PHILIPS PCF8833

INTEGRATED CIRCUITS
DATA SHEET
PCF8833
STN RGB - 132 × 132 × 3 driver
Objective specification
2003 Feb 14
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
CONTENTS
1
FEATURES
2
GENERAL DESCRIPTION
3
ORDERING INFORMATION
4
BLOCK DIAGRAM
5
PINNING
6
INSTRUCTIONS
10
LIMITING VALUES
11
HANDLING
12
DC CHARACTERISTICS
13
AC CHARACTERISTICS
14
APPLICATION INFORMATION
14.1
Supply and capacitor connection configuration
15
MODULE MAKER PROGRAMMING
15.1
15.2
15.3
15.4
15.5
15.6
15.7
15.8
15.9
VLCD calibration
Factory defaults
Seal bit
OTP architecture
Interface commands
Suggestion on how to calibrate VLCD2 using
MMVOP
Example of filling the shift register
Programming flow
Programming specification
16
INTERNAL PROTECTION CIRCUITS
17
BONDING PAD INFORMATION
18
TRAY INFORMATION
19
DATA SHEET STATUS
6.1
6.2
Exit commands
Function set
7
FUNCTIONAL DESCRIPTION
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
MPU interfaces
Display data RAM and access arbiter
Command decoder
Grey scale controller
Timing generator
Oscillator
Reset
LCD voltage generator and bias level generator
Column drivers, data processing and data
latches
Row drivers
8
PARALLEL INTERFACE
20
DEFINITIONS
8.1
8080-series 8-bit parallel interface
21
DISCLAIMERS
9
SERIAL INTERFACE
9.1
9.2
Write mode
Read mode
2003 Feb 14
2
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
1
PCF8833
• Analog supply voltage range for VLCD generation VDD2
to VSS2:
FEATURES
• Single chip LCD controller and driver
– 2.4 to 4.5 V.
• 132 rows and 396 column outputs (132 × RGB)
• Analog supply voltage range for reference voltage
generation VDD3 to VSS1:
• Low cross talk by Frame Rate Control (FRC)
• 4 kbyte colours (RGB) = 4 : 4 : 4 mode
– 2.4 to 3.5 V.
• 256 colours (RGB) = 3 : 3 : 2 mode using the 209 kbit
RAM and a Look-Up Table (LUT)
• Display supply voltage range VLCD to VSS1:
– 3.8 to 20 V.
• 65 kbyte colours (RGB) = 5 : 6 : 5 mode using the
209 kbit RAM with dithering
• Low power consumption; suitable for battery operated
systems
• 8 colours Power-save mode
• CMOS compatible inputs
• Display data RAM 132 × 132 (RGB) (4 kbyte colour)
• Manufactured in silicon gate CMOS process
• Interfaces:
• Optimized layout for COF, Chip On Glass (COG) and
Transformer Coupled Plasma (TCP) assembly.
– 3-line serial interface
– 8-bit 8080 Intel CPU interface.
• Display features:
2
– Area scrolling
GENERAL DESCRIPTION
The PCF8833 is a single chip low power CMOS LCD
controller driver, designed to drive colour Super-Twisted
Nematic (STN) displays of 132 rows and 132 RGB
columns. All necessary functions for the display are
provided in a single chip, including display RAM which has
a capacity of 209 kbit (132 × 12-bit × 132). The PCF8833
uses the Multiple Row Addressing (MRA) driving
technique in order to achieve the best optical performance
at the lowest power consumption. The PCF8833 offers
2 types of microcontroller interfaces namely the
8080 system interface and the 3-line serial interface.
– 32-line partial Display mode
– Software programmable colour depth mode
– N-line inversion for low cross talk.
• On-chip:
– Oscillator for display system, requires no external
components (external clock also possible)
– Generation of VLCD
– Segmented temperature compensation of VLCD and
frame frequency.
• Logic supply voltage range VDD1 to VSS1:
– 1.5 to 3.3 V.
3
ORDERING INFORMATION
PACKAGE
TYPE NUMBER
NAME
PCF8833U/2DA/1
2003 Feb 14
−
DESCRIPTION
chip with bumps in tray
3
VERSION
−
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
4
PCF8833
BLOCK DIAGRAM
R0 to R131
C0 to C395
handbook, full pagewidth
34 to 429
VLCDIN2
V2H
V1H
VC
V1L
V2L
VLCDSENSE
VLCDOUT1
VLCDIN1
VLCDOUT2
VDD2
C1+
C1−
C2+
C2−
C3+
C3−
C4+
C4−
C5+
C5−
VSS2
713, 719
731, 732
729, 730
724 to 728
722, 723
720, 721
LCD BIAS
LEVEL
GENERATOR
565 to 572
VOTP(drain)
557 to 564
VDD3
525 to 529
VDD1
519 to 524
VSS1
498 to 507
ORTHOGONAL
FUNCTION
GENERATOR
DATA LATCHES
LCD
VOLTAGE
GENERATOR
VDD(tieoff)
555
OSCILLATOR
DISPLAY DATA RAM
132 × 132 × 12-bits
578
577
576
GREYSCALE
CONTROLLER
575
X AND Y RAM WRITE
ADDRESS COUNTER
DISPLAY ADDRESS
READ COUNTER
574
573
625
COMMAND
DECODER
PCF8833
256/64 KBYTES
TO 4 KBYTES
COLOUR
MAPPING
579, 624
VSS(tieoff)
MPU INTERFACES
518 549 551 550 552 553 554 548 547 545 543 541 546 544 542 540 497
CS/SCE
RD
D/C/SCLK
PS0
WR
PS2
PS1
4
D0/SDIN
SDOUT
Fig.1 Block diagram.
RES
OSC
TIMING
GENERATOR
ARBITER
556
496
RESET
256
COLOUR
LUT
2003 Feb 14
ROW
DRIVERS
COLUMN DRIVERS
DATA PROCESSING
712
674 to 683
684 to 690
703 to 711
530 to 539
626 to 631
632 to 637
638 to 643
644 to 649
650 to 655
656 to 661
662 to 667
668 to 673
691 to 696
697 to 702
508 to 517
VOTP(gate)
2 to 33, 430 to 461,
464 to 495, 733 to 768
D1
D2
D4
D3
D6
D5
TE
D7
MGU910
T1
T2
T3
T4
T5
T6
T7
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
5
PCF8833
PINNING
SYMBOL
PAD
TYPE
DESCRIPTION
R95 to R64
2 to 33
O
LCD row driver outputs
C0 to C395
34 to 429
O
LCD column driver outputs
R0 to R31
430 to 461
O
LCD row driver outputs
R63 to R32
464 to 495
O
LCD row driver outputs
RES
496
I
external reset; this signal will reset the device and must be applied to properly
initialize the chip (active LOW)
TE
497
O/I
tearing line (in Normal mode it is always an output)
VSS1
498 to 507
PS
system ground
VSS2
508 to 517
PS
system ground
518
I
CS/SCE
chip select parallel interface or serial chip enable (active LOW)
VDD1
519 to 524
PS
logic supply voltage
VDD3
525 to 529
PS
VDD2
530 to 539
PS
VDD2 and VDD3 are the supply voltage pins for the internal voltage generator
including the temperature compensation circuits; VDD2 and VDD3 can be
connected together but in this case care must be taken to respect the supply
voltage range (see Chapter 13); VDD1 is used as the supply for the rest of the
chip. VDD1 can be connected together with VDD2 and VDD3 but in this case care
must also be taken to respect the supply voltage range; see Chapter 13. VDD2
and VDD3 must not be applied before VDD1.
If the internal voltage generator is not used, pins VDD2 and VDD3 must be
connected to VDD1.
D7
540
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D3
541
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D6
542
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D2
543
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D5
544
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D1
545
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D4
546
I/O
8-bit parallel data; in Serial mode tie to VSS1 or VDD1
D0/SDIN
547
I/O
8-bit parallel data or serial data input
SDOUT
548
O
serial data output; in Parallel mode tie to VDD1, VSS1 or D0
D/C/SCLK
549
I
data/command indicator parallel interface or serial clock
WR
550
I
write clock parallel interface; in Serial mode tie to VDD1 (active LOW)
RD
551
I
read clock parallel interface; in Serial mode tie to VDD1 (active LOW)
PS0
552
I
set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or
VDD1
PS1
553
I
set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or
VDD1
PS2
554
I
set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or
VDD1
2003 Feb 14
5
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
SYMBOL
PCF8833
PAD
TYPE
DESCRIPTION
OSC
555
I
oscillator input or external oscillator resistor connection; when the on-chip
oscillator is used this input must be connected to VDD1; an external clock signal,
if used, is connected to this input and the internal oscillator must be switched off
with a software command; if the oscillator and external clock are all inhibited by
connecting pin OSC to VSS1, the display is not clocked and may be left in a
DC state; to avoid this the chip should always be put into Power-down mode
before stopping the clock.
VDD(tieoff)
556
O
can be used to tie inputs to VDD1
VOTP(drain)
557 to 564
PS
supply voltage for OTP programming (write voltage), in Application mode must
be tied to VSS1 or left open-circuit
VOTP(gate)
565 to 572
PS
supply voltage for OTP programming, in Application mode must be tied to VSS1
or left open-circuit
T6
573
I
test pin; not accessible to user; must be connected to VSS1
T5
574
I
test pin; not accessible to user; must be connected to VSS1
T4
575
O
test pin; not accessible to user; must be left open-circuit
T3
576
O
test pin; not accessible to user; must be left open-circuit
T2
577
I/O
test pin; not accessible to user; must be also connected to VSS1
T1
578
I/O
test pin; not accessible to user; must be also connected to VSS1
VSS(tieoff)
579
O
can be used to tie inputs to VSS1
VSS(tieoff)
624
O
can be used to tie inputs to VSS1
T7
625
I/O
test pin; not accessible to user; must be connected to VSS1
C1+
626 to 631
I
positive input pump capacitor voltage multiplier 1
C1−
632 to 637
I
negative input pump capacitor voltage multiplier 1
C2+
638 to 643
I
positive input pump capacitor voltage multiplier 1
C2−
644 to 649
I
negative input pump capacitor voltage multiplier 1
C3+
650 to 655
I
positive input pump capacitor voltage multiplier 1
C3−
656 to 661
I
negative input pump capacitor voltage multiplier 1
C4+
662 to 667
I
positive input pump capacitor voltage multiplier 1
C4−
668 to 673
I
negative input pump capacitor voltage multiplier 1
VLCDOUT1
674 to 683
O
output voltage multiplier 1
VLCDIN1
684 to 690
PS
LCD supply input voltage 1
C5+
691 to 696
I
positive input pump capacitor voltage multiplier 2
C5−
697 to 702
I
negative input pump capacitor voltage multiplier 2
VLCDOUT2
703 to 711
O
output voltage multiplier 2
VLCDSENSE
VLCDIN2
V2L
712
I
713 to 719
PS
LCD supply input voltage 2
voltage multiplier regulation input; must be connected to VLCDOUT2
720, 721
O
LCD bias level
V1L
722, 723
O
LCD bias level
VC
724 to 728
O
LCD bias level
V1H
729, 730
O
LCD bias level
2003 Feb 14
6
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
SYMBOL
PCF8833
PAD
TYPE
731, 732
O
LCD bias level
R96 to R131
733 to 768
O
LCD row driver outputs
Dummy
1, 462, 463,
580 to 623,
769
V2H
6
DESCRIPTION
INSTRUCTIONS
The PCF8833 communicates with the host using an 8-bit parallel interface or a 3-line serial interface. Processing of
instructions and data sent to the interface do not require the display clock. The display clock and interface clock are
independent from each other. The display clock is derived from the built-in oscillator.
The PCF8833 has 2 types of accesses; those defining the operating mode of the device (instructions) and those filling
the display RAM. Since writing to the RAM occurs more frequently, efficient data transfer is achieved by
autoincrementing the RAM address pointers.
There are 3 types of instructions:
1. For defining display configuration
2. For setting X and Y addresses
3. Miscellaneous.
Commands in the range of 00H to AFH not defined in Table 1 and command DDH have the same effect as no operation
(NOP).
All commands in range B0H to B9H and DEH to FFH are forbidden.
2003 Feb 14
7
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
D/C
7
6
5
4
3
2
1
0
DEFAULT OTP
DESCRIPTION
SECTION
0
0
0
0
0
0
0
0
0
00H
−
no operation (NOP)
6.2.1
0
0
0
0
0
0
0
0
1
01H
−
software reset (SWRESET)
6.2.3
0
0
0
0
0
0
0
1
0
02H
−
booster voltage off (BSTROFF)
6.2.4
0
0
0
0
0
0
0
1
1
03H
−
booster voltage on (BSTRON)
6.2.5
0
0
0
0
0
0
1
0
0
04H
−
read display identification
(RDDIDIF)
6.2.6
0
0
0
0
0
1
0
0
1
09H
−
read display status (RDDST)
6.2.7
0
0
0
0
1
0
0
0
0
10H
−
Sleep_IN
6.2.8
0
0
0
0
1
0
0
0
1
11H
−
Sleep_OUT
6.2.9
0
0
0
0
1
0
0
1
0
12H
−
Partial mode on (PTLON)
6.2.10
0
0
0
0
1
0
0
1
1
13H
−
normal Display mode on
(NORON)
6.2.11
0
0
0
1
0
0
0
0
0
20H
−
display inversion off (INVOFF)
6.2.12
8
0
0
0
1
0
0
0
0
1
21H
−
display inversion on (INVON)
0
0
0
1
0
0
0
1
0
22H
−
all pixel off (DALO)
6.2.13
6.2.14
0
0
0
1
0
0
0
1
1
23H
−
all pixel on (DAL)
6.2.15
0
0
0
1
0
0
1
0
1
25H
−
set contrast (SETCON)
1
X
VCON0
00H
−
set contrast
6.2.16
6.2.16
0
0
0
1
0
1
0
0
0
28H
−
display off (DISPOFF)
6.2.17
0
0
0
1
0
1
0
0
1
29H
−
display on (DISPON)
6.2.18
VCON6 VCON5 VCON4 VCON3 VCON2 VCON1
0
0
0
1
0
1
0
1
0
2AH
−
column address set (CASET)
1
xs[7]
xs[6]
xs[5]
xs[4]
xs[3]
xs[2]
xs[1]
xs[0]
02H
−
X address start; 0 ≤ xs ≤ 83H
6.2.19
6.2.19
1
xe[7]
xe[6]
xe[5]
xe[4]
xe[3]
xe[2]
xe[1]
xe[0]
81H
−
X address end; xs ≤ xe ≤ 83H
6.2.19
0
0
1
0
1
0
1
1
2BH
−
page address set (PASET)
ys[7]
ys[6]
ys[5]
ys[4]
ys[3]
ys[2]
ys[1]
ys[0]
02H
−
Y address start; 0 ≤ ys ≤ 83H
6.2.20
6.2.20
1
ye[7]
ye[6]
ye[5]
ye[4]
ye[3]
ye[2]
ye[1]
ye[0]
81H
−
Y address end; ys ≤ ye ≤ 83H
6.2.20
0
0
1
0
1
1
0
0
2CH
−
memory write (RAMWR)
6.2.21
D7
D6
D5
D4
D3
D2
D1
D0
XXH
−
write data
6.2.21
0
0
0
1
0
1
1
0
1
2DH
−
colour set (RGBSET)
6.2.22
1
X
X
X
X
R3
R2
R1
R0
00H
1
6 bytes for 6 red tones
−
red tone 000
6.2.22
−
6 red tones
6.2.22
PCF8833
0
1
Objective specification
0
1
Philips Semiconductors
Command table; note 1
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
Table 1
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
6
5
4
3
2
1
0
1
X
X
X
X
R3
R2
R1
R0
0FH
1
X
X
X
X
G3
G2
G1
G0
00H
1
DEFAULT OTP
6 bytes for 6 green tones
1
X
X
X
X
G3
G2
G1
G0
0FH
1
X
X
X
X
B3
B2
B1
B0
00H
1
2 bytes for 2 blue tones
−
DESCRIPTION
red tone 111
SECTION
6.2.22
−
green tone 000
6.2.22
−
6 green tones
6.2.22
−
green tone 111
6.2.22
−
blue tone 00
6.2.22
−
2 blue tones
6.2.22
6.2.22
1
X
X
X
X
B3
B2
B1
B0
0FH
−
blue tone 11
0
0
0
1
1
0
0
0
0
30H
−
partial area (PTLAR)
6.2.23
6.2.23
PTLAR active area start address
PTLAR active area end address 6.2.23
1
AA1S7
AA1S6
AA1S5
AA1S4
AA1S3
AA1S2
AA1S1
AA1S0
00H
−
1
AA1E7
AA1E6
AA1E5
AA1E4
AA1E3
AA1E2
AA1E1
AA1E1
1FH
−
0
0
0
1
1
0
0
1
1
33H
−
vertical scroll definition
(VSCRDEF)
6.2.24
1
TF7
TF6
TF5
TF4
TF3
TF2
TF1
TF0
00H
−
top fixed area
6.2.24
1
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0
82H
−
scroll area
6.2.24
1
BF7
BF6
BF5
BF4
BF3
BF2
BF1
BF0
00H
−
bottom fixed area
6.2.24
9
0
0
0
1
1
0
1
0
0
34H
−
tearing line off (TEOFF)
6.2.25
0
0
0
1
1
0
1
0
1
35H
−
tearing line on (TEON)
6.2.26
1
X
X
X
X
X
X
X
X
00H
−
0
0
0
1
1
0
1
1
0
36H
−
memory data access control
(MADCTL)
6.2.27
1
MY
MX
V
LAO
RGB
X
X
X
00H
−
RAM data addressing/data
control
6.2.27
0
0
0
1
1
0
1
1
1
37H
−
set Scroll Entry Point (SEP)
6.2.24
6.2.26
SEP7
SEP6
SEP5
SEP4
SEP3
SEP2
SEP1
SEP0
00H
−
scroll entry point
0
0
0
1
1
1
0
0
0
38H
−
Idle mode off (IDMOFF)
6.2.28
0
0
0
1
1
1
0
0
1
39H
−
Idle mode on (IDMON)
6.2.29
interface pixel format (COLMOD) 6.2.30
6.2.30
colour interface format
0
0
1
1
1
0
1
0
3AH
−
X
X
X
X
X
P2
P1
P0
03H
−
0
1
0
1
1
0
0
0
0
B0H
x (2) set VOP (SETVOP)
6.2.31
1
X
X
X
X
VPR8
VPR7
VPR6
VPR5
08H
x
VOP
6.2.31
1
X
X
X
VPR4
VPR3
VPR2
VPR1
VPR0
01H
x
VOP
6.2.31
0
1
0
1
1
0
1
0
BRS
B4H
x
Bottom Row Swap (BRS)
6.2.32
PCF8833
0
Objective specification
1
6.2.24
1
Philips Semiconductors
7
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
D/C
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
6
5
4
3
2
1
0
0
1
0
1
1
0
1
1
TRS
DEFAULT OTP
B6H
x
DESCRIPTION
SECTION
Top Row Swap (TRS)
6.2.33
1
0
1
1
1
0
0
FINV
B9H
−
super Frame INVersion (FINV)
0
1
0
1
1
1
0
1
DOR
BAH
−
Data ORder (DOR)
6.2.35
0
1
0
1
1
1
1
0
TCDFE
BDH
−
enable/disable DF temp comp
(TCDFE)
6.2.36
0
1
0
1
1
1
1
1
TCVOPE
BFH
−
enable or disable VOP temp
comp (TCVOPE)
6.2.37
0
1
1
0
0
0
0
0
EC
C0H
−
Internal or external oscillator
(EC)
6.2.38
0
1
1
0
0
0
0
1
0
C2H
x
set multiplication factor
(SETMUL)
6.2.39
1
X
X
X
X
X
X
S1
S0
03H
x
multiplication factor
6.2.39
0
1
1
0
0
0
0
1
1
C3H
x
set TCVOP slopes A and B
(TCVOPAB)
6.2.40
1
X
SLB2
SLB1
SLB0
X
SLA2
SLA1
SLA0
34H
x
0
1
1
0
0
0
1
0
0
C4H
x
1
X
SLD2
SLD1
SLD0
X
SLC2
SLC1
SLC0
75H
x
0
1
1
0
0
0
1
0
1
C5H
x
set divider frequency (TCDF)
6.2.41
1
X
DFA6
DFA5
DFA4
DFA3
DFA2
DFA1
DFA0
56H
x
set divider factor in region A
6.2.41
1
X
DFB6
DFB5
DFB4
DFB3
DFB2
DFB1
DFB0
35H
x
set divider factor in region B
6.2.41
1
X
DFC6
DFC5
DFC4
DFC3
DFC2
DFC1
DFC0
30H
x
set divider factor in region C
6.2.41
1
X
DFD6
DFD5
DFD4
DFD3
DFD2
DFD1
DFD0
25H
x
set divider factor in region D
6.2.41
0
1
1
0
0
0
1
1
0
C6H
x
set divider frequency 8-colour
mode (DF8colour)
6.2.42
1
X
DF86
DF85
DF84
DF83
DF82
DF81
DF80
35H
x
set divider factor in 8-colour
mode
6.2.42
0
1
1
0
0
0
1
1
1
C7H
x
set bias system (SETBS)
6.2.43
1
X
X
X
X
VB3
VB2
VB1
VB0
0BH
x
bias systems
6.2.43
0
1
1
0
0
1
0
0
0
C8H
−
temperature read back
(RDTEMP)
6.2.44
0
1
1
0
0
1
0
0
1
C9H
−
N-Line Inversion (NLI)
6.2.45
1
NLI7
NLI6
NLI5
NLI4
NLI3
NLI2
NLI1
NLI0
13H
x
after NLI time slots inversion
6.2.45
0
1
1
0
1
1
0
1
0
DAH
x
read ID1 (RDID1)
6.2.46
10
0
6.2.34
6.2.40
set TCVOP slopes C and D
(TCVOPCD)
Philips Semiconductors
7
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
D/C
6.2.40
6.2.40
Objective specification
PCF8833
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
6
5
4
3
2
1
0
DEFAULT OTP
DESCRIPTION
SECTION
0
1
1
0
1
1
0
1
1
DBH
x
read ID2 (RDID2)
6.2.46
0
1
1
0
1
1
1
0
0
DCH
x
read ID3 (RDID3)
6.2.46
0
1
1
1
0
1
1
1
SFD
EFH
x
select factory defaults(3)
6.2.47
0
1
1
1
1
0
0
0
0
F0H
−
enter Calibration mode
15.5
1
X
X
ORA2
ORA1
ORA0
X
OPE
CALMM
00H
−
set calibration control settings
15.5
0
1
1
1
1
0
0
0
1
F1H
−
shift data in OTP shift registers
(OTPSHTIN)
15.5
1
OS7
OS6
OS5
OS4
OS3
OS2
OS1
OS0
XX
−
multiple data byte; any number
of bytes allowed
15.5
Notes
1. X = don’t care.
2. This function can be set by OTP.
3. If the OTP bit Enable Factory Defaults (EFD) has been programmed to logic 1 (default value is logic 0), then the Set Factory Defaults (SFD)
instruction is ignored and the device will always use the OTP default data.
