register, boundary scan register, bypass register, and ID register. 1 TEST-LOGIC RESET 0 RUN-TEST/ IDLE 0 1 1 SELECT DR-SCAN SELECT IR-SCAN 0 1 0 1 CAPTURE-DR CAPTURE-IR 0 Disabling the JTAG Feature 0 SHIFT-DR It is possible to operate RLDRAM without using the JTAG feature. To disable the TAP controller, TCK must be tied LOW (VSS) to prevent clocking of the device. TDI and TMS are internally pulled up and may be unconnected. They may alternately be connected to VDD through a pull-up resistor. TDO should be left unconnected. Upon power-up, the device will come up in a reset state, which will not interfere with the operation of the device. 0 SHIFT-IR 1 1 EXIT1-IR 0 1 0 PAUSE-DR 0 PAUSE-IR 1 0 1 0 EXIT2-DR EXIT2-IR 1 1 UPDATE-DR 1 0 1 EXIT1-DR 0 1 UPDATE-IR 1 0 0 Test Access Port (TAP) Test Clock (TCK) The test clock is used only with the TAP controller. All inputs are captured on the rising edge of TCK. All outputs are driven from the falling edge of TCK. Figure 39: TAP Controller Block Diagram Test Mode Select (TMS) The TMS input is used to give commands to the TAP controller and is sampled on the rising edge of TCK. It is allowable to leave this ball unconnected if the TAP is not used. The ball is pulled up internally, resulting in a logic HIGH level. 0 Bypass Register 7 6 5 4 3 2 1 0 TDI Selection Circuitry Instruction Register 31 30 29 . . Selection Circuitry TDO . 2 1 0 Identification Register Test Data-In (TDI) x . . . . 2 1 0 TCK TMS TAP Controller NOTE: x = 112 for all configurations. Test Data-Out (TDO) Performing a TAP RESET The TDO output ball is used to serially clock dataout from the registers. The output is active depending upon the current state of the TAP state machine (see Figure 38). The output changes on the falling edge of TCK. TDO is connected to the least significant bit (LSB) of any register (see Figure 39). pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN . Boundary Scan Register The TDI ball is used to serially input information into the registers and can be connected to the input of any of the registers. The register between TDI and TDO is chosen by the instruction that is loaded into the TAP instruction register. For information on loading the instruction register, see Figure 38. TDI is internally pulled up and can be unconnected if the TAP is unused in an application. TDI is connected to the most significant bit (MSB) of any register (see Figure 39). A reset is performed by forcing TMS HIGH (VDD) for five rising edges of TCK. This RESET does not affect the operation of the RLDRAM and may be performed while the RLDRAM is operating. At power-up, the TAP is reset internally to ensure that TDO comes up in a High-Z state. 35 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II TAP Registers ter. The IDCODE is hardwired into the RLDRAM and can be shifted out when the TAP controller is in the Shift-DR state. The ID register has a vendor code and other information described in the Identification Register Definitions table. Registers are connected between the TDI and TDO balls and allow data to be scanned into and out of the RLDRAM test circuitry. Only one register can be selected at a time through the instruction register. Data is serially loaded into the TDI ball on the rising edge of TCK. Data is output on the TDO ball on the falling edge of TCK. TAP Instruction Set Overview Many different instructions (28) are possible with the eight-bit instruction register. All used combinations are listed in Table 17, Instruction Codes, on page 39. These six instructions are described in detail below. The remaining instructions are reserved and should not be used. The TAP controller used in this RLDRAM is fully compliant to the 1149.1 convention. Instructions are loaded into the TAP controller during the Shift-IR state when the instruction register is placed between TDI and TDO. During this state, instructions are shifted through the instruction register through the TDI and TDO balls. To execute the instruction once it is shifted in, the TAP controller needs to be moved into the Update-IR state. Instruction Register Eight-bit instructions can be serially loaded into the instruction register. This register is loaded when it is placed between the TDI and TDO ball, as shown in Figure 39. Upon power-up, the