Philips Semiconductors
7
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
D/C
11
Objective specification
PCF8833
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.1
PCF8833
Exit commands
Table 2
Command description
INPUT
COMMAND
Sleep_IN
(SLPIN)
PARAMETERS
CONDITIONS
Power-down mode:
EXIT
COMMAND
power-down has priority over display and Sleep_OUT
booster settings, but the setting is kept
display off
display voltage generation off
Sleep_OUT
(SLPOUT)
exit power-down:
after reset; BSTRON and DISPON is set, Sleep_IN reset
but become active only with Sleep_OUT
display → DISPON/DISPOFF
display voltage
generation → BSTRON/BSTROFF
(refresh from OTP cells if CALMM = 0)
BSTROFF
display voltage generation off
display is switched on or off by
DISPON/DISPOFF
BSTRON reset
BSTRON
display voltage generation on
display is switched on or off by
DISPON/DISPOFF
BSTROFF
DISPOFF
display off
rows and columns are tied to VSS1
DISPON reset
DISPON
display on
NORON
Normal mode on
full display is driven by RAM data
DISPOFF
PTLON SEP
PTLON
Partial mode on
partial display area is driven by RAM
data; display area outside partial area is
off
NORON SEP
reset
SEP
Scroll mode on
PIXON (DAL)
in full Display mode (NORON) all pixels
are on; in partial Display mode only
partial area pixels are driven on; pixels
outside partial area are off
command INVON is not effective when
DAL is active
PIXOFF
(DALO)
NORON
PTLON SEP
reset
PIXOFF
(DALO)
all pixel off
command INVON is not effective when
DALO is active
PIXON (DAL)
NORON
PTLON SEP
reset
IDMOFF
Idle mode off
full colour resolution stored in the RAM is IDMON
written to the display
IDMON
Idle mode on
8-colour mode became active: The MSB
of data stored in RAM is evaluated only
NORON
PTLON reset
IDMOFF reset
INVOFF
inverted display off
INVON
inverted display on
TEOFF
tearing pulse disabled
TEON
TEON
tearing pulse enabled
TEOFF reset
2003 Feb 14
INVON
in Partial mode only pixels of partial area INVOFF reset
are inverted; INVON is not effective;
when DAL or DALO are active
12
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2
PCF8833
Function set
6.2.1
NO OPERATION
No operation (NOP) has no effect on internal data or settings. However, it can be used to terminate data transfer (read
and write).
Table 3
No operation command bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
0
0
0
00H
6.2.2
After a reset, care must be taken with respect to the reset
timing constraints (see Fig.50) when the PCF8833 is
powered-up. The power-up must be done by sending the
Sleep_OUT command.
RESET
The PCF8833 has a hardware and a software reset. After
power-up a hardware reset (pin RES) must be applied; see
Fig.50. The hardware and software resets give the same
results. After a reset, the chip has the following state:
After a power-up the display RAM content is undefined.
Neither a hardware reset nor a software reset changes the
data that is stored in the display RAM. Sending display
data must stop 160 ns before issuing a hardware reset,
otherwise the last word written to the display RAM may be
corrupted. The row and column outputs are tied to VSS1
with a reset because power-down (Sleep_IN) is in the
reset state.
• All LCD outputs are set to VSS (display off)
• RAM data unchanged
• Power-down mode (Sleep_IN)
• Command register set to default states; see Table 4
• Interface pins are set to inputs.
Table 4
Reset state after hardware and software reset
COMMAND
DESCRIPTION
RESET STATE
Sleep_IN
PCF8833 is in Sleep_IN mode (booster and display are switched off)
−
INVOFF
display inversion is off
−
BSTRON
when Sleep_OUT is active; booster is switched on
−
DISPON
when Sleep_OUT is active; display is turned on
−
TEOFF
tearing effect line pulse is turned off
−
IDMOFF
Idle mode is turned off (4 kbyte colour mode, not 8-colour mode)
−
NORON
Normal mode is active, not Scroll or Partial mode
−
V
RAM write in X direction
0
MY
no mirror Y
0
RGB
colour order is RGB
0
MX
no mirror X
0
LAO
line address order (top to bottom)
0
BRS
bottom rows are not mirrored; note 1
0
TRS
top rows are not mirrored; note 1
0
FINV
super frame inversion is on
1
DOR
normal data order
0
TCDFE
DF temperature compensation switched on
1
TCVOPE
VOP temperature compensation switched on
1
EC
internal oscillator
0
2003 Feb 14
13
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
COMMAND
PCF8833
DESCRIPTION
RESET STATE
xs[7:0]
x address start
2DEC
xe[7:0]
x address end
129DEC
ys[7:0]
y address start
2DEC
ye[7:0]
y address end
129DEC
RGBSET
256 to 4 kbyte colour LUT
see Section 6.2.22
AA1S[7:0]
partial area start address
0DEC
AA1E[7:0]
partial area end address
31DEC
TF[7:0]
top fixed area
0DEC
SA[7:0]
scroll area
130DEC
BF[7:0]
bottom fixed area
0DEC
SEP[7:0]
scroll entry point
0DEC
P[2:0]
interface pixel format is 12-bit/pixel
011
VPR[8:0]
programming of VLCD2 voltage; note 1
257DEC
S[1:0]
charge pump multiplication factor; note 1
11
SLA[2:0]
select slope for segment A; note 1
100
SLB[2:0]
select slope for segment B; note 1
011
SLC[2:0]
select slope for segment C; note 1
101
SLD[2:0]
select slope for segment D; note 1
111
DFA[6:0]
frame frequency for segment A is 80 Hz; note 1
56DEC
DFB[6:0]
frame frequency for segment B is 130 Hz; note 1
35DEC
DFC[6:0]
frame frequency for segment C is 150 Hz; note 1
30DEC
DFD[6:0]
frame frequency for segment D is 180 Hz; note 1
25DEC
DF8[6:0]
frame frequency for 8-colour mode is 130 Hz; note 1
35DEC
VB[3:0]
bias system is F/Gmax = 2.5; note 1
1011
NLI[7:0]
inversion is after 19 time slots (76 rows in Full mode); note 1
19DEC
VCON[6:0]
no contrast setting is set (twos complement number); note 1
0DEC
SFD
OTP programmed data is used; note 1
1
CALMM
not in Calibration mode
0
OPE
disable OTP programming voltage; note 2
0
ORA[2:0]
OTP row address selection
000
Notes
1. These values can be set by the module maker. If the factory defaults OTP bit EFD have been set, the value cannot
be changed via the interface. Otherwise, the OTP data will be used if SFD is set to logic 1, which is the reset state.
2. Calibration mode may not be entered if the SEAL bit has been set. Programming is only possible when in Calibration
mode.
2003 Feb 14
14
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.3
PCF8833
SOFTWARE RESET
The software reset (SWRESET) has exactly the same effect as the hardware reset; see Section 6.2.2.
After sending SWRESET any command can be sent immediately without any additional delay in between, for instance:
Sleep_OUT, BSTRON and DISPON, etc.
Table 5
Software reset register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
0
0
1
01H
6.2.4
Command Sleep_IN does not effect the setting of
BSTRON/BSTROFF or DISPON/DISPOFF, but switches
off the DC-to-DC converter (booster) and ties the display
outputs to VSS1.
BOOSTER VOLTAGE OFF
The DC-to-DC converters are turned off and pins
VLCDOUT1 and VLCDOUT2 become 3-state.
In order to avoid any optical effect on the display, the
sequence given in Fig.2 must be used before the internal
display supply generation circuits are turned off.
For the effect of possible combinations of commands
Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see
Table 17 and Fig.4. Figure 7 shows the effects of the
combination of commands BSTRON and BSTROFF with
DISPON and DISPOFF.
The external LCD supply input voltages (VLCDIN1 and
VLCDIN2) can be applied while the display voltage
generation (BSTROFF) is off. When BSTROFF, DISPON
and Sleep_OUT are set, the external LCD supply input
voltages (VLCDIN1 and VLCDIN2) must be applied, otherwise
the display outputs will be undefined.
Table 6
Booster voltage off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
0
1
0
02H
handbook, halfpage
start
send DISPOFF (28H)
send BSTROFF (02H)
end
MGU911
Fig.2 Booster voltage off flow chart.
2003 Feb 14
15
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.5
PCF8833
The status of the LCD supply generation circuits can be
monitored with the read display status (RDDST)
command; see Section 6.2.7.
BOOSTER VOLTAGE ON
The LCD supply generation circuits will be switched on
when the Booster voltage on (BSTRON) command is sent.
The BSTRON command has a direct effect only when the
PCF8833 is not in Power-down mode (Sleep_OUT is not
active).
Figure 3 shows two sequences for using the BSTRON
command, assuming BSTROFF and DISPOFF were set
before sending Sleep_OUT. In sequence A the command
to switch the display on (DISPON) is sent to the PCF8833
before the BSTRON command is sent. Therefore the
display will only be switched on when the LCD supply
generation circuit generates a stable VLCD. In sequence B
the RDDST command is used to monitor the LCD supply
generation circuit and, after the D31 bit of the RDDST is
set to logic 1, the DISPON command will be sent;
see Section 6.2.7.
With a reset DISPON (see Section 6.2.18) and BSTRON
are set, the PCF8833 will start-up with Sleep_OUT (see
Section 6.2.7) following the built-in start-up sequence
which generates the requested voltages and switches on
the display, unless DISPOFF and/or BSTROFF was sent.
When the LCD supply generation circuits are switched on,
it is necessary to wait for a certain time before the power
circuits become stable and the display can be switched on.
Because this time is dependent on the required VLCD
voltage, the external components used, the applied supply
voltage and some other parameters, the PCF8833
monitors the LCD supply generation circuit internally and
will only switch-on the display when the LCD supply
generation circuits are stable.
Table 7
For the effect of possible combinations of commands
Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see
Table 17 and Fig.4. Figure 7 shows the effects of the
combination of commands BSTRON and BSTROFF with
DISPON and DISPOFF.
Booster voltage on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
0
1
1
03H
handbook, full pagewidth
start
start
send Sleep_OUT 11H
send Sleep_OUT 11H
send DISPON 29H
send BISTRON 03H
send BSTRON 03H
monitor D [31]
RDDST 09H
LCD will be switched on
when LCD supply
generation circuit
is stable
send DISPON 29H
end
end
sequence A
sequence B
D31 = 1
Fig.3 Booster voltage on flow charts.
2003 Feb 14
D31 = 0
16
MGU912
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.6
PCF8833
When less than 25 read clock cycles are sent in Serial
mode, the identification information read must be
interrupted by a hardware reset or rising edge of SCE.
READ DISPLAY IDENTIFICATION INFORMATION
The Read Display Identification Information (RDDIDIF)
command returns a 24-bit display identification
information. The identification information is valid only
5 ms after applying a hardware reset. Therefore the
RDDIDIF command should not be sent earlier than 5 ms
after a hardware reset.
The definition of the display identification bits is given in
Table 11.
The input and output data format is given in Table 9. After
the command byte 04H is sent, the read starts with one
dummy clock cycle followed by the 3 status bytes (see
Fig.47).
Table 8
Read display identification information register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
1
0
0
04H
Table 9
RDDIDIF data format for Serial mode
D/C
7
6
5
4
3
2
1
0
DEFAULT
(S)DIN
0
0
0
0
0
0
1
0
0
04H
(S)DOUT
−
(S)DOUT
−
D23
D22
D21
D20
D19
D18
D17
D16
45H
−
D15
D14
D13
D12
D11
D10
D9
D8
XX
−
D7
D6
D5
D4
D3
D2
D1
D0
XX
BIT
X (only one dummy clock cycle, not a full byte)
X
Table 10 RDDIDIF data format for Parallel mode
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
0
1
0
0
04H
1
X
X
X
X
X
X
X
X
XX
1
D23
D22
D21
D20
D19
D18
D17
D16
45H
1
D15
D14
D13
D12
D11
D10
D9
D8
XX
1
D7
D6
D5
D4
D3
D2
D1
D0
XX
Table 11 Description of the display identification bits
BIT
D[23:16]
D15
BIT DESCRIPTION
RD BYTE
REMARK
manufacturer ID
RDID1
hard wired = 45H
driver/module ID
(STN B/W = 0 and
STN Colour = 1)
RDID2
OTP programmed;
see Chapter 15
RDID3(1)
OTP programmed;
see Chapter 15
D[14:8]
driver/module version ID
D[7:0]
driver/module code
Note
1. RDID3 will be programmed in OTP cells. This ID can be set to 03H by the module maker.
2003 Feb 14
17
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.7
PCF8833
When less than 33 read clock cycles are sent in Serial
mode the status read must be interrupted by a hardware
reset or a rising edge of SCE.
READ DISPLAY STATUS
The Read Display Status (RDDST) command returns a
32-bit display status information and can be accessed
when the PCF8833 is in normal Display mode (see
Section 6.2.11), in partial Display mode (see
Section 6.2.23) or in Sleep_IN mode; see Section 6.2.8.
The definition of the display status bits is given in Table 11.
The input and output data format is as follows: After the
command byte 09H is sent, the read starts with one
dummy clock cycle followed by the 4 status bytes (see
Fig.48).
Table 12 Read display status register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
1
0
0
1
09H
Table 13 RDDST data format for Serial mode
D/C
7
6
(S)DIN
0
0
0
(S)DOUT
−
(S)DOUT
−
BIT
5
4
3
2
1
0
DEFAULT
0
0
1
0
0
1
09H
X (only one dummy clock cycle, not a full byte)
XX
D31
D30
D29
D28
D27
D26
0
0
XX
−
0
D22
D21
D20
D19
D18
D17
D16
XX
−
D15
0
D13
D12
D11
D10
D9
0
XX
−
0
0
0
0
0
0
0
0
XX
Table 14 RDDST data format for Parallel mode
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
0
1
0
0
1
09H
1
X
X
X
X
X
X
X
X
XX
1
D31
D30
D29
D28
D27
D26
0
0
XX
1
0
D22
D21
D20
D19
D18
D17
D16
XX
1
D15
0
D13
D12
D11
D10
D9
0
XX
1
0
0
0
0
0
0
0
0
XX
2003 Feb 14
18
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 15 Display identification bits description
BIT
D31
BIT DESCRIPTION
STATUS
booster voltage status
logic 1 when BSTRON is selected and when the
LCD supply generation circuits are ready
logic 0 when BSTROFF is selected or when the
LCD supply generation circuits are not ready
D30
Y address order
logic 1 when MY = 1
logic 0 when MY = 0
D29
X address order
D28
vertical/horizontal addressing mode
logic 1 when MX = 1
logic 0 when MX = 0
logic 1 when V = 1
logic 0 when V = 0
D27
line address order
logic 1 when LAO = 1
logic 0 when LAO = 0
D26
RGB/BGR order
logic 1 when RGB = 1
D[25:23]
no function, but can be read
D[25:23] = 000
D[22:20]
interface pixel format
see Section 6.2.30
logic 0 when RGB = 0
P2 = D22; P1 = D21 and P0 = D20
D19
Idle mode
logic 1 when IDMON is selected
logic 0 when IDMOFF is selected
D18
Partial mode
D17
Sleep_IN/OUT
logic 1 when PTLON is selected
logic 0 otherwise
logic 1 when Sleep_OUT is selected
logic 0 when Sleep_IN is selected
D16
normal Display mode
logic 1 when NORON is selected
logic 0 otherwise
D15
vertical Scroll mode
logic 1 when SEP is selected
D14
no function; but can be read
D14 = 0
D13
display inversion
logic 1 when INVON is selected
D12
all pixels on
logic 1 when DAL is selected
logic 0 otherwise
logic 0 when INVOFF is selected
logic 0 otherwise
D11
all pixels off
logic 1 when DALO is selected
logic 0 otherwise
D10
display on/off
logic 1 when DISPON is selected
logic 0 when DISPOFF is selected
D9
tearing effect line on/off
logic 1 when TEON is selected
logic 0 when TEOFF is selected
D[8:0]
2003 Feb 14
no function; but can be read
D[8:0] = 0:0000:0000
19
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.8
PCF8833
SLEEP_IN
While in Sleep_IN mode all commands and data can be
sent and will be executed as in the Sleep_OUT state,
except some OTP related commands and temperature
readout related commands. In the Sleep_IN mode no
effect on the display can be seen.
By sending the Sleep_IN command, the PCF8833
immediately enters the Power-down mode, also referred to
as the Sleep mode. In the Sleep mode the output voltages
of all LCD driver pins (rows and columns) are at VSS1
(ground, all pixels are in off state), and the LCD supply
generation circuit and the oscillator are switched off. The
Sleep_IN command does not change the state of the
DISPON/DISPOFF and BSTRON/BSTROFF commands,
but has the same effect as DISPOFF and BSTROFF;
see Table 17.
The Sleep_IN mode is exited by command Sleep_OUT;
see Section 6.2.9.
Table 16 Sleep_IN register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
1
0
0
0
0
10H
Table 17 Sleep_IN/OUT and BSTR_ON/OFF combination
BSTER_ON/BSTER_OFF
Sleep_IN/Sleep_OUT
Booster(1)
ON
ON
ON
ON
OFF
OFF
OFF
ON
OFF
OFF
OFF
OFF
Note
1. Booster is the built-in DC-to-DC converter also called voltage multiplier or charge pump.
6.2.9
SLEEP_OUT
This time is self adapting and therefore dependent on
application conditions:
This command must be sent to allow the PCF8833 to
power-up (see Fig.4).
• It is longer for:
– Low VDD2
DISPON and BSTRON are set with a reset, the PCF8833
will start-up with Sleep_OUT following the built-in start-up
sequence which generates the requested voltages and
switches on the display, unless DISPOFF and/or
BSTROFF was sent after the last reset.
– Higher resistors in supply wires and/or external
capacitors
– Higher external capacitors
– Higher required VLCD2 voltage.
For the effects of possible combinations of commands
Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see
Table 17.
• Some other conditions, which may affect start-up time
are:
– Partial/full mode
Figure 4 illustrates the flow when sending the Sleep_OUT
command. The display is only switched on, when the
internally generated voltage VLCD2 is high enough.
– Selected bias system
– Temperature
– Selected temperature coefficients.
2003 Feb 14
20
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 18 Sleep_OUT register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
1
0
0
0
1
11H
handbook, full pagewidth
reset
HW or SW
Sleep_IN
D31 = 0
send Sleep_OUT
Sleep_OUT
BSTROFF
booster
BSTRON
booster on
D31 = 0
wait for D31 bit
D31 = 1
DISPOFF
display
DISPON
ready
display on
display off
MGU913
D31 is the booster voltage status bit; see Section 6.2.7.
Fig.4 Start-up, when leaving Power-down mode (i.e. after sending Sleep_OUT).
2003 Feb 14
21
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.10
PCF8833
A normal Display mode command is used to exit the Partial
mode. How the partial display area can be programmed is
given in Section 6.2.23.
PARTIAL MODE ON
Partial mode on (PTLON) turns on the partial Display
mode. Only one partial display size can be chosen. Normal
mode, Scroll mode, DALO and DAL are exited with this
command. When sending DAL after PTLON, only the
pixels of partial area are driven on.
A sequence showing how the command PTLON can be
used is illustrated in Fig.5.
Table 19 Partial mode on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
0
1
0
0
1
0
12H
handbook, full pagewidth
Initial state (1)
Sleep_OUT
booster on
display on
normal display
send PTLAR
send DISPOFF
partial area def
display off
send PTLON
wait until
display supply
voltage is settled
partial mode on
send DISPON
optional
send PTLAR
display on
partial area def
optional
MGU914
exit partial mode
send NORON
send SEP
normal display
scroll mode
(1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after display voltage has
settled).
When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area are
inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off.
Fig.5 Sequence how PTLON can be used.
2003 Feb 14
22
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.11
PCF8833
NORMAL DISPLAY MODE ON
The normal Display mode on command (NORON) turns the display into Normal mode which is also the reset state.
An explanation of how the command NORON can be used is illustrated in Fig.6.
Table 20 Normal Display mode on register bits
D/C
D7
D6
D5
D4
D3
D2
D1
D0
DEFAULT
0
0
0
0
1
0
0
1
1
13H
6.2.12
DISPLAY INVERSION OFF
The Display inversion off command (INVOFF) turns the display into a non-inverted screen without modifying the display
data RAM. Display inversion off is the reset state of the PCF8833.
Table 21 Display inversion off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
0
0
0
0
20H
6.2.13
DISPLAY INVERSION ON
The Display inversion on command (INVON) turns the display into an inverted screen without modifying the display data
RAM. The RAM data is read out and inverted while writing to the display.
The display Inversion mode can be switched off by sending the INVOFF command; see Section 6.2.12.
When sending INVON, in Partial mode only, the pixels of a partial area are inverted. INVON is overruled by DAL and
DALO. In Partial mode the pixels outside of the partial are always off.
Table 22 Display inversion on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
0
0
0
1
21H
6.2.14
ALL PIXELS OFF
The All pixels off command (DALO) can be switched off by sending the normal display on command (NORON) (see
Section 6.2.11) or by sending the partial Display mode on command (PTLON); see Section 6.2.10. Furthermore DALO
is left with the command DAL; see Section 6.2.15. When DALO is active all pixels are driven, as if the display RAM was
filled with all zeros (off-state). DALO does not change the data stored in the display RAM. Figure 6 illustrates how DAL
(all pixels on) and DALO (all pixels off) can be used.
All pixels will be switched off regardless of the display data RAM.
Table 23 All pixels off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
0
0
1
0
22H
2003 Feb 14
23
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.15
PCF8833
When sending DAL after PTLON, only the pixels of the
partial area are driven on. When sending INVON in Partial
mode only the pixels of the partial area are inverted.
INVON is over-ruled by DAL and DALO. Pixels outside the
partial are always off. Figure 6 illustrates how DAL (all
pixels on) and DALO (all pixels off) can be used.
ALL PIXELS ON
The All pixels on command (DAL) can be switched off by
sending the normal display on command (NORON); (see
Section 6.2.11) or by sending the partial Display mode on
command (PTLON); see Section 6.2.10. Furthermore DAL
is left with the command DALO; see Section 6.2.14. When
DAL is active all pixels are driven, as if the display RAM
was filled with all ones (on-state). DAL does not change
the data stored in the display RAM.
All pixels will be switched on regardless of the display data
RAM.
Table 24 All pixels on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
0
0
1
1
23H
handbook, full pagewidth
Initial state (1)
Sleep_OUT
booster on
display on
all pixel on/off
send SEP
send NORON
send PTLON
exit pixel on/off
exit pixel on/off
exit pixel on/off
scroll mode on
normal display
partial mode on
send DAL/DALO
all pixel on/off
effect in
full display mode
send DAL/DALO
all pixel on/off
effect in
partial display mode
MGU915
(1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after display voltage
has settled).
When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area
are inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off.
Fig.6 Flowchart representation of DAL and DALO.
2003 Feb 14
24
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.16
PCF8833
SET CONTRAST
Using the Set contrast command (SETCON) the VLCD voltage and the contrast of the LCD can be adjusted. The influence
of the VCON[6:0] register on the VLCD programming is explained in Section 6.2.31. The VCON[6:0] is a twos complement
number; see Table 26. An overview over the complete programming range of VLCD can be found in Section 15.1.
Table 25 Set contrast register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
0
1
0
1
25H
1
X
VCON6
VCON5
VCON4
VCON3
VCON2
VCON1
VCON0
00H
Table 26 Possible VCON values
6.2.17
VCON[6:0]
DECIMAL EQUIVALENT
VLCD OFFSET
0111111
63
2520 mV
0111110
62
2480 mV
0111101
61
2440 mV
:
:
:
0000010
2
80 mV
0000001
1
40 mV
0000000
0
0 mV
1111111
−1
−40 mV
1111110
−2
−80 mV
:
:
:
1000010
−62
−2480 mV
1000001
−63
−2520 mV
1000000
−64
−2560 mV
DISPLAY OFF
The Display off command (DISPOFF) connects all rows and columns to VSS1, i.e. all the pixels have a voltage of 0 V.
Since the reset state of the PCF8833 is Sleep_IN (see Section 6.2.8) the display will be in the off state after a reset.
The DISPOFF command can be switched off by sending the Display on command (DISPON); see Section 6.2.18.
Figure 7 shows the effects of the combination of commands BSTRON and BSTROFF with DISPON and DISPOFF.
Table 27 Display off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
1
0
0
0
28H
6.2.18
DISPLAY ON
Using the Display on command (DISPON) the rows and columns are driven according to the current display data RAM
content and according to the display timing and settings.
The DISPON command is used to exit the DISPOFF state; see Section 6.2.17.