instruction register is loaded with the IDCODE instruction. It is also loaded with the IDCODE instruction if the controller is placed in a reset state as described in the previous section. When the TAP controller is in the Capture-IR state, the two least significant bits are loaded with a binary “01” pattern to allow for fault isolation of the boardlevel serial test data path. Bypass Register To save time when serially shifting data through registers, it is sometimes advantageous to skip certain chips. The bypass register is a single-bit register that can be placed between the TDI and TDO balls. This allows data to be shifted through the RLDRAM with minimal delay. The bypass register is set LOW (VSS) when the BYPASS instruction is executed. EXTEST The EXTEST instruction allows circuitry external to the component package to be tested. Boundary-scan register cells at output balls are used to apply a test vector, while those at input balls capture test results. Typically, the first test vector to be applied using the EXTEST instruction will be shifted into the boundary scan register using the PRELOAD instruction. Thus, during the Update-IR state of EXTEST, the output driver is turned on and the PRELOAD data is driven onto the output balls. Boundary Scan Register The boundary scan register is connected to all the input and bidirectional balls on the RLDRAM. Several balls are also included in the scan register to reserved balls. The RLDRAM has a 113-bit register. The boundary scan register is loaded with the contents of the RAM I/O ring when the TAP controller is in the Capture-DR state and is then placed between the TDI and TDO balls when the controller is moved to the Shift-DR state. The Boundary Scan Order tables (see page 40) show the order in which the bits are connected. Each bit corresponds to one of the balls on the RLDRAM package. The MSB of the register is connected to TDI, and the LSB is connected to TDO. IDCODE The IDCODE instruction causes a vendor-specific, 32-bit code to be loaded into the instruction register. It also places the instruction register between the TDI and TDO balls and allows the IDCODE to be shifted out of the device when the TAP controller enters the Shift-DR state. The IDCODE instruction is loaded into the instruction register upon power-up or whenever the TAP controller is given a test logic reset state. HIGH-Z Identification (ID) Register The High-Z instruction causes the boundary scan register to be connected between the TDI and TDO. This places all RLDRAM outputs into a High-Z state. The ID register is loaded with a vendor-specific, 32bit code during the Capture-DR state when the IDCODE command is loaded in the instruction regis- pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 36 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II CLAMP must be stabilized long enough to meet the TAP controller’s capture setup plus hold time (tCS plus tCH). The RLDRAM clock input might not be captured correctly if there is no way in a design to stop (or slow) the clock during a SAMPLE/PRELOAD instruction. If this is an issue, it is still possible to capture all other signals and simply ignore the value of the CK and CK# captured in the boundary scan register. Once the data is captured, it is possible to shift out the data by putting the TAP into the Shift-DR state. This places the boundary scan register between the TDI and TDO balls. When the CLAMP instruction is loaded into the instruction register, the data driven by the output balls are determined from the values held in the boundary scan register. SAMPLE/PRELOAD When the SAMPLE/PRELOAD instruction is loaded into the instruction register and the TAP controller is in the Capture-DR state, a snapshot of data on the inputs and bidirectional balls is captured in the boundary scan register. The user must be aware that the TAP controller clock can only operate at a frequency up to 50 MHz, while the RLDRAM clock operates significantly faster. Because there is a large difference between the clock frequencies, it is possible that during the Capture-DR state, an input or output will undergo a transition. The TAP may then try to capture a signal while in transition (metastable state). This will not harm the device, but there is no guarantee as to