Figure 4 gives additional information on the effect of the DISPON/DISPOFF command. Figure 7 shows the effects of the
combination of commands BSTRON and BSTROFF with DISPON and DISPOFF.
2003 Feb 14
25
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 28 Display on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
1
0
0
1
29H
handbook, full pagewidth
Initial state
Sleep_OUT
booster on
display on
Booster off
send DISPOFF
display off
send BSTROFF (1)
D31 = 0 (2)
booster off
Booster on
send BSTRON
booster on
D31 = 0
wait for D31 bit
D31 = 1
send DISPON
display on
MGU916
(1) When an external VLCD is applied, BSTROFF needs to be sent after reset (default = booster on). The setting of Display
mode (Partial mode, Scroll mode, etc.) is not affected by sending DISPON/DISPOFF.
(2) D31 is the booster voltage status bit; see Section 6.2.7.
Fig.7 Recommendation for using commands BSTRON/BSTROFF in combination with DISPON/DISPOFF.
2003 Feb 14
26
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.19
PCF8833
COLUMN ADDRESS SET
The display data RAM parameters xs and xe define the column address range of the display data RAM for writing data.
Parameters xs and xe are defined between 0 and 131 (83H), and xs must be smaller then xe.
Table 29 Column address set register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
1
0
1
0
2AH
1
xs[7]
xs[6]
xs[5]
xs[4]
xs[3]
xs[3]
xs[3]
xs[0]
02H
1
xe[7]
xe[6]
xe[5]
xe[4]
xe[3]
xe[2]
xe[1]
xe[0]
81H
6.2.20
PAGE ADDRESS SET
The display data RAM parameters ys[7:0] and ye[7:0] define the page (row) address range of the display data RAM for
writing data. Parameters ys and ye are defined between 0 and 131 (83H), and ys must be smaller then ye.
Table 30 Page address set register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
1
0
1
1
2BH
1
ys[7]
ys[6]
ys[5]
ys[4]
ys[3]
ys[3]
ys[3]
ys[0]
02H
1
ye[7]
ye[6]
ye[5]
ye[4]
ye[3]
ye[2]
ye[1]
ye[0]
81H
6.2.21
MEMORY WRITE
Data written to the display memory (RAM) is validated by the Memory write (RAMWR) command. Entering this command
always returns the page address and column address to the start addresses xs[7:0] and ys[7:0] respectively. Content of
the display data RAM is written by the data entered following this command, with the page and/or column address
automatically incremented. The data Write mode turned on by this command can be automatically cancelled by entering
another command.
After a power-up the display RAM content is undefined. Neither a hardware reset nor a software reset changes the data
stored in display RAM. Sending display data must stop 160 ns before issuing a hardware reset, otherwise the last word
written to the display RAM may be corrupted.
Table 31 Memory write register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
0
1
1
0
1
2CH
1
D7
D6
D5
D4
D3
D2
D1
D0
XX
2003 Feb 14
27
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.22
PCF8833
COLOUR SET
With the Colour set (RGBSET) command the mapping from the 256-colour interface data is translated to the 4 kbyte
colour RAM data of the PCF8833 can be changed. The translation table must be changed, if necessary, before sending
256 colour data. For the red and green pixel 8 from the available 16 grey scales can be selected. For the blue pixel 4
from the 16 grey scales can be selected. The default or reset state of the colour mapping can be found in Table 32.
If the 256-to-4 kbyte colour mapping needs to be changed, the whole table must be sent. The mapping of colours is done
when writing data into the RAM, through the application of the Look-Up Table (LUT).
Table 32 Colour set register bits
D/C
D7
D6
D5
D4
D3
D2
D1
D0
DEFAULT
0
0
0
1
0
1
1
0
1
2DH
1
X
X
X
X
R3
R2
R1
R0
00H
red tone 000
1
X
X
X
X
R3
R2
R1
R0
02H
red tone 001
1
X
X
X
X
R3
R2
R1
R0
04H
red tone 010
1
X
X
X
X
R3
R2
R1
R0
06H
red tone 011
1
X
X
X
X
R3
R2
R1
R0
09H
red tone 100
1
X
X
X
X
R3
R2
R1
R0
0BH
red tone 101
1
X
X
X
X
R3
R2
R1
R0
0DH
red tone 110
1
X
X
X
X
R3
R2
R1
R0
0FH
red tone 111
1
X
X
X
X
G3
G2
G1
G0
00H
green tone 000
1
X
X
X
X
G3
G2
G1
G0
02H
green tone 001
1
X
X
X
X
G3
G2
G1
G0
04H
green tone 010
1
X
X
X
X
G3
G2
G1
G0
06H
green tone 011
1
X
X
X
X
G3
G2
G1
G0
09H
green tone 100
1
X
X
X
X
G3
G2
G1
G0
0BH
green tone 101
1
X
X
X
X
G3
G2
G1
G0
0DH
green tone 110
1
X
X
X
X
G3
G2
G1
G0
0FH
green tone 111
1
X
X
X
X
B3
B2
B1
B0
00H
blue tone 00
1
X
X
X
X
B3
B2
B1
B0
04H
blue tone 01
1
X
X
X
X
B3
B2
B1
B0
0BH
blue tone 10
1
X
X
X
X
B3
B2
B1
B0
0FH
blue tone 11
6.2.23
DESCRIPTION
PARTIAL AREA
The Partial area command (PTLAR) sets the partial display area and displays the RAM content of this area. In the partial
Display mode the drive voltage can be reduced.
Table 33 Partial area register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
0
0
0
30H
1
AA1S7
AA1S6
AA1S5
AA1S4
AA1S3
AA1S2
AA1S1
AA1S0
tbf
1
AA1E7
AA1E6
AA1E5
AA1E4
AA1E3
AA1E2
AA1E1
AA1E0
tbf
2003 Feb 14
28
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
The following steps must be followed to enter the Partial
mode:
When setting the addresses the following conditions must
be ensured:
• Set VOP (when the MMOTP cells are used the VOP for
the Partial mode is predefined)
• (AA1E + 1) − AA1S = 32 (only 1 partial display size
setting is possible)
• Set bias system (when the MMOTP cells are used the
bias system for the Partial mode is predefined)
• AA1 ≥ 0 and AA1E ≤ 131.
Figure 8 shows how to use the Partial mode with Line
Address Order (LAO) set to logic 0. Figure 9 gives an
example of Partial mode with LAO set to logic 1, and
Fig.10 shows the position of the partial area when the start
address of the active area is AA1S ≥ (131 + 1) − 31, i.e.
AA1S ≥ 101 (AA1S must be set in multiples of 4).
• Set start address of active area AA1S[7:0]; can be set in
multiples of 4
• Set end address of active area AA1E[7:0] + 1; can be
set in multiples of 4
• Enter Partial mode (PTLON).
Figure 11 shows how the Partial mode can be used.
handbook, full pagewidth
RAM
display
AA1S [7:0] = 4
partial area
32
rows
AA1E [7:0] +1 = 36
0
ROW 0
1
ROW 1
2
ROW 2
3
ROW 3
4
ROW 4
5
ROW 5
6
ROW 6
7
ROW 7
8
ROW 8
9
ROW 9
10
ROW 10
11
ROW 11
12
ROW 12
13
ROW 13
24
ROW 24
25
ROW 25
26
ROW 26
27
ROW 27
28
ROW 28
29
ROW 29
30
ROW 30
31
ROW 31
32
ROW 32
33
ROW 33
34
ROW 34
35
ROW 35
36
37
ROW 36
ROW 37
38
ROW 38
39
40
ROW 39
ROW 40
41
ROW 41
42
ROW 42
127
ROW 127
128
ROW 128
129
ROW 129
130
ROW 130
131
ROW 131
partial area
MGU917
Fig.8 Partial Display mode for LAO = 0.
2003 Feb 14
29
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
RAM
display
AA1E [7:0] +1 = 128
partial area
32
rows
AA1S [7:0] = 96
0
ROW 0
1
ROW 1
2
ROW 2
3
ROW 3
4
ROW 4
5
ROW 5
6
ROW 6
7
ROW 7
8
ROW 8
9
ROW 9
10
ROW 10
11
ROW 11
12
ROW 12
13
ROW 13
24
ROW 24
25
ROW 25
26
ROW 26
27
ROW 27
28
ROW 28
29
ROW 29
30
ROW 30
31
ROW 31
32
ROW 32
33
ROW 33
34
ROW 34
35
ROW 35
36
ROW 36
37
ROW 37
ROW 38
38
40
ROW 39
ROW 40
41
ROW 41
42
ROW 42
127
ROW 127
128
ROW 128
129
ROW 129
130
ROW 130
131
ROW 131
39
partial area
MGU918
Fig.9 Partial Display mode for LAO = 1.
2003 Feb 14
30
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
RAM
display
partial area
AA1E [7:0] +1 = 28
0
ROW 0
1
ROW 1
2
ROW 2
3
ROW 3
4
ROW 4
5
ROW 5
27
ROW 27
28
29
ROW 28
ROW 29
30
ROW 30
31
ROW 31
32
ROW 32
ROW 33
33
34
AA1S [7:0] = 128
32
rows
partial area
ROW 34
35
36
ROW 35
37
ROW 37
38
ROW 38
39
ROW 39
40
ROW 40
41
ROW 41
42
ROW 42
43
ROW 43
44
ROW 44
45
ROW 45
46
ROW 46
47
48
ROW 47
ROW 48
49
ROW 49
50
51
ROW 50
ROW 51
52
ROW 52
53
ROW 53
127
ROW 127
128
129
ROW 128
ROW 129
130
ROW 130
131
ROW 131
ROW 36
MGU919
Fig.10 Partial Display mode for LAO = 0 and AA1S[7:0] = 128.
2003 Feb 14
31
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
Initial state (1)
Sleep_OUT
booster on
display on
normal display
send PTLAR
send DISPOFF
partial area def
display off
send PTLON
wait until
display supply
voltage is settled
partial mode on
send DISPON
optional
send PTLAR
display on
partial area def
optional
MGU920
exit partial mode
send NORON
send SEP
normal display
scroll mode
(1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after the display
voltage has settled).
When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area
are inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off.
Fig.11 Recommended sequence for setting Partial mode.
2003 Feb 14
32
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.24
PCF8833
VERTICAL SCROLLING DEFINITION
In the PCF8833 three different scrolling modes can be used. These scrolling modes differ from each other in the way the
RAM to display mapping is done. The vertical scrolling is defined as follows:
• Vertical scrolling definition (VSCRDEF) command
• TF[7:0] defines the number of lines for the top fixed area on the display, there is no top fixed area when TF[7:0] = 0
• SA[7:0] defines the number of lines for the scrolling area on the display
• BF[7:0] defines the number of lines for the bottom fixed area on the display, there is no bottom fixed area when
BF[7:0] = 0.
Figure 12 illustrates the 4 scrolling configurations that can be defined.
Table 34 Vertical scrolling definition register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
0
1
1
33H
1
TF7
TF6
TF5
TF4
TF3
TF2
TF1
TF0
00H
1
SA7
SA6
SA5
SA4
SA3
SA2
SA1
SA0
82H
1
BF7
BF6
BF5
BF4
BF3
BF2
BF1
BF0
00H
handbook, full pagewidth
centre screen scroll
bottom screen scroll
top screen scroll
whole screen scroll
MGU921
Fixed area (RAM content displayed)
Scrolling area
Fig.12 Scrolling modes on the display.
There are 3 different scrolling modes, which are selected as follows:
1. TF + SA + BF = 130 rolling Scroll mode; see Section 6.2.24.1
2. TF + SA + BF = 131 non-rolling Scroll mode; see Section 6.2.24.2
3. TF + SA + BF = 132 non-rolling Scroll mode; see Section 6.2.24.3.
The recommended sequence for setting up the scroll modes is illustrated in Fig.13.
2003 Feb 14
33
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
Initial state (1)
Sleep_OUT
booster on
display on
normal display
send VSCRDEF
scroll area def
send SEP
scroll mode on
set a new scroll area
send NORON
normal display
send VSCRDEF
scroll area def
send SEP
scroll mode on
exit scroll mode
send NORON
send PLTON
normal display
partial mode
MGU922
(1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after the
display voltage has settled).
Fig.13 Recommended sequence for setting up Scroll modes.
2003 Feb 14
34
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.24.1
PCF8833
Rolling Scroll mode
Figure 15 gives an example for when the PCF8833 is
working in the rolling Scroll mode.
The RAM-to-display mapping for the rolling Scroll mode
when a 132 × 130 (columns × rows) display is connected
to the PCF8833 is illustrated in Fig.14. In this case rows
0 and 131 must be left open. When a 132 × 132 display is
connected, there will be a one-to-one mapping between
the RAM and the display, and there will be no unused
rows.
When the rolling Scroll mode is used the following
sequence can be applied:
• After the desired time interval increment the scroll
address to SEP + n for a n-line step
• Keep incrementing the scroll address (SEP) at regular
intervals.
The rolling Scroll mode is activated when the Set Entry
Scroll Point (SEP) is set; see Table 35.
The rolling Scroll mode is left when the normal Display
mode on (NORON) or the partial Display mode on
(PTLON) is selected.
Table 35 Set entry scroll point register bits
D/C
7
D6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
1
1
37H
1
SEP7
SEP6
SEP5
SEP4
SEP3
SEP2
SEP1
SEP0
00H
handbook, full pagewidth
TF [7:0]
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
SA [7:0]
2 unused
rows
BF [7:0]
TF [7:0]
SA [7:0]
121
122
123
124
125
126
127
128
129
130
131
120
121
124
125
126
127
128
129
130
131
131
BF [7:0]
MGU923
Fig.14 RAM to display mapping for the rolling Scroll mode (TF + SA + BF = 130) for LAO = 0.
2003 Feb 14
35
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
TF = 8
PCF8833
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
SEP
0
1
2
3
4
5
6
7
8
TF = 8
SEP [7:0]
SA = 114
120
121
8
9
2 unused
rows
BF = 8
121
122
123
124
125
126
127
128
129
130
131
SEP − 1
124
125
126
127
128
129
130
131
131
MGU924
Fig.15 The rolling Scroll mode (TF + SA + BF = 130) for LAO = 0.
2003 Feb 14
36
BF = 8
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.24.2
PCF8833
Non-rolling Scroll mode
An example is given in Figure 17 for the case when the
PCF8833 is working in the non-rolling Scroll mode
(TF + SA + BF = 131).
The RAM-to-display mapping for the non-rolling Scroll
mode when a 132 × 130 (columns × rows) display is
connected to the PCF8833 is illustrated in Fig.16. In this
case unused rows and columns are to be left open, for
instance row 0 and 131. If a 132 × 132 display is
connected to the PCF8833 the content of row 0 and 131
will be the same as the content which is displayed in row 1
and 130, respectively. By doing so, the display data RAM
will have 1 row in the background, whose content can be
updated when it is not displayed.
When the non-rolling Scroll mode is used the following
sequence can be applied:
• Fill the background memory
• After the desired time interval increment the scroll
address to SEP + n for a n-line step
• Keep filling the background memory and incrementing
scroll address (SEP) at regular intervals to obtain a
smooth scrolling.
The non-rolling Scroll mode is activated when the Set
Entry Scroll point is set; see Table Fig.36.
The non-rolling Scroll mode is left when the normal Display
mode on (NORON) or the partial Display mode on
(PTLON) is selected.
Table 36 Set entry scroll point register bits
7
D/C
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
1
1
37H
1
SEP7
SEP6
SEP5
SEP4
SEP3
SEP2
SEP1
SEP0
00H
handbook, full pagewidth
TF [7:0]
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
SA [7:0]
1 buffer
row
1 unused
row
BF [7:0]
TF [7:0]
SA [7:0] − 1
121
122
123
124
125
126
127
128
129
130
131
120
121
124
125
126
127
128
129
130
131
131
BF [7:0]
MGU925
Fig.16 RAM to display mapping for the non-rolling Scroll mode (TF + SA + BF = 131) for LAO = 0.
2003 Feb 14
37
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
SEP
0
1
2
3
4
5
6
7
8
TF = 8
TF = 8
1 buffer row
SEP [7:0]
SA − 1 = 114
121
122
8
9
1 unused row
121
122
123
124
125
126
127
128
129
130
131
BF = 8
SEP − 2
124
125
126
127
128
129
130
131
131
BF = 8
MGU926
Fig.17 The non-rolling Scroll mode (TF + SA + BF = 131) for LAO = 0.
6.2.24.3
Non-rolling Scroll mode
When the non-rolling Scroll mode is used the following
sequence can be applied.
The RAM-to-display mapping for the non-rolling Scroll
mode when a 132 × 130 (columns × rows) display is
connected to the PCF8833 is illustrated in Fig.18. In this
case unused rows and columns are to be left open, for
instance row 0 and 131. If a 132 × 132 display is
connected to the PCF8833 the content of row 0 and 131
will be the same as the content which is displayed in row
1 and 130, respectively. By doing so the display data RAM
will have 2 rows in the background, whose content can be
updated when they are not displayed.
• Fill the background memory
• After the desired time interval increment the scroll
address to SEP + n for a n-line step
• Keep filling the background memory and incrementing
scroll address (SEP) at regular intervals to obtain a
smooth scrolling.
The non-rolling Scroll mode is left when the normal Display
mode on (NORON) or the partial Display mode on
(PTLON) is selected.
The non-rolling Scroll mode is activated when the Set
Entry Scroll Point is set; see Table Fig.37.
Figure 19 shows an example for when the PCF8833 is
working in the non-rolling Scroll mode
(TF + SA + BF = 132).
2003 Feb 14
38
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 37 Set entry scroll point register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
1
1
37H
1
SEP7
SEP6
SEP5
SEP4
SEP3
SEP2
SEP1
SEP0
00H
handbook, full pagewidth
TF [7:0]
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
SA [7:0] − 2
SA [7:0]
2 buffer
rows
BF [7:0]
TF [7:0]
121
122
123
124
125
126
127
128
129
130
131
120
121
124
125
126
127
128
129
130
131
131
BF [7:0]
MGU927
Fig.18 RAM to display mapping for the non-rolling Scroll mode (TF + SA + BF = 132) for LAO = 0.
2003 Feb 14
39
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
TF = 8
PCF8833
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
SEP
0
1
2
3
4
5
6
7
8
TF = 8
2 buffer rows
SEP [7:0]
SA − 2 = 114
122
123
8
9
BF = 8
121
122
123
124
125
126
127
128
129
130
131
SEP − 3
124
125
126
127
128
129
130
131
131
MGU928
Fig.19 The non-rolling Scroll mode (TF + SA + BF = 132) for LAO = 0.
2003 Feb 14
40
BF = 8
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.24.4
PCF8833
Effect of LAO on scroll modes
An example of when the PCF8833 is working in the non-rolling Scroll mode (TF + SA + BF = 132) with the Line Address
Order (LAO) bit set to logic 1, is illustrated in Fig.20. The Scroll modes described in Sections 6.2.24.1 and 6.2.24.2 also
work on the same principle when the LAO bit is set to logic 1.
handbook, full pagewidth
BF = 8
RAM (132 x 132)
display (132 x 130)
0
0
1
2
3
4
5
6
7
SEP + 3
0
1
2
3
4
5
6
7
8
9
10
BF = 8
123
8
9
SA − 2 = 114
SEP [7:0]
2 buffer rows
TF = 8
SEP − 1
SEP
124
125
126
127
128
129
130
131
131
123
124
125
126
127
128
129
130
131
MGU929
Fig.20 The non-rolling Scroll mode (TF + SA + BF = 132); with LAO = 1.
2003 Feb 14
41
TF = 8
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.25
PCF8833
TEARING EFFECT LINE OFF
The Tearing effect line off (TEOFF) command ties the TE pin LOW.
Table 38 Tearing effect line off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
0
0
34H
6.2.26
TEARING EFFECT LINE ON
The Tearing effect line on (TEON) command turns the TE line of the display on.
The TE signal indicates the start of a super-frame (equals 16 frames). In 4 kbyte colour mode a whole super-frame is
needed to write full colour depth. In 8-colour mode the available colour depth is written in one frame. The tearing signal
goes HIGH when the last line of a super-frame is read. The HIGH time is 850 µs (see Fig.21).
Table 39 Tearing effect line on register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
0
1
35H
1
X
X
X
X
X
X
X
X
00H
Note
1. X = don’t care.
handbook, full pagewidth
superframe period
(16 frames )
TE signal
850 µs
Fig.21 Tearing effect line: distribution of pulses.
2003 Feb 14
42
MGU930
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.27
PCF8833
MEMORY DATA ACCESS CONTROL
The display data RAM access conditions can be defined by using the Memory data access control (MADCTL) command.
The used single control bits together with their reset states are given in Table 41.
Table 40 Memory data access control register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
0
1
1
0
36H
V
LAO(1)
RGB
X
X
X
00H
1
MY
MX
Note
1. Refer to Section 6.2.24.4 for an explanation of LAO on scroll modes and to Section 6.2.23 for an explanation of LAO
on Partial mode.
Table 41 Explanation of the memory data access control bits
BIT
LOGIC 0 (RESET STATE)
LOGIC 1
MY
no mirror Y
mirror Y
MX
no mirror X
mirror X
V
RAM write in X direction
vertical RAM write; in Y direction
LAO
line address order (top to bottom)
line address order (bottom to top)
RGB
RGB
BGR
The relationship between RAM and display for the MX, MY, RGB and LAO control bits is illustrated Fig.22.
Combinations of MX, MY and V are described in more detail in Section 7.2.
DISPLAY
page address
column drivers
D7 = 0
D7 = 1
0
1
2
131
D3 = 0:RGB
D3 = 1:BGR
0,0
D4 = 1
0
1
2
131
RAM
131
2
1
0
131
131
D6 = 0 0 1 2
D6 = 1 131
interface
D4 = 0
2 1 0
column address
MGU931
Fig.22 Display data RAM access control.
2003 Feb 14
43
2
1
0
row drivers
handbook, full pagewidth
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.28
PCF8833
IDLE MODE OFF
The Idle mode off (IDMOFF) command turns off the Idle mode and the PCF8833 is working in the 4 kbyte colour mode.
This command is similar to the Idle mode on command (IDMON); see Section 6.2.29.
Table 42 Idle mode off register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
1
0
0
0
38H
6.2.29
IDLE MODE ON
The Idle mode on (IDMON) command activates the Idle mode of the LCD driver in order to reduce the power
consumption. When the Idle mode is switched on, the number of colours is reduced to 8 (only the MSB of data stored in
the RAM is used). In addition to the reduction in the number of colours, the frame frequency can also be reduced. The
frame frequency for the Idle mode can be programmed separately from the frame frequency in 4 kbyte colour mode; see
Section 6.2.41.
Table 43 Idle mode on register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
1
0
0
1
39H
6.2.30
COLOUR INTERFACE PIXEL FORMAT
By using the Colour interface pixel format command (COLMOD) different interface RGB formats can be chosen. The
choice of an RGB format also influences the way display data is transferred to the display data RAM via the interface;
see Section 7.1.3.
The different interface RGB formats are given in Table 45.
Table 44 Colour interface pixel format register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
0
0
1
1
1
0
1
0
3AH
1
X
X
X
X
X
P2
P1
P0
03H
Note
1. X = don’t care.
2003 Feb 14
44
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 45 Interface formats
The generated VLCD can be calculated with equation (1).
Figure 24 is the graphical equivalent to equation (1).
V LCD = a + 〈 MMVOPCAL [ 5:0 ] + VCON [ 6:0 ] +
(1)
V PR [ 8:0 ]〉 × b
INTERFACE
FORMATS
P2
P1
P0
0
0
0
no action
0
0
1
no action
0
1
0
8-bit/pixel(1)
0
1
1
12-bit/pixel(2)
1
0
0
no action
1
0
1
16-bit/pixel(3)
1
1
0
no action
1
1
1
no action
Where:
• a is a fixed constant value; see Table 47
• b is a fixed constant value; see Table 47
• VPR[8:0] is the programmed VOP value; the
programming range for VPR[8:0] is 5 to 410 (19AH)
• MMVOPCAL[5:0] is the value of the offset stored in the
OTP cells in twos complement format; see Section 15.1
• VCON[6:0] is the set contrast value which can be set via
the interface and is in twos complement format; see
Section 6.2.16.
Notes
1. PCF8833 is switched into 256 colour mode,
256 colours are mapped to the 4 kbyte RAM with a
LUT; see Section 6.2.22.
The VOP[8:0] value must be in the VLCD programming
range as shown in Fig.24. Evaluating equation (1), values
outside of the programming range indicated in Fig.24 may
result. Calculated values below 0 will be mapped to
VOP = 0; resulting VOP values higher than 445 will be
mapped to VOP = 445. An overview of the complete
programming range of VLCD can be found in Section 15.1.
2. PCF8833 is switched into 4 kbyte colour mode, which
is also the reset state.
3. PCF8833 is switched into 64 kbyte colour mode, which
is achieved by means of dithering.
6.2.31
As the programming range for the internally generated
VLCD allows values above the maximum allowed VLCD
(20 V) the user has to ensure, while setting the VPR
register and selecting the temperature compensation, that
under all conditions and including all tolerances the VLCD
remains below 20 V.
SET VOP
The set VOP command (SETVOP) is used to program the
optimum LCD supply voltage VLCD.
The reset state of VPR[8:0] is 257DEC (13.88 V).
The optimum LCD supply voltage can be calculated as
explained in Section 6.2.43. The VOP value is programmed
via the VPR register. Besides the VPR register the VOP
value can be calibrated by means of OTP cells or changed
with the VCON register (see Fig.23).
Table 46 Set VOP register bits; note 1
D/C
D7
D6
D5
D4
D3
D2
D1
D0
DEFAULT
0
1
0
1
1
0
0
0
0
B0H
1
X
X
X
X
VPR8
VPR7
VPR6
VPR5
08H
1
X
X
X
VPR4
VPR3
VPR2
VPR1
VPR0
01H
Note
1. X = don’t care.
2003 Feb 14
45
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 47 Parameters of VLCD
SYMBOL
VALUE
UNIT
b
0.04
V
a
3.6
V
VPR [8:0]
handbook, full pagewidth
b
8 7 6 5 4 3 2 1 0
VCON [6:0]
a
MMVOPCAL [5:0]
VOP [8:0]
VLCD
MGU932
Fig.23 Setting of VOP.
handbook, full pagewidth
MGU933
programming range (05H to 19AH)
V LCD
b
a
00
01
02
03
04
05
06
...
410DEC
Fig.24 VLCD programming range of the PCF8833.
2003 Feb 14
46
V OP
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.32
PCF8833
BOTTOM ROW SWAP
The Bottom Row Swap (BRS) command enables the bottom rows of the PCF8833 to be swapped (mirrored) in order to
make an optimum glass layout.
The function of the BRS command in combination with the function of the Top Row Swap (TRS) is illustrated in
Figures 25, 26, 27 and 28. A description of the TRS function is given in Section 6.2.33.
The reset state of the BRS command is defined in Table 49.
Table 48 Bottom row swap register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
0
1
1
0
1
0
BRS
B4H
Table 49 Bottom row swap reset state
BIT
LOGIC 0 (RESET STATE)
LOGIC 1
BRS
bottom rows are not mirrored
bottom rows are mirrored
6.2.33
TOP ROW SWAP
The Top Row Swap (TRS) command enables the top rows of the PCF8833 to be swapped (mirrored) in order to make
an optimum glass layout.
The function of the TRS command in combination with BRS is illustrated in Figures 25, 26, 27 and 28. The description
of BRS function can be found in Section 6.2.32.
The reset state of the TRS command is given in Table 51.
Table 50 Top row swap register bits
D/C
D7
D6
D5
D4
D3
D2
D1
D0
DEFAULT
0
1
0
1
1
0
1
1
TRS
B6H
Table 51 Top row swap reset state
BIT
LOGIC 0 (RESET STATE)
LOGIC 1
TRS
top rows are not mirrored
top rows are mirrored
2003 Feb 14
47
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
36 rows 131
PCF8833
96
32
63 32 rows
0
31
PCF8833
32 rows
95
64
columns
32 rows
0
31
32
63
DISPLAY
64
95
96
131
MGU934
Fig.25 Row sequence for BRS = 0 and TRS = 0.
handbook, full pagewidth
36 rows 96
131
63
32 32 rows
0
31 32 rows
PCF8833
32 rows 95
64
columns
0
31
32
DISPLAY
64
63
95
96
131
MGU935
Fig.26 Row sequence for BRS = 0 and TRS = 1.
2003 Feb 14
48
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
36 rows 131
PCF8833
96
32
63 32 rows
32
0
PCF8833
64
95
columns
32 rows
32 rows
0
31
32
63
DISPLAY
64
95
96
131
MGU936
Fig.27 Row sequence for BRS = 1 and TRS = 0.
handbook, full pagewidth
36 rows 96
131
63
32 32 rows
31
0
PCF8833
64
95
columns
32 rows
32 rows
0
31
32
63
DISPLAY
64
95
96
131
MGU937
Fig.28 Row sequence for BRS = 1 and TRS = 1.
2003 Feb 14
49
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.34
PCF8833
SUPER FRAME INVERSION
The Super frame inversion command (FINV), which is the inversion of the row functions after all rows are written to can
be switched off for the PCF8833. When switched off, the inversion of the row functions will then only be done with N-line
inversion. Inversion of the row functions is needed so as to avoid a DC component over the LCD display. A detailed
description of the N-line inversion is given in Section 6.2.45.
The FINV control bit reset state is defined in Table 52.
Table 52 Super frame inversion register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
0
1
1
1
0
0
FINV
B9H
Table 53 Super frame inversion reset state
BIT
LOGIC 0
LOGIC 1 (RESET STATE)
FINV
super frame inversion is off
super frame inversion is on
6.2.35
DATA ORDER
The data order (DOR) of the data which will be written into the RAM can be changed (swapped).
The DOR command is explained and the reset state defined in Table 55.
Table 54 Data order register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
0
1
1
1
0
1
DOR
BAH
Table 55 Data order reset state
BIT
LOGIC 0 (RESET STATE)
LOGIC 1
DOR
normal data order
MSB/LSB transposed for RAM data
6.2.36
TEMPERATURE COMPENSATED FRAME FREQUENCY
The PCF8833 incorporates a temperature segmented frame frequency programming; see Section 6.2.41. This
segmented frame frequency can be disabled by using the temperature compensated frame frequency (TCDFE)
command.
The TCDFE control bit reset state is defined in Table 57.
When the non-segmented frame frequency is chosen, the frame frequency in segment B (DFB) is valid;
see Section 6.2.41.
Table 56 Temperature compensated frame frequency register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
0
1
1
1
1
0
TCDFE
BDH
2003 Feb 14
50
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 57 Temperature compensated frame frequency reset state
BIT
LOGIC 0
LOGIC 1 (RESET STATE)
TCDFE
non-segmented frame frequency
segmented frame frequency
6.2.37
TEMPERATURE COMPENSATED VLCD
The PCF8833 incorporates a temperature segmented VOP programming; see Section 6.2.40. By using the temperature
compensated VLCD (TCVOPE) command the temperature segmented VLCD can be disabled.
The TCVOPE control bit reset state is defined in Table 59.
When the non-segmented VLCD programming is chosen the LCD supply voltage is flat, i.e. no compensation over the
specified temperature range (offset VT in Fig.30 is 0).
The TCVOPE command is also used to read back the temperature via the interface; see Section 6.2.44.
Table 58 Temperature segmented VLCD register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
0
1
1
1
1
1
TCVOPE
BFH
Table 59 Temperature segmented VLCD reset state
BIT
LOGIC 0
LOGIC 1 (RESET STATE)
TCVOPE
no temperature compensated VLCD
segmented temperature compensated VLCD
6.2.38
INTERNAL OR EXTERNAL OSCILLATOR
The Internal/external oscillator (EC) command selects the internal or external oscillator. When an external oscillator is
used the external clock signal has to be connected to the OSC pad; see Section 7.6.
The EC control bit reset state is defined in Table 61.
Table 60 Internal/external oscillator register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
0
0
EC
C0H
Table 61 Internal/external oscillator reset state
BIT
LOGIC 0 (RESET STATE)
LOGIC 1
EC
internal oscillator
external clock applied
2003 Feb 14
51
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.39
PCF8833
SET MULTIPLICATION FACTOR
The Set multiplication factor (SETMUL) command sets the multiplication factor of voltage multiplier 1. A detailed
explanation of the LCD voltage supply architecture is given in Section 7.8.
The different multiplication factor settings for voltage multiplier 1 are given in Table 63.
Table 62 Set multiplication factor register bits; note 1
D/C
D7
D6
D5
D4
D3
D2
D1
D0
DEFAULT
0
1
1
0
0
0
0
1
0
C2H
1
X
X
X
X
X
X
S1
S0
03H
Note
1. X = don’t care.
Table 63 Multiplication factor settings voltage multiplier
S1
S0
MULTIPLICATION FACTOR
0
0
2 × multiplication
0
1
3 × multiplication
1
0
4 × multiplication
1
1
5 × multiplication; note 1
Note
1. Reset state.
6.2.40
SET TCVOP SLOPES A, B, C AND D
The Set TCVOP slopes A, B, C and D (TCVOPAB and TCVOPCD) command splits the temperature range into 4 parts
and can be programmed by using the following commands.
Due to the temperature dependency of the liquid crystals viscosity, the LCD controlling voltage VLCD might have to be
adjusted at different temperatures to maintain optimum contrast.
There are four equally spaced temperature regions. For each temperature region a different temperature coefficient can
be selected. Each coefficient can be selected from a choice of eight different slopes, or multiplication factors
(see Table 66) by setting TCVOPAB and TCVOPCD. The controlled VLCD will not be changed linearly, but in 40 mV steps
(parameter b in Table 47). Slopes SLA, SLB, SLC and SLD are overwritten by OTP values if these are set.
Table 64 Set TCVOP slopes A and B register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
0
1
1
C3H
1
X
SLB2
SLB1
SLB0
X
SLA2
SLA1
SLA0
34H
Note
1. X = don’t care.
2003 Feb 14
52
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 65 Set TCVOP slopes C and D register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
1
0
0
C4H
1
X
SLD2
SLD1
SLD0
X
SLC2
SLC1
SLC0
75H
Note
1. X = don’t care.
Table 66 Set TCVOP slopes multiplication factors; note 1
SLA[2:0]
SLB[2:0]
SLC[2:0]
SLD[2:0]
MA
MB
MC
MD
SLOPE
111
1.250
−53.33 mV/°C
110
1.000
−42.66 mV/°C
101
0.875
−37.33 mV/°C
100
0.750
−32.00 mV/°C
011
0.625
−26.66 mV/°C
010
0.500
−21.33 mV/°C
001
0.375
−16.00 mV/°C
000
0.250
−10.66 mV/°C
Note
1. For the reset state refer to Table 4. Values overwritten by OTP.
handbook, full pagewidth
MA
MB
MC
MD
MGU938
VLCD
−40
−10
20
50
80
Fig.29 Example of segmented temperature coefficients.
2003 Feb 14
53
T (°C)
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Temperature compensation is implemented by adding an
offset to the VOP value. Previously, in Section 6.2.31, VOP
was calculated by adding VPR, VCON and MMVOPCAL
settings together. Now, an additional offset VT is added.
The resolution of the readout is
(−40 to +80 °C)/128 = 0.9375 °C/LSB; where 0
represents −40 °C and 127 represents +79 °C;
see Section 6.2.44.
The final result for VLCD calculation is a 9-bit positive
number. Care must be taken by the user to ensure that the
ranges of VPR, MMVOPCAL, VCON and temperature
compensation do not cause clipping, and hence undesired
results (see Fig.24). The adders will not permit overflow or
underflow and will clamp results to either end of the range
(VOP = 0 or 445). Also, temperatures outside the range
−40 to +79 °C will be clamped to the last valid offset.
The temperature readout function can also be used to read
back the temperature value via the interface;
see equation (12).
The offset value may be calculated from Table 67. The
effect on VLCD can be calculated by multiplying the offset
value with the value of b.
For example T = −8 °C: TD = 34 and MB = 0.5:
VLCD(OS) = 40 mV × (64 − 34) × 0.5 = 600 mV.
The temperature readout generates an 8-bit result TD[7:0].
This temperature readout number is used for temperature
compensation.
handbook, full pagewidth
TEMPERATURE
READOUT
SLA
SLB
SLC
A complete overview of the programming range of VLCD
can be found in Section 15.1.
SLD
OFFSET 8
VT
TD 8
zero
offset
−40
+80 T (°C)
0
b
VCON [5:0]
VOP [8:0]
VPR [8:0]
a
MMVOPCAL [5:0]
9
VLCD
MGU939
Fig.30 Segmented temperature compensation.
2003 Feb 14
54
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 67 Offset value
TEMPERATURE RANGE
TD EQUIVALENT
OFFSET EQUATION VT
<−40 °C
0
32 × (MB + MA)
−40 °C to < −10 °C
0 to 31
(32 × MB) + MA × (32 − TD)
6.2.41
−10 to < 20 °C
32 to 63
(64 − TD) × MB
20 °C to < 50 °C
64 to 95
−(TD − 64) × MC
50 to < 80 °C
96 to 127
−((32 × MC) + MD × (TD − 96))
≥80 °C
>127
−(32 × MC + 31 × MD)
FRAME FREQUENCY PROGRAMMING
Where fosc is the oscillator frequency which is defined in
Chapter 13.
The PCF8833 incorporates temperature segmented
Frame frequency programming (TCDF). The temperature
range is split into 4 areas as shown in Fig.31.
The Divider Factor (DF) is a 7-bit number so the upper
programming range is limited to 127DEC resulting in a
minimum frame frequency of 35.8 Hz. The lower
programming range is limited to 20DEC resulting in a
maximum frame frequency of 227 Hz. The frame
frequency is derived from the built-in oscillator, and thus
the tolerance of the frame frequency has the same ratio as
that given for the oscillator frequency; see Chapter 13.
In each of the segments a Division Factor (DF) can be
programmed which determines the Frame Frequency
(FF). In equation (2) the frame frequency can be
calculated from a given division factor.
1
---------- × f osc
132
(2)
FF = -------------------------DF
When Partial mode is selected (see Sections 6.2.10 and
6.2.23) the same segmented frame frequencies will be
used as for the full Display mode.
Table 68 Frame frequency programming register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
1
0
1
C5H
1
X
DFA6
DFA5
DFA4
DFA3
DFA2
DFA1
DFA0
38H
1
X
DFB6
DFB5
DFB4
DFB3
DFB2
DFB1
DFB0
35H
1
X
DFC6
DFC5
DFC4
DFC3
DFC2
DFC1
DFC0
30H
1
X
DFD6
DFD5
DFD4
DFD3
DFD2
DFD1
DFD0
25H
Note
1. X = don’t care.
2003 Feb 14
55
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
handbook, full pagewidth
DFA
DFB
DFC
DFD
MGU940
frame
frequency
−40
−11
35
49
79
T (°C)
Fig.31 Segmented temperature frame frequency.
6.2.42
FRAME FREQUENCY PROGRAMMING IN 8-COLOUR MODE
When the Idle mode is selected (see Section 6.2.29) the frame frequency is determined from division factor DF8. In the
Idle mode the PCF8833 works in 8-colour mode and therefore a lower frame frequency can be chosen which will be the
same over the whole temperature range. Calculation of the frame frequency and determining the division factor is the
same as explained in Section 6.2.41.
When Partial mode is selected (see Sections 6.2.10 and 6.2.23) the same frame frequency will be used as for the full
Display mode in Idle mode.
Table 69 Frame frequency programming in 8-colour mode register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
1
1
0
C6H
1
X
DF86
DF85
DF84
DF83
DF82
DF81
DF80
35H
Note
1. X = don’t care.
6.2.43
SET BIAS SYSTEM
The LCD supply voltage and the bias voltages, which can be chosen, depend on the Liquid Crystal (LC) that is used. In
equation (3) the relationship between the VON/VOFF ratio of LC parameters and the bias system (a) for a given display
size (N) is given.
V ON
------------- =
V OFF
2
a + N + 2a
----------------------------2
a + N – 2a
2003 Feb 14
(3)
56
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
When the required bias system (a) is defined, the LCD
supply voltage for a display size N can be determined; see
equation (4).
N
V LCD = 2a × V ON × -------------------------------------2
P ( a + N + 2a )
The bias voltages needed in a MRA LCD driver depends
on the number of simultaneous selected rows (P). The
bias voltages of the PCF8833 are given for P = 4 and
P = 1; see Fig.32. In the PCF8833 the maximum column
voltage (GMAX) is always lower or equal to the row
voltage F.
(4)
The parameter P in equation (4) is the number of
simultaneous selected rows. For the maximum number of
rows of 132, P = 4 is chosen. When partial Display mode
is selected the P value is set to 1 internally.
handbook, full pagewidth
VLCD2
VLCD2
F
Gmax
V2H
F
Gmax
V2H
V1H
VC
VC
VC
VC
V1L
V2L
VSS
−Gmax
V2L
−F
VSS
P=4
−Gmax
−F
P=1
MGU941
Fig.32 Bias levels for a MRA system with P = 4 and P = 1.
The bias voltage levels are a function of the row voltage
F and a:
The value of F is determined by (α + 2) × R and the value
of Gmax is determined by 2 × R.
V LCD
F = -----------2
(5)
F ≥ G max
(6)
The relationship between the ratio F/Gmax and α:
(α + 2)
α
a
(α + 2) × R
F
-------------- = --- = ----------------------------- = ------------------ = 1 + --p
2×R
2
2
G max
(9)
or:
G max × a
F = ---------------------p
(7)
F
α =  ------------- – 1 × 2
 G max

F
a
-------------- = --G max
p
(8)
The relation between a and α for a given p is the following:
α
a =  --- + 1 × p
2

Depending on the value of p, the bias levels are set in the
ratio of:
a
α =  --- – 1 × 2
p

(11)
This leads to the following bias systems given in Table 70.
p = 1: αR − 2R − 2R − αR
p = 4: αR − R − R − R − R − αR
Where the value of α is in the range from 0 to 4.
2003 Feb 14
(10)
57
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 70 Bias system ratios
a
VB[3:0]
F/Gmax
α
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
1.000
1.250
1.375
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500
2.625
2.750
2.875
3.000
0.00
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00
3.25
3.50
3.75
4.00
P = 1 (N =
32)(1)
not allowed
1.500
1.625
1.750
1.875
2.000
2.125
2.250
2.375
2.500
2.625
2.750
2.875
3.000
P = 4 (N = 132)(1)
not allowed
8.0
8.5
9.0
9.5
10.0(2)
not allowed
Notes
1. For Partial mode internally P = 1 is set, otherwise P = 4 is selected. Limitations for Partial mode given in
Section 6.2.43.2 for respectively for full Display mode given in Section 6.2.43.1 have to be taken into account.
2. Reset state.
Table 71 Set bias system register bits; note 1
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
0
1
1
1
C7H
1
X
X
X
X
VB3
VB2
VB1
VB0
0BH
Note
1. X = don’t care.
6.2.43.1
Limitations on bias voltages in Normal mode
LCD2
V
- – V LCD1 = 0 to 0.5 V
 --------------2
VDD1: 1.5 to 3.3 V
VLCD1: 5.5 to 11 V
6.2.43.2
VLCD2: 10 to 20 V
VDD1: 1.5 to 3.3 V
(VLCD2 − VLCD1): 4.5 to 9 V
VLCD1: 2.9 to 12 V
V LCD2
 --------------– V LVD1 = 0 to 1 V
 2 
VLCD2: 3.8 to 12 V
( V LCD2 – V LCD1 ) max = 0.5 V
but for VLCD2: 10 to 11 V:
2003 Feb 14
Limitations on bias voltages in Partial mode
58
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.44
PCF8833
A measurement can be initiated by sending the instruction
to set TCVOPE (to either logic 1 or logic 0), irrespective of
whether temperature compensation is disabled or not.
TEMPERATURE READBACK
The PCF8833 has a built-in temperature readback
(RDTEMP) measurement device. The measured value is
provided as an 8-bit digital value TD[7:0] which can be
read back via the interface.
After initialization, the measurement will take
approximately 5 ms to complete. It is recommended to
read the register twice to qualify the returned result,
especially if the measurement is triggered automatically.
The temperature can be determined from TD[7:0] using
the following formula:
T = ( 0.9375 × TD – 40 )°C
(12)
The input and output data format for the temperature
readback is given in Table 73.
Temperature measurements are started automatically
every ten seconds when the digital temperature
compensation is active (default).
Table 72 Temperature readback register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
1
1
0
0
0
C8H
Table 73 Temperature readback data format
D/C
7
6
5
4
3
2
1
0
DEFAULT
(S)DIN
0
1
1
0
1
1
0
0
0
C8H
(S)DOUT
−
TD[7]
TD[6]
TD[5]
TD[4]
TD[3]
TD[2]
TD[1]
TD[0]
XX
SYMBOL
6.2.45
N-LINE INVERSION
The N-line inversion (NLI) command inverts the row functions after N-line row time slots in order to avoid a DC
component on the LCD display. Thus, when N-line is set to 19DEC inversion of the row functions will occur after 76 rows.
With FINV = 1 (see Section 6.2.34) the super-frame inversion is active and the NLI counter always starts at super-frame
start.
When FINV = 0 a DC voltage may remain on the display depending on the NLI setting. When FINV = 0 and NLI = 0 there
is no inversion, which results in a DC voltage on the display.
Table 74 N-line inversion register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
0
0
1
0
0
1
C9H
1
NLI7
NLI6
NLI5
NLI4
NLI3
NLI2
NLI1
NLI0
13H
Table 75 N-line inversion
NLI[7:0]
DESCRIPTION
0000 0000
no N-line inversion (super frame inversion)
0000 0001
inversion after 4 rows in full Display mode or 1 row in Partial mode
0000 0010
inversion after 8 rows in full Display mode or 2 rows in Partial mode
:
:
2003 Feb 14
59
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
6.2.46
PCF8833
ID1 is the manufacture ID and is hardwired in the
PCF8833.
READBACK
The PCF8833 can be identified when the readback
commands (RDID1, RDID2 and RDID3) are sent via the
interface. When the readback command is sent, the
PCF8833 will send back an 8-bit number.
ID2 is the version ID and is programmed in the module
maker OTP cells; see Chapter 15.
ID3 is the module ID and is programmed in the module
maker OTP cells; see Chapter 15.
Depending on the SCLK speed the readback bit D7 might
get corrupted. When the speed is reduced to at least half
of the specified maximum speed, at least for the D7 bit, the
transferred bit is valid.
Table 76 RDID1 data format
SYMBOL
D/C
7
6
5
4
3
2
1
0
DEFAULT
(S)DIN
0
1
1
0
1
1
0
1
0
DAH
(S)DOUT
−
0
1
0
0
0
1
0
1
45H
6
5
4
3
2
1
0
DEFAULT
Table 77 RDID2 data format; note 1
SYMBOL
D/C
7
(S)DIN
0
1
1
0
1
1
0
1
1
DBH
(S)DOUT
−
X
X
X
X
X
X
X
X
80H
6
5
4
3
2
1
0
DEFAULT
Note
1. X = don’t care.
Table 78 RDID3 data format; note 1
SYMBOL
D/C
7
(S)DIN
0
1
1
0
1
1
1
0
0
DCH
(S)DOUT
−
X
X
X
X
X
X
X
X
03H
Note
1. X = don’t care.
6.2.47
ENABLE OR DISABLE FACTORY DEFAULTS (SFD)
The Enable or disable factory defaults (SFD) command will enable or disable the factory defaults stored in the MMOTP
cells; see Section 15.2. These factory defaults can be set by the module maker. If the OTP bit EFD (enable factory
defaults) has been set, these values can not be changed via the interface and the SFD command will have no effect.