the value that will be captured. Repeatable results may not be possible. To ensure that the boundary scan register will capture the correct value of a signal, the RLDRAM signal BYPASS When the BYPASS instruction is loaded in the instruction register and the TAP is placed in a Shift-DR state, the bypass register is placed between TDI and TDO. The advantage of the BYPASS instruction is that it shortens the boundary scan path when multiple devices are connected together on a board. Reserved These instructions are not implemented but are reserved for future use. Do not use these instructions. Figure 40: TAP Timing 1 2 Test Clock (TCK) 3 tTHTL tMVTH tTHMX tDVTH tTHDX t TLTH 4 5 6 tTHTH Test Mode Select (TMS) Test Data-In (TDI) tTLOV tTLOX Test Data-Out (TDO) DON’T CARE UNDEFINED Table 12: TAP AC Electrical Characteristics and Operating Conditions +0°C = TC = +95°C; +1.7V = VDD = +1.9V, unless otherwise noted DESCRIPTION CONDITIONS SYMBOL MIN VIH VIL VREF + 0.3 VSSQ - 0.3 Input HIGH (Logic 1) Voltage Input LOW (Logic 0) Voltage pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 37 MAX VDD + 0.3 VREF - 0.3 UNITS NOTES V V 1, 2 1, 2 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 13: TAP AC Electrical Characteristics Note 1; +0°C ≤ TC ≤ +95°C; +1.7V ≤ VDD ≤ +1.9V DESCRIPTION SYMBOL MIN tTHTH 20 Clock Clock cycle time MAX ns 50 f Clock frequency UNITS TF MHz Clock HIGH time t THTL 10 ns 10 ns 0 ns Clock LOW time tTLTH Output Times TCK LOW to TDO unknown t TLOX TLOV 10 ns TCK LOW to TDO valid t TDI valid to TCK HIGH tDVTH 5 ns TCK HIGH to TDI invalid tTHDX 5 ns Setup Times TMS setup tMVTH 5 ns Capture setup tCS 5 ns Hold Times TMS hold tTHMX 5 ns Capture hold tCH 5 ns NOTE: 1. tCS and tCH refer to the setup and hold time requirements of latching data from the boundary scan register. Table 14: TAP DC Electrical Characteristics and Operating Conditions +0°C ≤ TC ≤ +95°C; +1.7V ≤ VDD ≤ +1.9V, unless otherwise noted DESCRIPTION Input High (Logic 1) Voltage Input Low (Logic 0) Voltage Input Leakage Current Output Leakage Current Output Low Voltage Output Low Voltage Output High Voltage Output High Voltage CONDITIONS 0V ≤ VIN ≤ VDD Output disabled, 0V ≤ VIN ≤ VDDQ IOLC = 100µA IOLT = 2mA |IOHC| = 100µA |IOHT| = 2mA SYMBOL MIN MAX UNITS NOTES VIH VIL ILI ILO VREF + 0.15 VSSQ - 0.3 -5.0 -5.0 VDD + 0.3 VREF - 0.15 5.0 5.0 V V µA µA 1, 2 1, 2 0.2 0.4 V V V V 1 1 1 1 VOL1 VOL2 VOH1 VOH2 VDDQ - 0.2 VDDQ - 0.4 NOTE: 1. All voltages referenced to VSS (GND). 2. Overshoot: VIH(AC) ≤ VDD + 0.7V for t ≤ tCK/2. Undershoot: VIL(AC) ≥ -0.5V for t ≤ tCK/2. During normal operation, VDDQ must not exceed VDD. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 38 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 15: Identification Register Definitions INSTRUCTION FIELD ALL DEVICES abcd Revision Number (31:28) Device ID (27:12) 00jkidef10100111 00000101100 Micron JEDEC ID Code (11:1) ID Register Presence Indicator (0) 1 DESCRIPTION ab = die revision cd = 10 for x36, 01 for x18, 00 for x9. def = 000 for 288M, 001 for 576M, 010 for 1G. i = 0 for common I/O, 1 for separate I/O. jk = 00 for RLDRAM, 01 for RLDRAM II. Allows unique identification of RLDRAM vendor. Indicates the presence of an ID register. Table 16: Scan Register Sizes REGISTER NAME BIT SIZE Instruction Bypass ID Boundary Scan 8 1 32 113 Table 17: Instruction Codes INSTRUCTION CODE Extest 0000 0000 ID Code 0010 0001 Sample/Preload Clamp 0000 0101 0000 0111 High-Z 0000 0011 Bypass 1111 1111 pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN DESCRIPTION Captures I/O ring contents. Places the boundary scan register between TDI and TDO. This operation does not affect RLDRAM operations. Loads the ID register with the vendor ID code and places the register between TDI and TDO. This operation does not affect RLDRAM operations. Captures I/O ring contents. Places the boundary scan register between TDI and TDO. Selects the bypass register to be connected between TDI and TDO. Data driven by output balls are determined from values held in the boundary scan register. Selects the bypass register to be connected between TDI and TDO. All outputs are forced into high impedance state. Places the bypass register between TDI and TDO. This operation does not affect RLDRAM operations. 