Otherwise, the data specified by commands will only be used if SFD is set to logic 0.
The reset state of the SFD is defined in Table 80.
Table 79 Enable/disable factory defaults register bits
D/C
7
6
5
4
3
2
1
0
DEFAULT
0
1
1
1
0
1
1
1
SFD
EFH
2003 Feb 14
60
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 80 Enable/disable factory defaults reset state
7
BIT
LOGIC 0
LOGIC 1 (RESET STATE)
SFD
registers must be set via the interface
OTP programmed data is used
FUNCTIONAL DESCRIPTION
7.1
MPU interfaces
The PCF8833 can interface to a microcontroller with an 8-bit parallel or a serial interface to transmit both data and
commands to the PCF8833.
7.1.1
HARDWIRED INTERFACE SELECTION
The selection of a given interface is done by setting pins PS0, PS1 and PS2 as shown in Table 81. Inputs PS1 and PS2
must be connected to VDD1 or VSS1.
Table 81 Interface selection; note 1
PS2
PS1
PS0
INTERFACE
READBACK SELECT
X
X
0
serial (3-line)
via the read instruction
X
X
1
8080 MPU basic
RD write strobe
Note
1. X = don’t care.
7.1.2
GENERAL PROTOCOL
The generally supported protocol for programming the LCD driver is shown in Fig.33.
handbook, full pagewidth
S
TB
TB
TB
TB
TB
P
MGU942
S = start data transmission; P = stop data transmission; TB = transmission byte.
Fig.33 Programming protocol.
2003 Feb 14
61
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
7.1.3
PCF8833
There are 2 bytes used to transfer 1 pixel with the 16-bit
colour depth information; see Table 83. The most
significant bits are R4, G5 and B4. When the data transfer
is stopped after the first write, the data is not transferred to
the display data RAM. The 16-bit data coming from the
interface is mapped by means of dithering to 12-bit data.
The dithered 12-bit data is then stored in the RAM.
DISPLAY DATA FORMATTING
Different display data formats are available because
different colour depths are supported by the PCF8833.
The colour depths supported are as follows:
• 4 kbyte colours (12-bit/pixel), RGB 4 : 4 : 4 bits input;
see Table 82. The data coming from the interface is
directly stored in RAM.
In one byte, 1 pixel is transferred with the 8-bit colour
depth information; see Table 84. The most significant bits
are R2, G2 and B1. The 8-bit data coming from the
interface is mapped by means of a look-up table (see
Section 6.2.22) to 12-bit data. The mapped 12-bit data is
then stored in the RAM.
• 65 kbyte colours (16-bit/pixel), RGB 5 : 6 : 5 bits input;
see Table 83. The 16-bit data coming from the interface
is mapped by means of dithering to 12-bit data. The
dithered 12-bit data is then stored in the RAM.
• 256 colours (8-bit/pixel), RGB 3 : 3 : 2 bits input; see
Table 84. The 8-bit data coming from the interface is
mapped by means of the Look-Up Table (LUT) (see
Section 6.2.22) to 12-bit data. The mapped 12-bit data
is then stored in the RAM.
There are 3 bytes used to define 2 pixels with the 12-bit
colour depth information; see Table 82. The most
significant bits are R3, G3 and B3. Data is transferred to
the RAM only when all the information i.e. RGB data of that
particular pixel is sent.
Table 82 Write data for RGB 4 : 4 : 4 bits input
D/C
7
6
5
4
3
2
1
0
1st write
1
R3
R2
R1
R0
G3
G2
G1
G0
2nd write
1
B3
B2
B1
B0
R3
R2
R1
R0
3rd write
1
G3
G2
G1
G0
B3
B2
B1
B0
BYTE
Table 83 Write data for RGB 5 : 6 : 5 bits input
BYTE
D/C
7
6
5
4
3
2
1
0
1st write
1
R4
R3
R2
R1
R0
G5
G4
G3
2nd write
1
G2
G1
G0
B4
B3
B2
B1
B0
Table 84 Write data for RGB 3 : 3 : 2 bits input
BYTE
1st write
7.2
7.2.1
D/C
7
6
5
4
3
2
1
0
1
R2
R1
R0
G2
G1
G0
B1
B0
Display data RAM and access arbiter
DISPLAY DATA RAM
The PCF8833 has an integrated 132 × 132 × 12-bit single port static RAM. This 209 kbit memory allows a 132 × 132
(RGB) image with a 12-bpp resolution (4 kbyte colour) to be stored on-chip.
2003 Feb 14
62
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
7.2.2
PCF8833
RAM ACCESS ARBITER
For example, if the whole display content is written, the
window will be defined by the following values: xs = 0 (0H),
ys = 0 (0H), xe = 131 (83H) and ys = 131 (83H).
The function of the arbiter is to handle the data flow. If a
write access is done on the RAM and a read access is
requested at the same time, then the arbiter will ensure
that there are no data collisions. Writing data to the RAM
has priority. Therefore no handshaking is done at the
interface side and the data can be applied to the interface
without having data read/write errors on the RAM.
7.2.3
In the vertical addressing mode (V = 1), the Y address
increments after each pixel. After the last Y address
(Y = ye), Y wraps around to ys and X increments to
address the next column. In horizontal addressing mode
(V = 0), the X address increments after each pixel. After
the last X address (X = xe), X wraps around to xs and
Y increments to address the next row. After the very last
address (X = xe and Y = ye) the address pointers wrap
around to address (X = xs and Y = ys).
WR ADDRESS COUNTER
The address counter sets the addresses of the display
data RAM for writing.
For flexibility in handling a wide variety of display
architectures, the command ‘Memory Data Access
Control (MADCTL)’ (see Section 6.2.27) defines flags
MX and MY, which allows mirroring of the X and
Y addresses. All combinations of flags are allowed.
Figures 34, 35 and 36 show the possible combinations of
writing to the display RAM. When MX, MY and V is
changed, the data must be re-written to the display RAM.
Data is written pixel wise into the RAM of the PCF8833.
The data for one pixel is collected (RGB 4 : 4 : 4 bit) before
it is written into the display data RAM. The RAM locations
are addressed by the address pointers. The address
ranges are X = 0 to X = 131 (83H) and Y = 0 to
Y = 131 (83H). Addresses outside of these ranges are not
allowed.
Before writing to the RAM a window must be defined into
which data will be written. The window is programmable
via the command registers xs and ys (designating the start
address) and xe and ye (designating the end address).
xs
xe
7.2.4
DISPLAY ADDRESS COUNTER
The display address counter generates the addresses for
readout of the display data RAM.
xs
MGU943
handbook, halfpage
0
xe
MGU944
handbook, halfpage
0
ys
Y address
Y address
ys
ye
131
ye
131
0
X address
131
0
V = 0; MX = 0 and MY = 0.
X address
V = 1; MX = 0 and MY = 0.
Fig.34 Sequence of writing data bytes into RAM showing function of V bit.
2003 Feb 14
63
131
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
xs
xe
PCF8833
xe
MGU945
handbook, halfpage
0
xs
MGU946
handbook, halfpage
0
ys
Y address
Y address
ys
ye
131
ye
131
0
X address
131
131
V = 0; MX = 0 and MY = 1.
xs
xe
X address
0
V = 0; MX = 1 and MY = 0.
xe
MGU947
handbook, halfpage
131
xs
MGU948
handbook, halfpage
131
ye
Y address
Y address
ye
ys
0
ys
0
0
X address
131
131
V = 0; MX = 0 and MY = 0.
X address
0
V = 0; MX = 1 and MY = 1.
Fig.35 Sequence of writing data bytes into RAM with horizontal addressing (V = 0) showing function MX and MY.
2003 Feb 14
64
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
xs
xe
PCF8833
xe
MGU949
handbook, halfpage
0
xs
MGU950
handbook, halfpage
0
ys
Y address
Y address
ys
ye
131
ye
131
0
X address
131
131
V = 1; MX = 0 and MY = 0.
xs
xe
X address
0
V = 1; MX = 1 and MY = 0.
xs
MGU951
handbook, halfpage
131
xe
MGU952
handbook, halfpage
131
ye
Y address
Y address
ye
ys
0
ys
0
0
X address
131
131
V = 1; MX = 0 and MY = 1.
X address
0
V = 1; MX = 1 and MY = 1.
Fig.36 Sequence of writing data bytes into RAM with vertical addressing (V = 1) showing function MX and MY.
2003 Feb 14
65
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
7.3
PCF8833
• All column and row outputs are set to VSS1 (display off)
Command decoder
• RAM data undefined
The command decoder identifies command words arriving
at the interface and routes the following data bytes to their
destination. The command set is given in Chapter 6.
7.4
• Power-down mode
• Command register set to default states; see Table 4.
Grey scale controller
7.8
For a grey scale driving scheme, Frame Rate Control
(FRC) with carefully controlled mixing of the FRC pattern
on each pixel is used. The special mixing ensures that the
pattern placed on each pixel is different from each of its
neighbours. In frame rate control 16 frames form together
to produce a super-frame. All 16 frames have the same
duration.
7.5
The LCD voltage generator and the bias level generator is
illustrated in Fig.37. The VLCD is generated by means of
two voltage multipliers, with voltage multiplier 1 being
programmable; see Section 6.2.39.
Behaviour of voltage multiplier 2 depends on the mode.
In the full Display mode, voltage multiplier 2 behaves as a
doubler. In the partial Display mode voltage multiplier 2
feeds the voltage of VLCDIN1 directly to VLCDOUT2.
Timing generator
The LCD voltage generator requires in total 9 external
components (capacitors). The recommended values and
voltage ranges for the external components are specified
in Table 85. The given values should be referred to as
information only. It is recommended to check how patterns
with high load are displayed before finalizing the values.
The timing generator produces the various signals
required to drive the internal circuitry. Internal chip
operation is not affected by operations on the data bus.
7.6
Oscillator
The on-chip oscillator provides the clock signal for the
display system. No external components are required and
the OSC input must be connected to VDD1. An external
clock signal, if used, is connected to the OSC input. In this
case the internal oscillator must be switched off by a
software command; see Section 6.2.38.
7.7
LCD voltage generator and bias level generator
The bias level generator generates the required bias levels
according to the programmed bias systems; see
Section 6.2.43.
To save power it is recommended to apply capacitors to
bias level pads (V2H, V1H, VC, V1L and V2L) of
approximately 1 µF. A capacitor at VC pad is expected to
be the most effective. Depending on the application of the
VC capacitor it might be advantageous or even necessary
to set the OPT bit VCBW = 1; see Table 97 and
Section 15.8.
Reset
The chip has a hardware and a software reset. After
power-up a hardware reset (pin RES) must be applied.
The hardware and software reset give the same results.
After a reset, the chip has the following state; see
Section 6.2.2:
Table 85 External components
ITEM
CAPACITOR VALUE
VOLTAGE RANGE
C1 to C4; CVLCD1
1 to 4.7 µF
16 V
C5; CVLCD2
1 to 4.7 µF
25 V
CVDD2
1 to 4.7 µF
4.5 V
CVDD1
1 µF
3.3 V
2003 Feb 14
66
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
VLCDOUT2
C5+
VLCD
C5
VOLTAGE
MULTIPLIER 1
C4+
C4
C4−
C3+
C3
C5−
VLCDIN1
VLCDOUT1
CVLCD2
VLCDIN2
V2H
VOLTAGE
MULTIPLIER 2
CVLCD1
V1H
C3−
C2+
C2
VLCDSENSE
C2−
C1+
VC
BIAS
LEVEL
GENERATION
C1
C1−
VDD2
VSS2
V1L
MONITOR
VDD3
CVDD2
CVDD1
VSS1
VDD1
V2L
VSS1
VSS
MGU953
Fig.37 LCD voltage and bias level generator.
7.9
Column drivers, data processing and data
latches
8
PARALLEL INTERFACE
The 8080-series 8-bit bidirectional interface can be used
for communication between the microcontroller and the
PCF8833. The selection of this interfaces is done with pins
PS2, PS1 and PS0; see Section 7.1.1.
The column drivers section includes 132 × 3 column
outputs (C0 to C395) which should be connected directly
to the LCD. When less than 396 columns are required, the
unused column outputs must be left open-circuit.
The interface functions of the 8080-series parallel
interface are given in Table 86.
The column output signals are generated in the data
processing block by reading out data from the display RAM
and processing with the appropriate orthogonal function
which represents the simultaneously selected rows.
Table 86 8080-series parallel interface function; note 1.
D/C
RD
WR
0
1
R
command write
The row drivers section includes 132 row outputs which
should be connected directly to the LCD. When less than
132 rows are required the unused column outputs must be
left open-circuit.
1
1
R
command data write
1
1
R
display data write
0
R
1
read status register
1
R
1
none
When the PCF8833 is operating in full Display mode,
4 rows are always selected simultaneously. In partial
Display mode the active row output signals are selected
one after the other.
1
R
R
forbidden
7.10
Row drivers
2003 Feb 14
Note
1. R = rising edge.
67
OPERATION
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
When sending commands to the PCF8833 the D/C line
must be pulled HIGH when the command data is
transferred (see Fig.38). The same is valid when RAM
data is sent to the PCF8833 (see Fig.39).
When using the RDDIDIF (see Section 6.2.6) or RDDST
(see Section 6.2.7) commands the PCF8833 sends
24 or 32 data bits respectively back to the microcontroller.
The protocol for the RDDIDIF and RDDST commands is
illustrated in Fig.41.
The PCF8833 can send data back to the microcontroller in
2 different ways. The protocol for the RDID1, RDID2,
RDID3 and RDTEMP commands is illustrated in Fig.40.
Descriptions of these commands is given in Chapter 6.
When reading out RDTEMP it is recommended to read this
data several times to validate the readout number.
handbook, full pagewidth
S
The parallel interface timing diagram is illustrated in
Fig.52. For the dummy read cycle the time tACC is
referenced to the rising edge of the RD signal.
TB
TB
TB
TB
TB
TB
command
command
data
command
command
command
command
P
CS
D/C
WR
D7 to D0
MGU954
Fig.38 Parallel bus protocol, write to register (PS[2:0] = XX1).
handbook, full pagewidth
S
command
RAM data
RAM data
RAM data
RAM data
RAM data
command
RAM data
RAM data
RAM data
RAM data
RAM data
CS
D/C
WR
D7 to D0
(input)
MGU955
Fig.39 Parallel bus protocol, write to display RAM (PS[2:0] = XX1).
2003 Feb 14
68
P
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
S
TB
dummy
read
PCF8833
dummy
read
TB
TB
TB
TB
P
command
command
CS
D/C
WR
RD
D7 to D0
(input)
read
command
D7 to D0
(output)
MGU956
Fig.40 Parallel bus protocol, read from register (PS[2:0] = XX1) for RDID1, RDID2, RDID3 and RDTEMP
commands.
handbook, full pagewidth
S
TB
dummy
read
RDDIDIF = 24 bits, RDDST = 32 bits
TB
TB
P
command
command
CS
D/C
WR
RD
D7 to D0
(input)
D7 to D0
(output)
read
command
RDDIDIF = 24 bits, RDDST = 32 bits
MGU957
Fig.41 Parallel bus protocol, read from register (PS[2:0] = XX1) for the RDDIDIF and RDDST commands.
2003 Feb 14
69
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
9
PCF8833
Any instruction can be sent in any order to the PCF8833;
the MSB is transmitted first. The serial interface is
initialized when SCE is HIGH. In this state, SCLK pulses
have no effect and no power is consumed by the serial
interface. A falling edge on pin SCE enables the serial
interface and indicates the start of data transmission.
SERIAL INTERFACE
Communication with the microcontroller can also occur via
a clock-synchronized serial peripheral interface. The
selection of this interface is achieved with pin PS0; see
Section 7.1.1.
The serial interface is a 3-line bidirectional interface for
communication between the microcontroller and the LCD
driver chip. The 3 lines are chip enable (SCE), Serial
Clock (SCLK) and Serial Data (SD). The PCF8833 is
connected to the SD pin of the microcontroller by two pins
SDIN (data input) and SDOUT (data output) which are
connected together.
9.1
Figure 42 shows the protocol of the Write mode:
• When SCE is HIGH, SCLKs are ignored. The serial
interface is initialized during the HIGH time of SCE.
• At the falling edge of SCE SCLK must be LOW (see
Fig.51)
• SDIN is sampled at the rising edge of SCLK
• D/C indicates, whether the byte is a command (D/C = 0)
or data (D/C = 1). It is sampled with the first rising SCLK
edge.
Write mode
The Write mode of the interface means that the
microcontroller writes commands and data to the
PCF8833. Each data packet contains a control bit D/C and
a transmission byte. If bit D/C is logic 0, the following byte
is interpreted as a command byte. The command set is
given in Table 1. If bit D/C is logic 1, the following bytes are
stored in the display data RAM or registers. After every
RAM data byte the address counter increments
automatically. Figure 42 shows the general format of the
Write mode and the definition of the transmission byte.
• If SCE stays LOW after the last bit of a data/command
byte, the serial interface will receive the D/C bit of the
next byte at the next rising edge of SCLK (see Fig.43).
• A reset pulse at pin RES interrupts the transmission.
The data being written into the RAM may be corrupted.
The registers are cleared. If SCE is LOW after the rising
edge of RES, the serial interface is ready to receive the
D/C bit of a data/command byte; see Figs 44 and 50.
transmission byte (TB)
may be a command OR a data byte
handbook, full pagewidth
D/C
D7
D6
D5
D4
D3
D2
MSB
D/C
D1
D0
LSB
TB
D/C
TB
D/C
TB
MGU958
Fig.42 Serial data stream, Write mode.
2003 Feb 14
70
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
S
PCF8833
TB
P
TB
SCE
SCLK
SDIN
DC
b7
b6
b5
b4
b3
b2
b1
b0
DC
b7
b6
b5
b4
b3
b2
b1
b0
MGU959
Fig.43 Serial bus protocol, write to register with control bit in transmission (PS[2:0] = XX0).
handbook, full pagewidth
S
P
TB
SCE
RES
SCLK
SDIN
DC
b7
b6
b5
b4
b3
b2
DC
b7
b6
b5
b4
b3
b2
b1
b0
MGU960
Fig.44 Serial bus protocol, Write mode, interrupted by reset (RES); (PS[2:0] = XX0).
handbook, full pagewidth
S
P
TB
SCE
RES
SCLK
SDIN
DC
b7
b6
b5
b4
b3
b2
DC
b7
b6
b5
b4
b3
b2
b1
b0
MGU961
Fig.45 Serial bus protocol, Write mode, interrupted by chip enable (SCE); (PS[2:0] = XX0).
2003 Feb 14
71
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
The Read mode of the serial interface means that the microcontroller reads data from the PCF8833. The PCF8833 can send data back to the
microcontroller in two different ways. The serial bus protocol for the RDID1, RDID2, RDID3 and RDTEMP commands is illustrated in Fig.46. Descriptions
of these commands are given in Section 6.2. After a command has been issued, a byte is transmitted in the opposite direction (using SDOUT). In order
to reach the timing characteristics as given in Chapter 13 data bit b7 must be handled as a don’t care. When the speed of the clock is slowed down to
at least half of maximum speed, at least for reading b7, the reading of data bit b7 is valid.
The PCF8833 samples the SDIN data at rising SCLK edges, but shifts SDOUT data at falling SCLK edges. Thus the microcontroller is supposed to
read SDOUT data at rising SCLK edges.
After the read command has been sent, the SDIN line must be set to 3-state not later than the falling SCLK edge of the last bit (see Fig.46).
When using the RDDIDIF (see Section 6.2.6) or RDDST (see Section 6.2.7) commands the PCF8833 sends 24 or 32 data bits respectively back to the
microcontroller. The serial bus protocols for the RDDIDIF and RDDST commands are illustrated in Figs. 47 and 48. After one of these commands has
been sent 3 or 4 bytes respectively are transmitted in the opposite direction (using SDOUT) after one dummy clock cycle is given.
The 8th read bit is shorter than the others because it is terminated by the rising SCLK edge; see Figs 46, 47 and 48. The last rising SCLK edge sets
SDOUT to 3-state.
The serial interface timing diagram is illustrated in Fig.51. For the dummy read cycle the time tACC is referenced to the rising edge of the SCLK signal.
Philips Semiconductors
Read mode
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
9.2
72
S
TB
TB
P
TB
SCE
SCLK
SDIN
SDOUT
DC
b7
b6
b5
b4
b3
b2
b1
b0
DC
b7
b6
b5
b4
b3
b2
b1
b7
b6
b5
b4
b3
b2
b1
b0
b0
MGU962
Objective specification
PCF8833
Fig.46 Serial bus protocol, Read mode (PS[2:0] = XX0) for RDID1,RDID2, RDID3 and RDTEMP commands.
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
TB
P
TB
SCE
SCLK
DC
SDIN
b7
b6
b5
b4
b3
b2
b1
b0
SDOUT
DC
d23
d22
d21. . . d3
d2
d1
b7
b6
b5
b4
b3
b2
b1
b0
d0
MGU963
Fig.47 Serial bus protocol, Read mode (PS[2:0] = XX0) for the RDDIDIF command.
Philips Semiconductors
TB
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
S
73
S
TB
TB
P
TB
SCE
SCLK
SDIN
SDOUT
DC
b7
b6
b5
b4
b3
b2
b1
b0
DC
d31
d30
d29. . . d3
d2
d1
b7
b6
b5
b4
b3
b2
b1
b0
d0
PCF8833
Fig.48 Serial bus protocol, Read mode (PS[2:0] = XX0) for the RDDST command.
Objective specification
MGU964
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
10 LIMITING VALUES
In accordance with the Absolute Maximum Rating System (IEC 60134); note 1.
SYMBOL
PARAMETER
MIN.
MAX.
UNIT
VSS2
system ground voltage
−0.5
+0.5
V
VDD1
logic supply voltage 1
−0.5
+4.0
V
VDD2
supply voltage 2 for the internal voltage generator
−0.5
+6.5
V
VDD3
analog supply 3 for the internal voltage generator
−0.5
+4.0
V
VLCDIN1
LCD supply voltage input 1
−0.5
+16
V
VLCDIN2
LCD supply voltage input 2
−0.5
+20
V
VLCDSENSE
voltage multiplier input voltage
−0.5
+20
V
VOTP(gate)
supply voltage 1 for OPT programming
−0.5
+10
V
VOTP(drain)
supply voltage 2 for OPT programming (Vwrite)
−0.5
+10
V
IDDn
supply current at all VDD pins
−50
+50
mA
ISSn
negative supply current at all VSS pins
−50
+50
mA
VI, VO
input/output voltage except for row and column outputs
−0.5
VDD + 0.5
V
output voltage for row and column outputs
−0.5
VLCD2 + 0.5
V
II
DC input current
−10
+10
mA
IO
DC output current
−10
+10
mA
Ptot
total power dissipation
−
300
mW
Tstg
storage temperature
−55
+125
°C
Tj
junction temperature
−
125
°C
Note
1. Parameters are valid over the operating temperature range; all voltages are referenced to VSS1; unless otherwise
specified.
11 HANDLING
Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is
recommended to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices”).
2003 Feb 14
74
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
12 DC CHARACTERISTICS
VDD1 = 1.5 to 3.3 V; VDD2 = VDD3 = 2.4 to 3.5 V; VSS = 0 V; VLCD = 3.8 to 20.0 V; Tamb = −40 to +85 °C; unless
otherwise specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Supplies
1.5
−
3.3
V
note 1
2.4
−
4.5
V
supply voltage 3 for the internal
voltage generator
note 1
2.4
−
3.5
V
VLCDIN1
LCD supply voltage input 1
LCD input voltage 1
externally supplied (both
voltage multipliers are
disabled)
−
−
16.0
V
VLCDIN2
LCD supply voltage input 2
LCD input voltage 2
externally supplied (both
voltage multipliers are
disabled)
−
−
20.0
V
VLCDOUT1
LCD supply voltage output 1
LCD voltage internally
generated with voltage
multiplier 1 (voltage
generator enabled); note 2
3.8
−
10.0
V
VLCDOUT2
LCD supply voltage output 2
LCD voltage internally
generated with voltage
multiplier 2 (voltage
generator enabled); note 2
3.8
−
20.0
V
VLCD(tol)
tolerance of generated VLCD
with calibration; note 3
−70
−
+70
mV
VDD1
logic supply voltage 1
VDD2
supply voltage 2 for the internal
voltage generator
VDD3
Static current consumption
IDD1
logic supply current
notes 5 and 6
−
1.5
5
µA
IDD2, IDD3
supply current for the internal
voltage generator
notes 5 and 6
−
0.5
1
µA
−
100
−
µA
1000
−
µA
Dynamic current consumption
IDD1
logic supply current
Normal mode; note 5
IDD1
logic supply current during RAM
access
Normal mode; notes 5 and 7; −
see Fig.49
IDD2, IDD3
supply current for the internal
voltage generator
Normal mode; note 5
−
tbf
−
µA
IDD(tot)
total supply current (VDD1 + VDD2, Normal mode; note 5
VDD3)
−
tbf
−
µA
Logic inputs and outputs
VOL
LOW-level output voltage
IOL = 0.5 mA
VSS1
−
0.2VDD1
V
VOH
HIGH-level output voltage
IOH = −0.5 mA
0.8VDD1
−
VDD1
V
VIL
LOW-level input voltage
VSS1
−
0.3VDD1
V
VIH
HIGH-level input voltage
0.7VDD1
−
VDD1
V
IL
leakage current
−1
−
+1
µA
2003 Feb 14
VI = VDD1 or VSS1
75
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
SYMBOL
PCF8833
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
Column and row outputs
Ro(col)
column output resistance
C0 to C395
VLCD2 = 10 V
−
−
5
kΩ
Ro(row)
row output resistance R0 to R131 VLCD2 = 10 V
−
−
5
kΩ
Vbias(col)
bias tolerance C0 to C395
−100
0
100
mV
Vbias(row)
bias tolerance R0 to R131
−100
0
100
mV
Notes
1. VDD2 and VDD3 always have to be higher than or equal to VDD1.
2. The maximum possible VLCD voltage that may be generated is dependent on supply voltage VDD2, temperature and
(display) load.
3. Valid for values of temperature, VPR and TC used at the calibration and with temperature calibration disabled.
4. Power-save mode.
5. Conditions are: VDD1 = 2.75 V, VDD2 = 2.75 V, VLCD2 = 13.9 V, voltage multiplier 1 at 5 × VDD2, inputs at VDD1 or
VSS1, interface inactive, internal VLCD generation, VLCD2 output is loaded by 400 µA and VLCD1 output is loaded by
0 µA and Tamb = 25 °C.
6. During power-down all static currents are switched off.
7. VDD1 = 1.8 V and interface cycle time Tcyc = 333 ns.
MGU965
8
handbook, halfpage
I DD1, I DD3
(mA)
6
(4)
4
(3)
2
(2)
(1)
0
0
2
4
6
8
fcyc (MHz)
(1) VDD1 = 1.5 V
(2) VDD1 = 1.8 V
(3) VDD1 = 2.5 V
(4) VDD1 = 3.3 V
Fig.49 Dynamic current consumption IDD1, IDD3 for different VDD1 supplies when writing data from interface to
display RAM at ambient temperature.
2003 Feb 14
76
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
13 AC CHARACTERISTICS
VDD1 = 1.5 to 3.3 V; VDD2 = VDD3 = 2.4 to 3.5 V; VSS1 = VSS2 = 0 V; Tamb = −40 to +85 °C; note 1; unless otherwise
specified.
SYMBOL
PARAMETER
CONDITIONS
MIN.
TYP.
MAX.
UNIT
fframe
LCD frame frequency (internal clock)
VDD1 = 3.0 V
−
tbf
−
Hz
fosc
oscillator frequency
notes 2 and 3
−
600
−
kHz
fclk(ext)
external clock frequency
−
tbf
−
kHz
500
−
−
ns
Reset; see Fig.50
tW(RESL)
reset LOW pulse width
note 4
tRSS
reset spike suppression
−
−
100
ns
tSU;RESL
reset LOW pulse set-up time after power-on
0
−
1
µs
tRT
initialization
0
−
5
ms
tRI
interface ready after reset pulse
0
−
1
µs
note 5
Serial interface; VDD1(min) = 1.65 V; note 6; see Fig.51
TSCYC
serial clock SCLK period (SCLK)
150
−
−
ns
tSHW
SCLK pulse width HIGH
60
−
−
ns
tSLW
SCLK pulse width LOW
60
−
−
ns
tSDS
SDIN data set-up time
60
−
−
ns
tSDH
SDIN data hold time
60
−
−
ns
tACC
SDOUT access time
CL = 30 pF
10
−
50
ns
tOH
SDOUT output disable time
CL = 5 pF;
R = 3 kΩ
25
−
50
ns
tSCC
SCLK to SCE time
20
−
−
ns
tCHW
SCE pulse width HIGH
40
−
−
ns
tCSS
SCE to SCLK set-up time
60
−
−
ns
tCSH
SCE to SCLK hold time
65
−
−
ns
10
−
−
ns
8-bit parallel (8080-type) interface; VDD1(min) = 1.65 V; note 6; see Fig.52
tCS
CS-WR and CS-RD time
tAH
D/C address hold time
10
−
−
ns
tAS
address set-up time
10
−
−
ns
TCYC
system cycle time
160
−
−
ns
tCCLW
WR control pulse width LOW
Write mode
38
−
−
ns
tCCLR
RD control pulse width LOW
Read mode
38
−
−
ns
tCCHW
WR control pulse width HIGH
Write mode
90
−
−
ns
tCCHR
RD control pulse width HIGH
Read mode
90
−
−
ns
tDS
D0 to D7 data set-up time
10
−
−
ns
tDH
D0 to D7 data hold time
10
−
−
ns
tACC
read access time
note 8; CL = 30 pF
−
−
30
ns
tOH
output disable time
note 8; CL = 5 pF;
R = 3 kΩ; note 9
30
−
160
ns
2003 Feb 14
note 7
77
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Notes
1. VDD2 and VDD3 always have to be larger than or equal to VDD1.
2. Not directly observable at any pin.
3. After calibration the following fosc can be expected at 25 °C: 600 kHz ±4%; at different temperatures an additional
variation of +0.12%/°C will not be exceeded.
4. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to
VIL and VIH with an input voltage swing of VSS1 to VDD1.
5. The initialization incorporates the start-up of the internal circuitry including the readout of the OTP cells. The start-up
time for the internal voltage generation is not included.
6. The input signal rise time and fall time (tr and tf) are specified at 15 ns or less. When the cycle time is used at high
speed, the specification is tr + tf ≤ (tCYC − tCCLW − tCCHW) or tr + tf ≤ (tCYC – tCCLR − tCCHR).
7. CS can be permanently tied LOW.
8. The output disable time and read access time is applicable after the second read cycle (see Fig.40).
9. For VDD1 = 1.8 V possible variation of tOH is between 40 and 80 ns for a temperature range of −40 to +85 °C.
handbook, full pagewidth
VDD1
t RSS
VIH
RES
VIL
t SU;RESL
t RT
t W(RESL)
Status
resetting
normal operation
VDD1
VIH
RES
VIL
t W(RESL)
resetting
Status
t RI
Interface:
commands/data
t RT
t W(RESL)
not accepted
normal operation
t RI
accepted
not accepted
accepted
MGU966
Fig.50 Reset timing.
2003 Feb 14
78
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidtht CHW
PCF8833
t CSS
t CSH
t CHW
SCE
T SCYC
t SCC
t SLW
t SHW
SCLK
tr
tr
t SDS
t SDH
SDIN
t ACC
SDOUT
t OH
high-impedance
MGU967
Fig.51 Serial interface timing.
handbook, full pagewidth
D/C
t AS
t AH
t CS
CS
T CYC
t CCLR, t CCLW
t CCHR, t CCHW
WR, RD
t DS
t DH
D0 to D7
(Write)
t ACC
t OH
D0 to D7
(Read)
MGU968
Fig.52 Parallel interface timing (8080 type).
2003 Feb 14
79
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
14 APPLICATION INFORMATION
handbook, full pagewidth
DISPLAY 132 × 132 (RGB)
VSS1
VSS2
VDD3
VDD2
VDD1
PCF8833
66
VLCDOUT1
VLCDIN1
396
VLCDSENSE
VLCDOUT2
VLCDIN2
66
MGU969
I/O
Fig.53 Application configuration.
Figure 54 shows a typical supply and capacitor connections for the PCF8833.
2003 Feb 14
80
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
common ITO/connector
resistance
resistance
handbook, full pagewidth
12 Ω
600 Ω
VOTP(drain)
VOTP(gate)
15 Ω
<2Ω
<2Ω
15 Ω
200 Ω
VSS1
VSS2
VDD3
15 Ω
30 Ω
GND
60 Ω
GND
5Ω
15 Ω
< 1 kΩ
GND
60 Ω
VDD2
VDD1
VLCDOUT2
VLCDIN2
VLDSENSE
C5+
60 Ω
C5
PCF8833
C5−
5Ω
30 Ω
15 Ω
GND
30 Ω
C4
30 Ω
VLCDOUT1
VLCDIN1
C4+
C4−
30 Ω
C3+
C3
30 Ω
C3−
30 Ω
C2+
C2
30 Ω
C2−
30 Ω
C1+
C1
30 Ω
C1−
MGU970
The indicated resistor values are the maximum recommended values. The recommended capacitor values are given in Table 85.
Fig.54 I/O configuration for the PCF8833.
2003 Feb 14
81
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
• Identification bits ID2[7:0] and ID3[7:0]
15 MODULE MAKER PROGRAMMING
• TRS and BRS
The One Time Programmable (OTP) technology has been
implemented in the PCF8833. It enables the module
maker to perform an LCD supply voltage calibration after it
has been assembled on an LCD module. The module
maker can also pre-define command set registers in order
to provide the setmaker with a ‘plug and play’ module
where only display related data has to be sent.
• Factory default bit EFD
• Seal bit.
15.1
VLCD calibration
The first feature included is the ability to adjust the VLCD
voltage with a 6-bit code (MMVOPCAL). This code is
implemented in twos complement notation giving rise to a
positive or negative offset to the VPR register. The adder in
the circuit has underflow and overflow protection. In the
event of an overflow, the output will be clamped to
VOP = 445; during an underflow the output will be clamped
to 0.
The PCF8833 features the following module maker
programming facilities:
• VLCD calibration
• Multiplication factor S[1:0] to FS[1:0] for full Display
mode and PS[1:0]) for partial Display mode
• Set VPR[8:0] to FVPR[8:0] for full Display mode and
PVPR[8:0] for partial Display mode
Figure 55 illustrates how the high voltage generator setting
VOP is controlled. Compared to equation (1) in
Section 6.2.31, Fig.55 also takes the temperature
compensation VT into account (see Section 6.2.40), which
is reflected in the following equation:
VLCD = a + (VT[7:0] + MMVOPCAL[5:0] +
VCON[6:0] + VPR[8:0]) × b
• Set bias system VB[3:0] to FVB[3:0] for full Display
mode and PVB[3:0] for partial Display mode
• Segmented temperature compensation slopes for VLCD,
SLA [2:0], SLB[2:0], SLC[2:0] and SLD[2:0]
• Segmented temperature frame frequencies DFA[6:0],
DFB[6:0], DFC[6:0] and DFD[6:0]
• Frame frequency 8-colour mode DF8[6:0]
handbook, full pagewidth
Temperature compensation VT, 8-bit value
range − 128 to + 127
VT [7:0]
OTP VLCD calibration, 6-bit offset
range −32 to + 31
MMVOPCAL [5:0]
range − 64 to + 63
VCON register, 7-bit
VCON [6:0]
VPR register, 9-bit value
VPR [8:0]
range 0 to 445
usable range 5 to 410
Fig.55 VLCD calibration.
2003 Feb 14
82
+
VOP
range 0 to 445
MGU971
to high voltage
generator
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 87 Possible MMVOPCAL values
15.2
MMVOPCAL[5:0]
DECIMAL EQUIVALENT
VLCD OFFSET
011111
31
+1240 mV
011110
30
+1200 mV
011101
29
+1160 mV
:
:
:
000010
2
+80 mV
000001
1
+40 mV
000000
0
0 mV
111111
−1
−40 mV
111110
−2
−80 mV
:
:
:
100010
−30
−1200 mV
100001
−31
−1240 mV
100000
−32
−1280 mV
Factory defaults
It is possible to change to settings defined by registers
which can be set via the interface, except ID2[7:0] and
ID3[7:0] which are defined only by OTP cells. The
selection of the factory defaults mode is made by setting
the factory default OTP bit EFD.
The factory default setting of the following features can be
predefined with OTP cells:
• Multiplication factor S[1:0] for full and partial Display
mode
The operation can be thought of as a switch that selects
between two sources for the data. When the factory
defaults are selected (EFD = 1), changing the values via
the interface is not possible, not even by sending the SFD
command.
• Set VPR[8:0] for full and partial Display mode
• Set bias system VB[3:0] for full and partial Display mode
• Segmented temperature compensation slopes for VLCD,
SLA[2:0], SLB[2:0], SLC[2:0] and SLD[2:0]
• Segmented temperature frame frequencies DFA[6:0],
DFB[6:0], DFC[6:0] and DFD[6:0]
• Frame frequency 8-colour mode DF8[6:0]
• TRS and BRS
• Identification bits ID2[7:0] and ID3[7:0].
Table 88 Factory default bit EFD
EFD
ACTION
0
configuration data is taken from the interface if SFD = 0 or from the OTP if SFD = 1
1
OTP values are used for configuration
2003 Feb 14
83
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
handbook, full pagewidth
PCF8833
INTERFACE
SFD
default = 1
OR
OTP CELL
EFD
default = 0
INTERFACE
INTERFACE
REGISTERS
e.g. SLA [2:0]
0
to temperature
compensation circuit
OTP DEFAULTS
e.g. SLA [2:0]
1
MGU972
Fig.56 Factory defaults.
15.3
Bit 7 of every data byte is not used. An example sequence
on how to fill the matrix is given in Table 96.
Seal bit
The module maker programming is performed in the
Calibration mode. This mode is entered via a special
interface command (CALMM). To prevent erroneous
programming, a seal bit has been implemented which
prevents the device from entering Calibration mode. This
seal bit, once programmed, cannot be reversed, thus
further changes in programmed values are not possible.
Applying the programming voltage when not in CALMM
mode will have no effect on the programmed values.
The default value of the OTP cells is shown in Table 91.
These values may be changed by programming the OTP
cell. The programming of a cell will invert the default value.
This inversion may only happen once per cell, as the
programming is irreversible.
Table 93 shows an example on how to program the OTP
cells to receive the values given in Table 92. Some
examples are given below:
1. The default for DFA[0] is 0; see Table 91, and it is
required to have DFA[0] = 1; see Table 92. This
means that the value needs to be inverted. Therefore
the OTP cell has to be programmed (a 1 in Table 93).
Table 89 Seal bit definition
SEAL BIT
15.4
ACTION
0
Calibration mode enabled
1
Calibration mode disabled
2. The default for DFA[4] is 1; see Table 91, and it is
required to have DFA[4] = 0; see Table 92. This
means that the value needs to be inverted. Therefore
the OTP cell has to be programmed (a 1 in Table 93).
OTP architecture
An OTP cell is divided into a non-volatile programmable
instance containing the value and a register, where the
value is made accessible to the rest of the chip.
3. The default for DFA[5] is 1; see Table 91, and it is
required to have DFA[5] = 1; see Table 92. This
means that it is not necessary to change the value.
Therefore it is not necessary to program the OTP cell
(a 0 in Table 93).
In the PCF8833 104 OTP cells are available for the
module maker. These cells are organised in a matrix of
7 rows and 15 columns, where the last row is only partially
used; see Table 90. All the rows of one particular column
of the matrix are filled in parallel by sending 1 byte of data
with the OTPSHTIN command. Byte 15 is sent first
(containing PVB[3:0], BRS and TRS) and byte 0 last
(containing MMVOP[5:0] or SEAL).
2003 Feb 14
4. The default for DFA[6] is 0; see Table 91, and it is
required to have DFA[6] = 0; see Table 92. This
means that it is not necessary to change the value.
Therefore it is not necessary to program the OTP cell
(a 0 in Table 93).
84
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
SEAL
DFA0
DFB0
DFC0
DFD0
DF80
ID20
ID27
ID36
SLA0
SLC0
FVPR0
FVPR6
PVPR3
EFD
TRS
1
MMVOP0
DFA1
DFB1
DFC1
DFD1
DF81
ID21
ID30
ID37
SLA1
SLC1
FVPR1
FVPR7
PVPR4
VCBW
BRS
(1)
2
MMVOP1
DFA2
DFB2
DFC2
DFD2
DF82
ID22
ID31
FS0
SLA2
SLC2
FVPR2
FVPR8
PVPR5
FVB0
PVB0
3
MMVOP2
DFA3
DFB3
DFC3
DFD3
DF83
ID23
ID32
FS1(1) SLB0
SLD0
FVPR3
PVPR0
PVPR6
FVB1
PVB1
PS0(2)
PS1(2)
SLB1
SLD1
FVPR4
PVPR1
PVPR7
FVB2
PVB2
SLB2
SLD2
FVPR5
PVPR2
PVPR8
FVB3
PVB3
4
MMVOP3
DFA4
DFB4
DFC4
DFD4
DF84
ID24
ID33
5
MMVOP4
DFA5
DFB5
DFC5
DFD5
DF85
ID25
ID34
6
MMVOP5
DFA6
DFB6
DFC6
DFD6
DF86
ID26
ID35
Notes
1. FS[1:0] is the multiplication factor used in full Display mode, compare to S[1:0]; see Section 6.2.39.
2. PS[1:0] is the multiplication factor used in partial Display mode, compare to S[1:0]; see Section 6.2.39.
not used
Philips Semiconductors
BIT
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
Table 90 OTP array: content
85
Objective specification
PCF8833
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 91 OTP array: default values
BIT
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
0
0
1
0
1
1
0
1
0
0
1
1
0
1
0
0
1
0
0
1
1
0
1
0
1
0
0
0
0
0
1
0
0
2
0
0
0
1
0
0
0
1
1
1
1
0
1
0
1
1
3
0
1
0
1
1
0
0
0
1
1
1
0
1
0
1
1
4
0
1
0
1
1
0
0
0
1
1
1
0
0
1
0
1
5
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
1
6
0
0
0
0
0
0
0
0
not used
Table 92 OTP array: desired values
BIT
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
0
1
0
0
1
1
0
1
0
0
1
1
0
1
0
0
1
1
0
0
1
0
1
0
1
0
0
0
0
0
1
0
0
2
0
0
1
1
0
0
0
1
1
1
1
0
1
0
1
1
3
1
1
0
1
1
0
0
0
1
1
1
0
1
0
1
1
4
1
0
0
1
1
0
0
0
1
1
1
0
0
1
0
1
5
0
1
1
0
0
1
0
0
1
0
1
0
1
0
1
1
6
0
0
0
0
0
0
0
0
not used
Table 93 OTP array: values to be programmed
BIT
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
2
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
3
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
4
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
5
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
6
0
0
0
0
0
0
0
0
2003 Feb 14
86
not used
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
15.5
PCF8833
Interface commands
Table 94 contains a list of all OTP related commands.
Table 94 OTP related commands
COMMAND BYTE(1)
NAME
HEX
D/C
DESCRIPTION
D7
D6
D5
D4
D3
D2
D1
D0
0
1
1
1
1
0
0
0
0
1
X
X
ORA0
X
OPE
CALMM
Sleep_OUT
0
0
0
0
1
0
0
0
1
11
generate a refresh of the
OTP if CALMM = 0
OTPSHTIN
0
1
1
1
1
0
0
0
1
F1
1
X
D6
D5
D4
D3
D2
D1
D0
start shifting data in the shift
register; the shifting is
executed as long as D/C = 1
0
1
1
1
0
1
1
1
SFD
CALMM
SFD
ORA2 ORA1
F0
CALMM command
entry CALMM mode
(CALMM) enable
programming (OPE) set
address (ORA)
EE/EF set factory default (see
Sections 6.2.47 and 15.2)
Note
1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be 0.
15.5.1
CALIBRATION MODULE MAKER MODE
15.5.3
When CALMM = 1 the device enters the calibration
module maker mode. This mode enables the filling of the
OTP matrix and allows programming of the non-volatile
OTP cells to take place.
The OTP matrix (see Table 90) is filled using the
OTPSHTIN command, which is similar to the RAM write
command. First the appropriate command is sent, then the
following data bytes are shifted bytewise into the OTP
matrix from left to right, i.e. the new byte is loaded into
byte 0, whereas the data of byte 0 is shifted into byte 1 and
so on. Bit 7 of the data is not used. The shifting is enabled
as long as D/C remains at logic 1.
The VOTP(drain) pad is not connected directly to the OTP
cells, but through a switch that must be closed for
programming by setting OPE to logic 1.
The OTP row to be programmed may be chosen by setting
the OTP row address ORA[2:0].
15.5.2
15.6
REFRESH
Suggestion on how to calibrate VLCD2 using
MMVOP
In order to calibrate the programming of VLCD2, the
sequence in Table 95 is suggested to determine what
MMVOP value has to be programmed.
The action of the refresh instruction is to force the registers
of the OTP matrix to load the value from the non-volatile
part of the OTP cell. This instruction takes up to 1 ms to
complete. During this time all other instructions may be
sent.
It is assumed that the relevant parameters, the VLCD2
programming, VPR and the number of stages S, are set via
the interface. This implies that SFD is set to logic 0 and
that all OTP settings except MMVOP are ignored.
In the PCF8833 the refresh instruction is associated with
the Sleep_OUT instruction such that the shift register is
automatically refreshed every time the Sleep_OUT
instruction is sent.
No refresh may be started when in CALMM mode, i.e.
whenever CALMM = 1.
2003 Feb 14
SHIFT IN
87
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
D/C
ADDR
7
6
5
4
3
2
1
0
DESCRIPTION
1
0
0
0
0
0
0
0
0
1
01H
reset (may also be hardware reset)
2
−
−
−
−
−
−
−
−
−
−
wait 1 ms for refresh to take effect
3
0
1
1
1
0
1
1
1
0
EEH
set SFD = 0 in order to use interface
values
4
0
0
0
1
0
1
0
0
0
28H
send DISPOFF to prevent rows and
columns to toggle
5
0
1
0
1
1
0
0
0
0
B0H
set VPR to desired value
1
X
X
X
X
VPR8
VPR7
VPR6
VPR5
−
1
X
X
X
VPR4
VPR3
VPR2
VPR1
VPR0
−
0
1
1
0
0
0
0
1
0
C2H
1
X
X
X
X
X
X
S1
S0
−
0
1
1
1
1
0
0
0
0
F0H
6
7
set multiplication stages to desired
value
enter CALMM mode
88
1
X
X
0
0
0
x
0
1
01H
ORA = 000 OPE = 0 CALMM = 1
8
0
0
0
0
1
0
0
0
1
11H
send Sleep_OUT (no refresh
because CALMM = 1)
9
−
−
−
−
−
−
−
−
−
−
1
1
1
0
0
0
10
0
1
1
X
11
−
−
−
−
−
−
−
12
−
−
−
−
−
−
13
0
1
1
1
1
1
X
X
0
0
wait until D31 = 1 (V stable); note 2
1
F1H
0
−
set MMVOP[5:0] and SEAL = 0
−
−
−
check VLCD2 after VLCD2 has settled
−
−
−
−
repeat steps 10 to 11 until desired
VLCD2 is reached
0
0
0
0
F0H
exit CALMM mode; if required
0
x
0
0
00H
ORA = 000 OPE = 0 CALMM = 0
MMVOP5 MMVOP4 MMVOP3 MMVOP2 MMVOP1 MMVOP0
send OTPSHTIN; note 3
1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0.