39 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 18: Boundary Scan (Exit) Order BIT# FBGA BALL BIT# FBGA BALL BIT# FBGA BALL 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 K1 K2 L2 L1 M1 M3 M2 N1 P1 N3 N3 N2 N2 P3 P3 P2 P2 R2 R3 T2 T2 T3 T3 U2 U2 U3 U3 V2 U10 U10 U11 U11 T10 T10 T11 T11 R10 R10 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 R11 R11 P11 P11 P10 P10 N11 N11 N10 N10 P12 N12 M11 M10 M12 L12 L11 K11 K12 J12 J11 H11 H12 G12 G10 G11 E12 F12 F10 F10 F11 F11 E10 E10 E11 E11 D11 D10 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 – C11 C11 C10 C10 B11 B11 B10 B10 B3 B3 B2 B2 C3 C3 C2 C2 D3 D3 D2 D2 E2 E2 E3 E3 F2 F2 F3 F3 E1 F1 G2 G3 G1 H1 H2 J2 J1 – NOTE: 1. Any unused balls that are in the order will read as the logic level applied to the ball site. If left floating, a value of “0” is returned. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 40 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Absolute Maximum Ratings* *Stresses greater than those listed may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. **Junction temperature depends upon package type, cycle time, loading, ambient temperature, and airflow. Storage Temperature . . . . . . . . . . . . . . . .-55°C to +150°C I/O Voltage . . . . . . . . . . . . . . . . . . . . -0.3V to VDDQ + 0.3V Voltage on VEXT Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.8V Voltage on VDD Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.1V Voltage on VDDQ Supply Relative to VSS . . . . . . . . . . . . . . . . . . . . . -0.3V to +2.1V Junction Temperature** . . . . . . . . . . . . . . . . . . . . . . .110°C Table 19: DC Electrical Characteristics and Operating Conditions (+0°C ≤ TC ≤ +95°C; +1.7V ≤ VDD ≤ +1.9V, unless otherwise noted) DESCRIPTION CONDITIONS SYMBOL Supply Voltage Supply Voltage Isolated Output Buffer Supply Reference Voltage Termination Voltage Input High (Logic 1) Voltage Input Low (Logic 0) Voltage Output High Current VOH = VDDQ/2 VEXT VDD VDDQ VREF VTT VIH VIL IOH Output Low Current VOL = VDDQ/2 IOL 0V ≤ VIN ≤ VDD 0V ≤ VIN ≤ VDD 0V ≤ VIN ≤ VDDQ ILC ILI ILO IREF Clock Input Leakage Current Input Leakage Current Output Leakage Current Reference Voltage Current MIN MAX 2.38 2.63 1.7 1.9 1.4 Vdd 0.49 X VDDQ 0.51 X VDDQ 0.95 X VREF 1.05 X VREF VREF + 0.1 VDDQ + 0.3 VSSQ - 0.3 VREF - 0.1 (VDDQ/2) / (VDDQ/2) / (1.15 X RQ/5) (0.85 X RQ/5) (VDDQ/2) / (VDDQ/2) / (1.15 X RQ/5) (0.85 X RQ/5) -5 5 -5 5 -5 5 -5 5 UNITS NOTES V V V V V V V mA 1 1, 4 1, 4, 5 1–3, 8 9, 10 1, 4 1, 4 6, 7, 11 mA 6, 7, 11 µA µA µA µA NOTE: 1. All voltages referenced to VSS (GND). 2. Typically the value of VREF is expect to be 0.5 x VDDQ of the transmitting device. VREF is expected to track variations in VDDQ. 3. Peak-to-peak AC noise on VREF must not exceed ±2% VREF(dc). 4. Overshoot: VIH(AC) ≤ VDD + 0.7V for t ≤ tCK/2. Undershoot: VIL(AC) ≥ -0.5V for t ≤ tCK/2. During normal operation, VDDQ must not exceed VDD. Control input signals may not have pulse widths less than tCK/2 or operate at frequencies exceeding tCK (MAX). 5. VDDQ can be set to a nominal 1.5V + 0.1V or 1.8V + 0.1V supply 6. IOH and IOL are defined as absolute values and are measured at VDDQ/2. IOH flows from the device, IOL flows into the device. 7. If MRS bit A8 is 0, use RQ = 250Ω in the equation in lieu of presence of an external impedance matched resistor. 8. VREF is expected to equal VDDQ/2 of the transmitting device and to track variations in the DC level of the same. Peak-topeak noise (non-common mode) on VREF may not exceed ±2% of the DC value. Thus, from VDDQ/2, VREF is allowed ±2%VDDQ/2 for DC error and an additional ±2%VDDQ/2 for AC noise. This measurement is to be taken at the nearest VREF bypass capacitor. 9. VTT is expected to be set equal to VREF and must track variations in the DC level of VREF. 10. On-die termination may be selected using mode register bit 9 (see Figure 10 on page 16). A resistance RTT from each data input signal to the nearest VTT can be enabled. RTT = 150Ω (± 10%) at 70°C TC. 11. For VOL and VOH, refer to the Spice Model fro the RLDRAM II Command Driver. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 41 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 20: AC Electrical Characteristics and Operating Conditions +0°C ≤ TC ≤ +95°C; +1.7V ≤ VDD ≤ +1.9V, unless otherwise noted DESCRIPTION Input High (Logic 1) Voltage Input Low (Logic 0) Voltage CONDITIONS SYMBOL MIN MAX UNITS Matched Impedance Mode Matched Impedance Mode VIH VIL VREF + 0.2 VSSQ - 0.3 VDDQ + 0.3 VREF - 0.2 V V CONDITIONS SYMBOL MIN MAX UNITS TA = 25°C; f = 1 MHz CI CO CCK 1.5 3.5 2.0 2.5 5.0 3.0 pF pF pF Table 21: Capacitance DESCRIPTION Address/Control Input Capacitance Input/Output Capacitance (D and Q) Clock Capacitance Figure 41: Output Test Conditions Figure 42: Input Waveform VTT VDDQ VIH(AC) MIN 50Ω DQ VSWING VIL(AC) MAX Test point GND 10pF Rise Time: 2 V/ns pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 42 Fall Time: 2 V/ns Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Table 22: IDD Operating Conditions and Maximum Limits +0°C ≤ Tc ≤ +95°C; +1.7V ≤ VDD ≤ +1.9V, unless otherwise note. MAX DESCRIPTION Standby Current CONDITIONS t CK = Idle All banks idle, no inputs toggling SYMBOL -25 -33 -5 UNIT ISB1 (VDD) ISB1 (VEXT) ISB2 (VDD) ISB2 (VEXT) 48 26 288 26 48 26 288 26 48 26 288 26 mA mA Active Standby Current = MIN, CS# = 1 No commands, address/data change up to once every four clock cycles Incremental Current BL = 2, tCK = MIN, tRC = MIN, 1 bank active, half address changes once per tRC, read followed by write sequence IDD1 (VDD) IDD1 (VEXT) 348 41 305 36 255 36 mA Incremental Current BL = 4, tCK = MIN, tRC = MIN, 1 bank active, half address changes once per tRC, read followed by write sequence IDD2 (VDD) IDD2 (VEXT) 352 48 319 42 269 42 mA Incremental Current BL = 8, tCK = MIN, tRC = MIN, 1 bank active, half address changes once per tRC, read followed by write sequence IDD3 (VDD) IDD3 (VEXT) 408 55 368 48 286 48 mA Burst Refresh Current tCK = MIN, tRC = MIN Cyclic bank refresh, data inputs are switching IREF1 (VDD) IREF1 (VEXT) 680 133 530 111 367 105 mA Distributed Refresh Current tCK = MIN, tRC = MIN Single bank refresh, half address/data toggle IREF2 (VDD) IREF2 (VEXT) 325 48 267 42 221 42 mA Operating Supply Current Example BL = 2, tCK = MIN, tRC = MIN, cyclic bank IDD2W (VDD) access, half of address bits change every IDD2W (VEXT) clock cycle, continuous data BL = 4, tCK = MIN, tRC = MIN, cyclic bank IDD4W (VDD) access, half of address bits change every IDD4W (VEXT) two clock cycles, continuous data BL = 8, tCK = MIN, tRC = MIN, cyclic bank IDD8W (VDD) access, half of address bits change every IDD8W (VEXT) four clock cycles, continuous data 970 100 819 90 597 69 mA 779 65 609 55 439 44 mA 668 60 525 51 364 40 mA Operating Supply Current Example Operating Supply Current Example tCK pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 43 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved. 16 MEG x 18, 32 MEG x 9 2.5V VEXT, 1.8V VDD, HSTL, SIO, RLDRAM II Figure 43: 144-Ball FBGA 10.70 CTR 10º TYP SEATING PLANE 0.10 C 2.40 CTR C 0.05 MAX 0.555 ±0.050 144X ∅ 0.45 DIMENSIONS APPLY TO SOLDER BALLS POST REFLOW. THE PRE-REFLOW BALL DIAMETER IS 0.50MM ON A 0.40MM SMD BALL PAD. 8.80 0.125 ±0.025 0.39 ±0.05 0.80 TYP BALL A1 ID BALL A1 ID BALL A1 BALL A12 1.00 TYP 18.50 ±0.10 17.00 8.50 ±0.05 17.90 CTR 9.25 ±0.05 4.40 ±0.05 MOLD COMPOUND: EPOXY NOVOLAC SUBSTRATE: PLASTIC LAMINATE SOLDER BALL MATERIAL: EUTECTIC 62% Sn, 36% Pb, 2%Ag 5.50 ±0.05 11.00 ±0.10 NOTE: 1. All dimensions in millimeters. Data Sheet Designation No Marking: This data sheet contains minimum and maximum limits specified over the complete power supply and temperature range for production devices. Although considered final, these specifications are subject to change, as further product development and data characterization sometimes occur. ® 8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900 E-mail: [email protected], Internet: http://www.micron.com, Customer Comment Line: 800-932-4992 Micron, the M logo, and the Micron logo are trademarks and/or service marks of Micron Technology, Inc. RLDRAM is a trademark of Infineon Technologies AG in various countries, and is used by Micron under license from Infineon. All other trademarks are the property of their respective owners. pdf: 09005aef80a41b59/zip: 09005aef811ba111 MT49H8M18C_2.fm - Rev. F 11/04 EN 44 Micron Technology, Inc., reserves the right to change products or specifications without notice. ©2004 Micron Technology, Inc. All rights reserved.