PCF8833
3. The chip stays in shift operation as long as D/C is logic 1.
Objective specification
Notes
2. D31 is the booster voltage status bit; see Section 6.2.7.
Philips Semiconductors
COMMAND BYTE(1)
STEP
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
Table 95 Sequence to determine MMVOP
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
15.7
PCF8833
Example of filling the shift register
Table 96 shows the sequence of commands to fill the OTP matrix as defined in Table 93.
Table 96 Sequence for filling the OTP matrix
COMMAND BYTE(1)
STEP
D/C
1
0
DESCRIPTION
ADDR
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
01H
2
reset (may also be hardware
reset)
wait 1 ms for refresh to take
effect
3
0
1
1
1
1
0
0
0
0
F0H
enter CALMM mode
1
X
X
0
0
0
X
0
1
01H
ORA = 000; OPE = 0;
CALMM = 1
4
0
1
1
1
1
0
0
0
1
F1H
send OTPSHTIN; note 2
shift15
1
X
X
0
0
0
0
0
0
00H
set PVB[3:0]; BRS and TRS
shift14
1
X
X
0
0
0
0
0
0
00H
set FVB[3:0]; 0 and EFD
shift13
1
X
X
0
0
0
0
0
0
00H
set PVPR[8:3]
shift12
1
X
X
0
0
0
0
0
0
00H
set PVPR[2:0] and FVPR[8:6]
shift11
1
X
X
0
0
0
0
0
0
00H
set FVPR[5:0]
shift10
1
X
X
0
0
0
0
0
0
00H
set SLD[2:0] and SLC[2:0]
shift9
1
X
X
0
0
0
0
0
0
00H
set SLB[2:0] and SLA[2:0]
shift8
1
X
X
0
0
0
0
0
0
00H
set PS[1:0]; FS[1:0] and ID3[7:6]
shift7
1
X
0
0
0
0
0
0
0
00H
set ID3[5:0] and ID2[7]
shift6
1
X
0
0
0
0
0
0
0
00H
set ID2[6:0]
shift5
1
X
0
0
0
0
0
0
0
00H
set DF8[6:0]
shift4
1
X
0
0
0
0
0
0
0
00H
set DFD[6:0]
shift3
1
X
0
0
0
0
0
0
0
00H
set DFC[6:0]
shift2
1
X
0
0
0
0
1
1
1
07H
set DFB[6:0]
shift1
1
X
0
0
1
0
0
0
1
11H
set DFA[6:0]
shift0
1
X
0
0
1
1
0
1
0
1AH
set MMVOP[5:0] and SEAL
5
0
1
1
1
1
0
0
0
0
F0H
exit CALMM mode; if required
1
X
X
0
0
0
X
0
0
00H
ORA = 000; OPE = 0;
CALMM = 0
Notes
1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0.
2. The chip stays in shift operation as long as D/C is logic 1.
15.8
Programming flow
In order to program an OTP cell, the associated register must be set to logic 1 and a programming voltage of 8 V should
to be applied to pins VOTP(gate) and VOTP(drain) for 50 ms. It is strongly recommended to use the sequence shown in
Table 97 to program the OTP cells. In any event the requirements stated in Section 15.9 must be met.
Important: Whenever a new row in the OTP matrix is selected (change of ORA[2:0]), the OTP cells must not be
connected to pin VOTP(drain) (set OPE = 0). For an example see steps 9 to 11 in Table 97.
2003 Feb 14
89
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
D/C
ADDR
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
1
set VOTP(gate) = 0 V; VOTP(drain) = 0 V
0
1
DESCRIPTION
0
01
reset (may also be hardware reset)
2
wait 1 ms for refresh to take effect
3
set VOTP(gate) = 8 V; VOTP(drain) = 8 V
4
5
0
1
1
1
1
0
0
0
0
F0
enter CALMM mode
1
X
X
0
0
0
X
0
1
01
ORA = 000; OPE = 0; CALMM = 1
0
1
1
1
1
0
0
0
1
F1
send OTPSHTIN; note 2
shift15
1
X
X
PVB3
PVB2
PVB1
PVB0
BRS
TRS
set PVB[3:0]; BRS and TRS
shift14
1
X
X
FVB3
FVB2
FVB1
FVB0
VCBW
EFD
set FVB[3:0]; VCBW and EFD; note 3
:
shift0
1
x
6
0
1
1
1
1
0
0
0
0
F0
select row 0 in OTP matrix
1
X
X
0
0
0
X
0
1
01
ORA = 000; OPE = 0; CALMM = 1
90
7
MMVOP5 MMVOP4 MMVOP3 MMVOP2 MMVOP1 MMVOP0
0
set MMVOP[5:0] and SEAL = 0
0
1
1
1
1
0
0
0
0
F0
enable programming
1
X
X
0
0
0
X
1
1
03
ORA = 000; OPE = 1; CALMM = 1
8
9
10
11
Philips Semiconductors
COMMAND BYTE(1)
STEP
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
Table 97 Sequence to program OTP cells
wait for 50 ms until OTP cells are
programmed
0
1
1
1
1
0
0
0
0
F0
disable programming
1
X
X
0
0
0
X
0
1
01
ORA = 000; OPE = 0; CALMM = 1
0
1
1
1
1
0
0
0
0
F0
select row 1 in OTP matrix
1
X
X
0
0
1
X
0
1
09
ORA = 001; OPE = 0; CALMM = 1
0
1
1
1
1
0
0
0
0
F0
enable programming
1
X
X
0
0
1
X
1
1
0B
ORA = 001; OPE = 1; CALMM = 1
Objective specification
PCF8833
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...
ADDR
7
6
5
4
3
2
1
12
13
wait for 50 ms until OTP cells are
programmed
0
1
1
1
1
0
0
0
0
F0
disable programming
1
X
X
0
0
1
X
0
1
09
ORA = 001; OPE = 0; CALMM = 1
0
1
1
1
1
0
0
0
0
F0
exit CALMM mode
1
X
X
0
0
0
X
0
0
00
ORA = 000; OPE = 0; CALMM = 0
14
15
DESCRIPTION
0
repeat steps 10 to 13 for rows 2 to 6
16
set VOTP(gate) = 0 V; VOTP(drain) = 0 V
Notes
1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0.
2. The chip stays in shift operation as long as D/C is logic 1.
3. When VCBW = 1 the VC buffer is switched to a weak buffer. Default is VCBW = 0, where the VC buffer is powerful. To save power a capacitor could
be connected to VC pad. Depending on the application it might be advantageous or even necessary to program VCBW = 1.
Philips Semiconductors
D/C
STN RGB - 132 × 132 × 3 driver
2003 Feb 14
COMMAND BYTE(1)
STEP
91
Objective specification
PCF8833
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
15.9
PCF8833
Programming specification
For programming OTP cells, the VOTP(gate) and VOTP(drain) voltages have to be applied as indicated in Fig.57. Voltages
VOTP(gate) and VOTP(drain) can be applied at the same time or can have a staggered sequence as indicated by cases
a and b of Fig.57.
Depending on the series resistance in the supply wires, up to 16 OTP bits can be programmed at the same time. Each
OTP cell can only be programmed once.
Table 98 Programming specification (see Fig.57)
SYMBOL
PARAMETER
VOTP(gate)
voltage applied to VOTP(gate) pin
relative to VSS1
VOTP(drain)
voltage applied to VOTP(drain) pin
relative to VSS1
CONDITION
programming active;
note 1
MIN.
tbf
TYP.
8
MAX.
tbf
UNIT
V
programming inactive
tbf
0
tbf
V
programming active;
note 1
tbf
8
tbf
V
programming inactive
tbf
0
tbf
V
tbf
100
tbf
µA
tbf
500
tbf
µA
0
25
40
°C
IOTP(gate)
current drawn by VOTP(gate) during
programming
IOTP(drain)
current drawn by VOTP(drain) during
programming
Tamb(prog)
ambient temperature during
programming
tOPESU
set-up time of OPE as a function of
VOTP(gate) and VOTP(drain)
VOTP(gate) and
VOTP(drain) > 0 V
1
−
−
ms
tOPEHD
hold time of OPE as a function of
VOTP(gate) and VOTP(drain)
VOTP(gate) and
VOTP(drain) > 0 V
1
−
−
ms
tWRITEPW
pulse width of programming voltage
45
50
55
ms
per programmed OTP
cell
Note
1. The voltage drop across the ITO track and any connector must be taken into account to guarantee a sufficiently high
voltage at the chip pins.
2003 Feb 14
92
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
t OPESU
handbook, full pagewidth
t OPEHD
OPE
VOTP(gate)
VOTP(drain)
t WRITEPW
(a) VOTP(drain) applied before VOTP(gate)
t OPESU
t OPEHD
OPE
VOTP(gate)
VOTP(drain)
t WRITEPW
(b) VOTP(gate) applied before VOTP(drain)
Fig.57 Programming waveforms, OPE rises after VOTP(gate) and VOTP(drain).
2003 Feb 14
93
MGU973
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
16 INTERNAL PROTECTION CIRCUITS
handbook, full pagewidth
VDD1
VDD2
VDD3
VSS1
VSS1
VSS1
VSS2
VLCDIN1
VSS2 -SUPPLY
VDD2
VSS2
VLCDOUT1
VLCDIN1
VLCDOUT1
VSS1
VSS1
VSS1
VLCDIN2
VLCDOUT2, VLCDSENSE
VLCDIN2
VLCDOUT2
VLCDSENSE
4 MΩ
4 MΩ
VSS1
VSS1
V2L, V1L
V2H, V1H, VC
VLCDIN1
T7
VLCDIN2
VLCDIN2
VSS1
VSS1
VLCDIN2
VSS1
MGU977
Fig.58 Protection circuit diagram; part 1.
2003 Feb 14
94
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
WR, DC/SCLK, RD,
handbook, full pagewidth
PS [2:0], OSC, CS/SCE,
T1, T2, T3, T4, T5, T6,
SDOUT, D [7:1], TE, D0/SDIN
RES, VDD(tieoff),
VSS(tieoff)
VDD1
VOTP(gate), VOTP(drain)
VDD1
200 kΩ
VSS1
VSS1
C1+, C2+, C3+, C4+,
C5+, C5–
VSS1
C1–, C2–, C3–, C4–
C0 to C395,
R0 to R131
VDD1
VLCDIN2
VSS1
VSS1
VSS1
MGU978
Fig.59 Protection circuit diagram; part 2.
2003 Feb 14
95
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
17 BONDING PAD INFORMATION
handbook, full pagewidth
pad 462
R31
pad 463
R63
C191
R32
R0
RES
TE
C395
VSS(tieoff)
T7
C384
C383
VSS1
C1+
C1−
VSS2
C2+
CS/SCE
C144
C143
C2−
VDD1
C3+
VDD3
C3−
C336
C335
VDD2
C4+
D7
D3
D6
D5
D2
D1
D4
D0/SDIN
SDOUT
D/C/SCLK
WR
RD
PS0
PS1
PS2
OSC
VDD(tieoff)
C4−
C96
C95
VLCDOUT1
VLCDIN1
C5+
C288
C287
C5−
VLCDOUT2
C48
C47
VLCDSENSE
VOTP(drain)
VLCDIN2
VOTP(gate)
V2L
V1L
C240
C239
T6
T5
T4
T3
T2
T1
VSS(tieoff)
VC
V1H
V2H
R96
C0
R64
C192
R131
pad 769
active pads
dummy pads
alignment marks
MGU976
Fig.60 Bonding pad location.
2003 Feb 14
R95
pad 1
96
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 99 Bonding pad locations
All x and y coordinates are referenced to the centre of the
chip (dimensions in µm; see Fig.61).
COORDINATES
SYMBOL
COORDINATES
SYMBOL
PAD
x
y
dummy
1
−11351.208
−1035.694
R95
2
−11231.880
−1035.694
R94
3
−11179.080
−1035.694
R93
4
−11126.280
−1035.694
R92
5
−11073.480
−1035.694
R91
6
−11020.680
−1035.694
R90
7
−10967.880
−1035.694
R89
8
−10915.080
−1035.694
R88
9
−10862.280
−1035.694
R87
10
−10809.480
−1035.694
R86
11
−10756.680
−1035.694
R85
12
−10703.880
−1035.694
R84
13
−10651.080
−1035.694
R83
14
−10598.280
−1035.694
R82
15
−10545.480
−1035.694
R81
16
−10492.680
−1035.694
R80
17
−10439.880
−1035.694
R79
18
−10387.080
−1035.694
R78
19
−10334.280
−1035.694
R77
20
−10281.480
−1035.694
R76
21
−10228.680
−1035.694
R75
22
−10175.880
−1035.694
R74
23
−10123.080
−1035.694
R73
24
−10070.280
−1035.694
R72
25
− 10017.480
−1035.694
R71
26
−9964.680
−1035.694
R70
27
−9911.880
−1035.694
R69
28
−9859.080
−1035.694
R68
29
−9806.280
−1035.694
R67
30
−9753.480
−1035.694
R66
31
−9700.680
−1035.694
R65
32
−9647.880
−1035.694
R64
33
−9595.080
−1035.694
C0
34
−9369.448
−1030.568
C1
35
−9322.984
−1030.568
C2
36
−9276.520
−1030.568
C3
37
−9230.056
−1030.568
2003 Feb 14
97
PAD
x
y
C4
38
−9183.592
−1030.568
C5
39
−9137.128
−1030.568
C6
40
−9090.664
−1030.568
C7
41
−9044.200
−1030.568
C8
42
−8997.736
−1030.568
C9
43
−8951.272
−1030.568
C10
44
−8904.808
−1030.568
C11
45
−8858.344
−1030.568
C12
46
−8811.880
−1030.568
C13
47
−8765.416
−1030.568
C14
48
−8718.952
−1030.568
C15
49
−8672.488
−1030.568
C16
50
−8626.024
−1030.568
C17
51
−8579.560
−1030.568
C18
52
−8533.096
−1030.568
C19
53
−8486.632
−1030.568
C20
54
−8440.168
−1030.568
C21
55
−8393.704
−1030.568
C22
56
−8347.240
−1030.568
C23
57
−8300.776
−1030.568
C24
58
−8254.312
−1030.568
C25
59
−8207.848
−1030.568
C26
60
−8161.384
−1030.568
C27
61
−8114.920
−1030.568
C28
62
−8068.456
−1030.568
C29
63
−8021.992
−1030.568
C30
64
−7975.528
−1030.568
C31
65
−7929.064
−1030.568
C32
66
−7882.600
−1030.568
C33
67
−7836.136
−1030.568
C34
68
−7789.672
−1030.568
C35
69
−7743.208
−1030.568
C36
70
−7696.744
−1030.568
C37
71
−7650.280
−1030.568
C38
72
−7603.816
−1030.568
C39
73
−7557.352
−1030.568
C40
74
−7510.888
−1030.568
C41
75
−7464.424
−1030.568
C42
76
−7417.960
−1030.568
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
y
PAD
x
y
C43
77
−7371.496
−1030.568
C82
116
−5502.200
−1030.568
C44
78
−7325.032
−1030.568
C83
117
−5455.736
−1030.568
C45
79
−7278.568
−1030.568
C84
118
−5409.272
−1030.568
C46
80
−7232.104
−1030.568
C85
119
−5362.808
−1030.568
C47
81
−7185.640
−1030.568
C86
120
−5316.344
−1030.568
C48
82
−7081.976
−1030.568
C87
121
−5269.880
−1030.568
C49
83
−7035.512
−1030.568
C88
122
−5223.416
−1030.568
C50
84
−6989.048
−1030.568
C89
123
−5176.952
−1030.568
C51
85
−6942.584
−1030.568
C90
124
−5130.488
−1030.568
C52
86
−6896.120
−1030.568
C91
125
−5084.024
−1030.568
C53
87
−6849.656
−1030.568
C92
126
−5037.560
−1030.568
C54
88
−6803.192
−1030.568
C93
127
−4991.096
−1030.568
C55
89
−6756.728
−1030.568
C94
128
−4944.632
−1030.568
C56
90
−6710.264
−1030.568
C95
129
−4898.168
−1030.568
C57
91
−6663.800
−1030.568
C96
130
−4794.504
−1030.568
C58
92
−6617.336
−1030.568
C97
131
−4748.040
−1030.568
C59
93
−6570.872
−1030.568
C98
132
−4701.576
−1030.568
C60
94
−6524.408
−1030.568
C99
133
−4655.112
−1030.568
C61
95
−6477.944
−1030.568
C100
134
−4608.648
−1030.568
C62
96
−6431.480
−1030.568
C101
135
−4562.184
−1030.568
C63
97
−6385.016
−1030.568
C102
136
−4515.720
−1030.568
C64
98
−6338.552
−1030.568
C103
137
−4469.256
−1030.568
C65
99
−6292.088
−1030.568
C104
138
−4422.792
−1030.568
C66
100
−6245.624
−1030.568
C105
139
−4376.328
−1030.568
C67
101
−6199.160
−1030.568
C106
140
−4329.864
−1030.568
C68
102
−6152.696
−1030.568
C107
141
−4283.400
−1030.568
C69
103
−6106.232
−1030.568
C108
142
−4236.936
−1030.568
C70
104
−6059.768
−1030.568
C109
143
−4190.472
−1030.568
C71
105
−6013.304
−1030.568
C110
144
−4144.008
−1030.568
C72
106
−5966.840
−1030.568
C111
145
−4097.544
−1030.568
C73
107
−5920.376
−1030.568
C112
146
−4051.080
−1030.568
C74
108
−5873.912
−1030.568
C113
147
−4004.616
−1030.568
C75
109
−5827.448
−1030.568
C114
148
−3958.152
−1030.568
C76
110
−5780.984
−1030.568
C115
149
−3911.688
−1030.568
C77
111
−5734.520
−1030.568
C116
150
−3865.224
−1030.568
C78
112
−5688.056
−1030.568
C117
151
−3818.760
−1030.568
C79
113
−5641.592
−1030.568
C118
152
−3772.296
−1030.568
C80
114
−5595.128
−1030.568
C119
153
−3725.832
−1030.568
C81
115
−5548.664
−1030.568
C120
154
−3679.368
−1030.568
2003 Feb 14
98
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
y
PAD
x
y
C121
155
−3632.904
−1030.568
C160
194
−1763.608
−1030.568
C122
156
−3586.440
−1030.568
C161
195
−1717.144
−1030.568
C123
157
−3539.976
−1030.568
C162
196
−1670.680
−1030.568
C124
158
−3493.512
−1030.568
C163
197
−1624.216
−1030.568
C125
159
−3447.048
−1030.568
C164
198
−1577.752
−1030.568
C126
160
−3400.584
−1030.568
C165
199
−1531.288
−1030.568
C127
161
−3354.120
−1030.568
C166
200
−1484.824
−1030.568
C128
162
−3307.656
−1030.568
C167
201
−1438.360
−1030.568
C129
163
−3261.192
−1030.568
C168
202
−1391.896
−1030.568
C130
164
−3214.728
−1030.568
C169
203
−1345.432
−1030.568
C131
165
−3168.264
−1030.568
C170
204
−1298.968
−1030.568
C132
166
−3121.800
−1030.568
C171
205
−1252.504
−1030.568
C133
167
−3075.336
−1030.568
C172
206
−1206.040
−1030.568
C134
168
−3028.872
−1030.568
C173
207
−1159.576
−1030.568
C135
169
−2982.408
−1030.568
C174
208
−1113.112
−1030.568
C136
170
−2935.944
−1030.568
C175
209
−1066.648
−1030.568
C137
171
−2889.480
−1030.568
C176
210
−1020.184
−1030.568
C138
172
−2843.016
−1030.568
C177
211
−973.720
−1030.568
C139
173
−2796.552
−1030.568
C178
212
−927.256
−1030.568
C140
174
−2750.088
−1030.568
C179
213
−880.792
−1030.568
C141
175
−2703.624
−1030.568
C180
214
−834.328
−1030.568
C142
176
−2657.160
−1030.568
C181
215
−787.864
−1030.568
C143
177
−2610.696
−1030.568
C182
216
−741.400
−1030.568
C144
178
−2507.032
−1030.568
C183
217
−694.936
−1030.568
C145
179
−2460.568
−1030.568
C184
218
−648.472
−1030.568
C146
180
−2414.104
−1030.568
C185
219
−602.008
−1030.568
C147
181
−2367.640
−1030.568
C186
220
−555.544
−1030.568
C148
182
−2321.176
−1030.568
C187
221
−509.080
−1030.568
C149
183
−2274.712
−1030.568
C188
222
−462.616
−1030.568
C150
184
−2228.248
−1030.568
C189
223
−416.152
−1030.568
C151
185
−2181.784
−1030.568
C190
224
−369.688
−1030.568
C152
186
−2135.320
−1030.568
C191
225
−323.224
−1030.568
C153
187
−2088.856
−1030.568
C192
226
−219.560
−1030.568
C154
188
−2042.392
−1030.568
C193
227
−173.096
−1030.568
C155
189
−1995.928
−1030.568
C194
228
−126.632
−1030.568
C156
190
−1949.464
−1030.568
C195
229
−80.168
−1030.568
C157
191
−1903.000
−1030.568
C196
230
−33.704
−1030.568
C158
192
−1856.536
−1030.568
C197
231
+12.760
−1030.568
C159
193
−1810.072
−1030.568
C198
232
+59.224
−1030.568
2003 Feb 14
99
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
y
PAD
x
y
C199
233
+105.688
−1030.568
C238
272
+1917.784
−1030.568
C200
234
+152.152
−1030.568
C239
273
+1964.248
−1030.568
C201
235
+198.616
−1030.568
C240
274
+2067.912
−1030.568
C202
236
+245.080
−1030.568
C241
275
+2114.376
−1030.568
C203
237
+291.544
−1030.568
C242
276
+2160.840
−1030.568
C204
238
+338.008
−1030.568
C243
277
+2207.304
−1030.568
C205
239
+384.472
−1030.568
C244
278
+2253.768
−1030.568
C206
240
+430.936
−1030.568
C245
279
+2300.232
−1030.568
C207
241
+477.400
−1030.568
C246
280
+2346.696
−1030.568
C208
242
+523.864
−1030.568
C247
281
+2393.160
−1030.568
C209
243
+570.328
−1030.568
C248
282
+2439.624
−1030.568
C210
244
+616.792
−1030.568
C249
283
+2486.088
−1030.568
C211
245
+663.256
−1030.568
C250
284
+2532.552
−1030.568
C212
246
+709.720
−1030.568
C251
285
+2579.016
−1030.568
C213
247
+756.184
−1030.568
C252
286
+2625.480
−1030.568
C214
248
+802.648
−1030.568
C253
287
+2671.944
−1030.568
C215
249
+849.112
−1030.568
C254
288
+2718.408
−1030.568
C216
250
+895.576
−1030.568
C255
289
+2764.872
−1030.568
C217
251
+942.040
−1030.568
C256
290
+2811.336
−1030.568
C218
252
+988.504
−1030.568
C257
291
+2857.800
−1030.568
C219
253
+1034.968
−1030.568
C258
292
+2904.264
−1030.568
C220
254
+1081.432
−1030.568
C259
293
+2950.728
−1030.568
C221
255
+1127.896
−1030.568
C260
294
+2997.192
−1030.568
C222
256
+1174.360
−1030.568
C261
295
+3043.656
−1030.568
C223
257
+1220.824
−1030.568
C262
296
+3090.120
−1030.568
C224
258
+1267.288
−1030.568
C263
297
+3136.584
−1030.568
C225
259
+1313.752
−1030.568
C264
298
+3183.048
−1030.568
C226
260
+1360.216
−1030.568
C265
299
+3229.512
−1030.568
C227
261
+1406.680
−1030.568
C266
300
+3275.976
−1030.568
C228
262
+1453.144
−1030.568
C267
301
+3322.440
−1030.568
C229
263
+1499.608
−1030.568
C268
302
+3368.904
−1030.568
C230
264
+1546.072
−1030.568
C269
303
+3415.368
−1030.568
C231
265
+1592.536
−1030.568
C270
304
+3461.832
−1030.568
C232
266
+1639.000
−1030.568
C271
305
+3508.296
−1030.568
C233
267
+1685.464
−1030.568
C272
306
+3554.760
−1030.568
C234
268
+1731.928
−1030.568
C273
307
+3601.224
−1030.568
C235
269
+1778.392
−1030.568
C274
308
+3647.688
−1030.568
C236
270
+1824.856
−1030.568
C275
309
+3694.152
−1030.568
C237
271
+1871.320
−1030.568
C276
310
+3740.616
−1030.568
2003 Feb 14
100
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
y
PAD
x
y
C277
311
+3787.080
−1030.568
C316
350
+5656.376
−1030.568
C278
312
+3833.544
−1030.568
C317
351
+5702.840
−1030.568
C279
313
+3880.008
−1030.568
C318
352
+5749.304
−1030.568
C280
314
+3926.472
−1030.568
C319
353
+5795.768
−1030.568
C281
315
+3972.936
−1030.568
C320
354
+5842.232
−1030.568
C282
316
+4019.400
−1030.568
C321
355
+5888.696
−1030.568
C283
317
+4065.864
−1030.568
C322
356
+5935.160
−1030.568
C284
318
+4112.328
−1030.568
C323
357
+5981.624
−1030.568
C285
319
+4158.792
−1030.568
C324
358
+6028.088
−1030.568
C286
320
+4205.256
−1030.568
C325
359
+6074.552
−1030.568
C287
321
+4251.720
−1030.568
C326
360
+6121.016
−1030.568
C288
322
+4355.384
−1030.568
C327
361
+6167.480
−1030.568
C289
323
+4401.848
−1030.568
C328
362
+6213.944
−1030.568
C290
324
+4448.312
−1030.568
C329
363
+6260.408
−1030.568
C291
325
+4494.776
−1030.568
C330
364
+6306.872
−1030.568
C292
326
+4541.240
−1030.568
C331
365
+6353.336
−1030.568
C293
327
+4587.704
−1030.568
C332
366
+6399.800
−1030.568
C294
328
+4634.168
−1030.568
C333
367
+6446.264
−1030.568
C295
329
+4680.632
−1030.568
C334
368
+6492.728
−1030.568
C296
330
+4727.096
−1030.568
C335
369
+6539.192
−1030.568
C297
331
+4773.560
−1030.568
C336
370
+6642.856
−1030.568
C298
332
+4820.024
−1030.568
C337
371
+6689.320
−1030.568
C299
333
+4866.488
−1030.568
C338
372
+6735.784
−1030.568
C300
334
+4912.952
−1030.568
C339
373
+6782.248
−1030.568
C301
335
+4959.416
−1030.568
C340
374
+6828.712
−1030.568
C302
336
+5005.880
−1030.568
C341
375
+6875.176
−1030.568
C303
337
+5052.344
−1030.568
C342
376
+6921.640
−1030.568
C304
338
+5098.808
−1030.568
C343
377
+6968.104
−1030.568
C305
339
+5145.272
−1030.568
C344
378
+7014.568
−1030.568
C306
340
+5191.736
−1030.568
C345
379
+7061.032
−1030.568
C307
341
+5238.200
−1030.568
C346
380
+7107.496
−1030.568
C308
342
+5284.664
−1030.568
C347
381
+7153.960
−1030.568
C309
343
+5331.128
−1030.568
C348
382
+7200.424
−1030.568
C310
344
+5377.592
−1030.568
C349
383
+7246.888
−1030.568
C311
345
+5424.056
−1030.568
C350
384
+7293.352
−1030.568
C312
346
+5470.520
−1030.568
C351
385
+7339.816
−1030.568
C313
347
+5516.984
−1030.568
C352
386
+7386.280
−1030.568
C314
348
+5563.448
−1030.568
C353
387
+7432.744
−1030.568
C315
349
+5609.912
−1030.568
C354
388
+7479.208
−1030.568
2003 Feb 14
101
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
COORDINATES
SYMBOL
SYMBOL
PAD
x
y
PAD
x
y
C355
389
+7525.672
−1030.568
C394
428
+9394.968
–1030.568
C356
390
+7572.136
−1030.568
C395
429
+9441.432
–1030.568
C357
391
+7618.600
−1030.568
R0
430
+9596.664
–1035.694
C358
392
+7665.064
−1030.568
R1
431
+9649.464
–1035.694
C359
393
+7711.528
−1030.568
R2
432
+9702.264
–1035.694
C360
394
+7757.992
−1030.568
R3
433
+9755.064
–1035.694
C361
395
+7804.456
−1030.568
R4
434
+9807.864
–1035.694
C362
396
+7850.920
−1030.568
R5
435
+9860.664
–1035.694
C363
397
+7897.384
−1030.568
R6
436
+9913.464
–1035.694
C364
398
+7943.848
−1030.568
R7
437
+9966.264
–1035.694
C365
399
+7990.312
–1030.568
R8
438
+10019.064
–1035.694
C366
400
+8036.776
–1030.568
R9
439
+10071.864
−1035.694
C367
401
+8083.240
–1030.568
R10
440
+10124.664
−1035.694
C368
402
+8129.704
–1030.568
R11
441
+10177.464
−1035.694
C369
403
+8176.168
–1030.568
R12
442
+10230.264
−1035.694
C370
404
+8222.632
–1030.568
R13
443
+10283.064
−1035.694
C371
405
+8269.096
–1030.568
R14
444
+10335.864
−1035.694
C372
406
+8315.560
–1030.568
R15
445
+10388.664
−1035.694
C373
407
+8362.024
–1030.568
R16
446
+10441.464
−1035.694
C374
408
+8408.488
–1030.568
R17
447
+10494.264
−1035.694
C375
409
+8454.952
–1030.568
R18
448
+10547.064
−1035.694
C376
410
+8501.416
–1030.568
R19
449
+10599.864
−1035.694
C377
411
+8547.880
–1030.568
R20
450
+10652.664
−1035.694
C378
412
+8594.344
–1030.568
R21
451
+10705.464
−1035.694
C379
413
+8640.808
–1030.568
R22
452
+10758.264
−1035.694
C380
414
+8687.272
–1030.568
R23
453
+10811.064
−1035.694
C381
415
+8733.736
–1030.568
R24
454
+10863.864
−1035.694
C382
416
+8780.200
–1030.568
R25
455
+10916.664
−1035.694
C383
417
+8826.664
–1030.568
R26
456
+10969.464
−1035.694
C384
418
+8930.328
–1030.568
R27
457
+11022.264
−1035.694
C385
419
+8976.792
–1030.568
R28
458
+11075.064
−1035.694
C386
420
+9023.256
–1030.568
R29
459
+11127.864
−1035.694
C387
421
+9069.720
–1030.568
R30
460
+11180.664
−1035.694
C388
422
+9116.184
–1030.568
R31
461
+11233.464
−1035.694
C389
423
+9162.648
–1030.568
dummy
462
+11358.424
−1035.694
C390
424
+9209.112
–1030.568
dummy
463
+11358.424
+1035.694
C391
425
+9255.576
–1030.568
R63
464
+11233.464
+1035.694
C392
426
+9302.040
–1030.568
R62
465
+11180.664
+1035.694
C393
427
+9348.504
–1030.568
R61
466
+11127.864
+1035.694
2003 Feb 14
102
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
COORDINATES
SYMBOL
SYMBOL
PAD
x
y
PAD
x
y
R60
467
+11075.064
+1035.694
VSS1
506
+8540.664
+1035.694
R59
468
+11022.264
+1035.694
VSS1
507
+8487.864
+1035.694
R58
469
+10969.464
+1035.694
VSS2
508
+8329.464
+1035.694
R57
470
+10916.664
+1035.694
VSS2
509
+8276.664
+1035.694
R56
471
+10863.864
+1035.694
VSS2
510
+8223.864
+1035.694
R55
472
+10811.064
+1035.694
VSS2
511
+8171.064
+1035.694
R54
473
+10758.264
+1035.694
VSS2
512
+8118.264
+1035.694
R53
474
+10705.464
+1035.694
VSS2
513
+8065.464
+1035.694
R52
475
+10652.664
+1035.694
VSS2
514
+8012.664
+1035.694
R51
476
+10599.864
+1035.694
VSS2
515
+7959.864
+1035.694
R50
477
+10547.064
+1035.694
VSS2
516
+7907.064
+1035.694
R49
478
+10494.264
+1035.694
VSS2
517
+7854.264
+1035.694
R48
479
+10441.464
+1035.694
CS/SCE
518
+7643.064
+1035.694
R47
480
+10388.664
+1035.694
VDD1
519
+7431.864
+1035.694
R46
481
+10335.864
+1035.694
VDD1
520
+7379.064
+1035.694
R45
482
+10283.064
+1035.694
VDD1
521
+7326.264
+1035.694
R44
483
+10230.264
+1035.694
VDD1
522
+7273.464
+1035.694
R43
484
+10177.464
+1035.694
VDD1
523
+7220.664
+1035.694
R42
485
+10124.664
+1035.694
VDD1
524
+7167.864
+1035.694
R41
486
+10071.864
+1035.694
VDD3
525
+7009.464
+1035.694
R40
487
+10019.064
+1035.694
VDD3
526
+6956.664
+1035.694
R39
488
+9966.264
+1035.694
VDD3
527
+6903.864
+1035.694
R38
489
+9913.464
+1035.694
VDD3
528
+6851.064
+1035.694
R37
490
+9860.664
+1035.694
VDD3
529
+6798.264
+1035.694
R36
491
+9807.864
+1035.694
VDD2
530
+6639.864
+1035.694
R35
492
+9755.064
+1035.694
VDD2
531
+6587.064
+1035.694
R34
493
+9702.264
+1035.694
VDD2
532
+6534.264
+1035.694
R33
494
+9649.464
+1035.694
VDD2
533
+6481.464
+1035.694
R32
495
+9596.664
+1035.694
VDD2
534
+6428.664
+1035.694
RES
496
+9332.664
+1035.694
VDD2
535
+6375.864
+1035.694
TE
497
+9174.264
+1035.694
VDD2
536
+6323.064
+1035.694
VSS1
498
+8963.064
+1035.694
VDD2
537
+6270.264
+1035.694
VSS1
499
+8910.264
+1035.694
VDD2
538
+6217.464
+1035.694
VSS1
500
+8857.464
+1035.694
VDD2
539
+6164.664
+1035.694
VSS1
501
+8804.664
+1035.694
D7
540
+5953.464
+1035.694
VSS1
502
+8751.864
+1035.694
D3
541
+5795.064
+1035.694
VSS1
503
+8699.064
+1035.694
D6
542
+5636.664
+1035.694
VSS1
504
+8646.264
+1035.694
D2
543
+5478.264
+1035.694
VSS1
505
+8593.464
+1035.694
D5
544
+5319.864
+1035.694
2003 Feb 14
103
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
COORDINATES
SYMBOL
SYMBOL
PAD
x
y
PAD
x
y
D1
545
+5161.464
+1035.694
dummy
584
+825.880
+1035.694
D4
546
+5003.064
+1035.694
dummy
585
+773.080
+1035.694
D0/SDIN
547
+4844.664
+1035.694
dummy
586
+720.280
+1035.694
SDOUT
548
+4686.264
+1035.694
dummy
587
+667.480
+1035.694
DC/SCLK
549
+4527.864
+1035.694
dummy
588
+614.680
+1035.694
WR
550
+4369.464
+1035.694
dummy
589
+561.880
+1035.694
RD
551
+4211.064
+1035.694
dummy
590
+509.080
+1035.694
PS0
552
+4052.664
+1035.694
dummy
591
+456.280
+1035.694
PS1
553
+3894.264
+1035.694
dummy
592
+403.480
+1035.694
PS2
554
+3735.864
+1035.694
dummy
593
+350.680
+1035.694
OSC
555
+3577.464
+1035.694
dummy
594
+297.880
+1035.694
VDDTIEOFF
556
+3419.064
+1035.694
dummy
595
+245.080
+1035.694
VOTPdrain
557
+3207.864
+1035.694
dummy
596
+192.280
+1035.694
VOTPdrain
558
+3155.064
+1035.694
dummy
597
+139.480
+1035.694
VOTPdrain
559
+3102.264
+1035.694
dummy
598
+86.680
+1035.694
VOTPdrain
560
+3049.464
+1035.694
dummy
599
+33.880
+1035.694
VOTPdrain
561
+2996.664
+1035.694
dummy
600
−18.920
+1035.694
VOTPdrain
562
+2943.864
+1035.694
dummy
601
−71.720
+1035.694
VOTPdrain
563
+2891.064
+1035.694
dummy
602
−124.520
+1035.694
VOTPdrain
564
+2838.264
+1035.694
dummy
603
−177.320
+1035.694
VOTPgate
565
+2679.864
+1035.694
dummy
604
−230.120
+1035.694
VOTPgate
566
+2627.064
+1035.694
dummy
605
−282.920
+1035.694
VOTPgate
567
+2574.264
+1035.694
dummy
606
−335.720
+1035.694
VOTPgate
568
+2521.464
+1035.694
dummy
607
−388.520
+1035.694
VOTPgate
569
+2468.664
+1035.694
dummy
608
−441.320
+1035.694
VOTPgate
570
+2415.864
+1035.694
dummy
609
−494.120
+1035.694
VOTPgate
571
+2363.064
+1035.694
dummy
610
−546.920
+1035.694
VOTPgate
572
+2310.264
+1035.694
dummy
611
−599.720
+1035.694
T6
573
+2099.064
+1035.694
dummy
612
−652.520
+1035.694
T5
574
+1940.664
+1035.694
dummy
613
−705.320
+1035.694
T4
575
+1782.264
+1035.694
dummy
614
−758.120
+1035.694
T3
576
+1623.864
+1035.694
dummy
615
−810.920
+1035.694
T2
577
+1465.464
+1035.694
dummy
616
−863.720
+1035.694
T1
578
+1307.064
+1035.694
dummy
617
−916.520
+1035.694
VSSTIEOFF
579
+1148.664
+1035.694
dummy
618
−969.320
+1035.694
dummy
580
+1037.080
+1035.694
dummy
619
−1022.120
+1035.694
dummy
581
+984.280
+1035.694
dummy
620
−1074.920
+1035.694
dummy
582
+931.480
+1035.694
dummy
621
−1127.720
+1035.694
dummy
583
+878.680
+1035.694
dummy
622
−1180.520
+1035.694
2003 Feb 14
104
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
SYMBOL
COORDINATES
PAD
SYMBOL
x
PAD
y
x
y
dummy
623
−1233.320
+1035.694
C4+
662
−4375.976
+1035.694
VSSTIEOFF
624
−1410.904
+1035.694
C4+
663
−4428.776
+1035.694
T7
625
−1683.176
+1035.694
C4+
664
−4481.576
+1035.694
C1+
626
−1841.576
+1035.694
C4+
665
−4534.376
+1035.694
C1+
627
−1894.376
+1035.694
C4+
666
−4587.176
+1035.694
C1+
628
−1947.176
+1035.694
C4+
667
−4639.976
+1035.694
C1+
629
−1999.976
+1035.694
C4–
668
−4798.376
+1035.694
C1+
630
−2052.776
+1035.694
C4–
669
−4851.176
+1035.694
C1+
631
−2105.576
+1035.694
C4–
670
−4903.976
+1035.694
C1−
632
−2263.976
+1035.694
C4–
671
−4956.776
+1035.694
C1−
633
−2316.776
+1035.694
C4–
672
−5009.576
+1035.694
C1−
634
−2369.576
+1035.694
C4–
673
−5062.376
+1035.694
C1−
635
−2422.376
+1035.694
VLCDOUT1
674
−5220.776
+1035.694
C1−
636
−2475.176
+1035.694
VLCDOUT1
675
−5273.576
+1035.694
C1−
637
−2527.976
+1035.694
VLCDOUT1
676
−5326.376
+1035.694
C2+
638
−2686.376
+1035.694
VLCDOUT1
677
−5379.176
+1035.694
C2+
639
−2739.176
+1035.694
VLCDOUT1
678
−5431.976
+1035.694
C2+
640
−2791.976
+1035.694
VLCDOUT1
679
−5484.776
+1035.694
C2+
641
−2844.776
+1035.694
VLCDOUT1
680
−5537.576
+1035.694
C2+
642
−2897.576
+1035.694
VLCDOUT1
681
−5590.376
+1035.694
C2+
643
−2950.376
+1035.694
VLCDOUT1
682
−5643.176
+1035.694
C2−
644
−3108.776
+1035.694
VLCDOUT1
683
−5695.976
+1035.694
C2−
645
−3161.576
+1035.694
VLCDIN1
684
−5854.376
+1035.694
C2−
646
−3214.376
+1035.694
VLCDIN1
685
−5907.176
+1035.694
C2−
647
−3267.176
+1035.694
VLCDIN1
686
−5959.976
+1035.694
C2−
648
−3319.976
+1035.694
VLCDIN1
687
−6012.776
+1035.694
C2−
649
−3372.776
+1035.694
VLCDIN1
688
−6065.576
+1035.694
C3+
650
−3531.176
+1035.694
VLCDIN1
689
−6118.376
+1035.694
C3+
651
−3583.976
+1035.694
VLCDIN1
690
−6171.176
+1035.694
C3+
652
−3636.776
+1035.694
C5+
691
−6329.576
+1035.694
C3+
653
−3689.576
+1035.694
C5+
692
−6382.376
+1035.694
C3+
654
−3742.376
+1035.694
C5+
693
−6435.176
+1035.694
C3+
655
−3795.176
+1035.694
C5+
694
−6487.976
+1035.694
C3−
656
−3953.576
+1035.694
C5+
695
−6540.776
+1035.694
C3−
657
−4006.376
+1035.694
C5+
696
−6593.576
+1035.694
C3−
658
−4059.176
+1035.694
C5−
697
−6751.976
+1035.694
C3−
659
−4111.976
+1035.694
C5−
698
−6804.776
+1035.694
C3−
660
−4164.776
+1035.694
C5−
699
−6857.576
+1035.694
C3−
661
−4217.576
+1035.694
C5−
700
−6910.376
+1035.694
2003 Feb 14
105
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
COORDINATES
COORDINATES
SYMBOL
SYMBOL
PAD
x
y
PAD
x
y
C5−
701
−6963.176
+1035.694
R103
740
−9753.480
+1035.694
C5−
702
−7015.976
+1035.694
R104
741
−9806.280
+1035.694
VLCDOUT2
703
−7174.376
+1035.694
R105
742
−9859.080
+1035.694
VLCDOUT2
704
−7227.176
+1035.694
R106
743
−9911.880
+1035.694
VLCDOUT2
705
−7279.976
+1035.694
R107
744
−9964.680
+1035.694
VLCDOUT2
706
−7332.776
+1035.694
R108
745
−10017.480
+1035.694
VLCDOUT2
707
−7385.576
+1035.694
R109
746
−10070.280
+1035.694
VLCDOUT2
708
−7438.376
+1035.694
R110
747
−10123.080
+1035.694
VLCDOUT2
709
−7491.176
+1035.694
R111
748
−10175.880
+1035.694
VLCDOUT2
710
−7543.976
+1035.694
R112
749
−10228.680
+1035.694
VLCDOUT2
711
−7596.776
+1035.694
R113
750
−10281.480
+1035.694
VLCDSENSE
712
−7649.576
+1035.694
R114
751
−10334.280
+1035.694
VLCDIN2
713
−7807.976
+1035.694
R115
752
−10387.080
+1035.694
VLCDIN2
714
−7860.776
+1035.694
R116
753
−10439.880
+1035.694
VLCDIN2
715
−7913.576
+1035.694
R117
754
−10492.680
+1035.694
VLCDIN2
716
−7966.376
+1035.694
R118
755
−10545.480
+1035.694
VLCDIN2
717
−8019.176
+1035.694
R119
756
−10598.280
+1035.694
VLCDIN2
718
−8071.976
+1035.694
R120
757
−10651.080
+1035.694
VLCDIN2
719
−8124.776
+1035.694
R121
758
−10703.880
+1035.694
V2L
720
−8341.212
+1035.694
R122
759
−10756.680
+1035.694
V2L
721
−8394.012
+1035.694
R123
760
−10809.480
+1035.694
V1L
722
−8499.612
+1035.694
R124
761
−10862.280
+1035.694
V1L
723
−8552.412
+1035.694
R125
762
−10915.080
+1035.694
VC
724
−8658.012
+1035.694
R126
763
−10967.880
+1035.694
VC
725
−8710.812
+1035.694
R127
764
−11020.680
+1035.694
VC
726
−8763.612
+1035.694
R128
765
−11073.480
+1035.694
VC
727
−8816.412
+1035.694
R129
766
−11126.280
+1035.694
VC
728
−8869.212
+1035.694
R130
767
−11179.080
+1035.694
V1H
729
−8974.812
+1035.694
R131
768
−11231.880
+1035.694
V1H
730
−9027.612
+1035.694
dummy
769
−11351.208
+1035.694
V2H
731
−9133.212
+1035.694
Alignment marks (see Fig.62)
V2H
732
−9186.012
+1035.694
Alignment circle 1
+593.120
733
−9383.880
−11175.032
R96
+1035.694
Alignment circle 2
+11184.888
+593.120
R97
734
−9436.680
+1035.694
Alignment circle 3
+746.240
735
−9489.480
−8717.192
R98
+1035.694
Alignment circle 4
+9362.408
+746.240
R99
736
−9542.280
+1035.694
R100
737
−9595.080
+1035.694
R101
738
−9647.880
+1035.694
R102
739
−9700.680
+1035.694
2003 Feb 14
106
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Table 100 Bonding pad dimensions
ITEM
DIMENSIONS
Minimum bump pitch
UNIT
µm
columns: 46.464
all other: 52.800
columns: 28.424 × 105.248
Bump dimensions
µm
all other: 32.736 × 95.348
Bump height
15
µm
Wafer thickness (excluding bumps)
381
µm
22.93 mm
handbook, full pagewidth
2.34
mm
PC8833-1
pitch
y
Fig.61 Bonding pads dimensions.
x
MGU974
handbook, halfpage
80
µm
y center
x center
MGU975
Fig.62 Alignment circle detail (80 µm diameter).
2003 Feb 14
107
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
18 TRAY INFORMATION
x
handbook, full pagewidth
C
y
D
B
F
E
MGU979
Fig.63 Tray details.
Table 101 Tray dimensions
handbook, halfpage
PC8833-1
MGU980
The orientation of the IC in a pocket is indicated by the position of the
IC type name on the die surface with respect to the chamfer on the
upper left corner of the tray. Refer to the bonding pad location
diagram for the orientating and position of the type name on the die
surface.
Fig.64 Tray alignment.
2003 Feb 14
108
DIMENSIONS
DESCRIPTION
VALUE
B
pocket pitch y direction
4.45 mm
C
pocket width x direction
23.07 mm
D
pocket width y direction
2.47 mm
E
tray width x direction
50.8 mm
F
tray width y direction
50.8 mm
x
number of pockets in
x direction
1
y
number of pockets in
y direction
10
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
19 DATA SHEET STATUS
LEVEL
DATA SHEET
STATUS(1)
PRODUCT
STATUS(2)(3)
Development
DEFINITION
I
Objective data
II
Preliminary data Qualification
This data sheet contains data from the preliminary specification.
Supplementary data will be published at a later date. Philips
Semiconductors reserves the right to change the specification without
notice, in order to improve the design and supply the best possible
product.
III
Product data
This data sheet contains data from the product specification. Philips
Semiconductors reserves the right to make changes at any time in order
to improve the design, manufacturing and supply. Relevant changes will
be communicated via a Customer Product/Process Change Notification
(CPCN).
Production
This data sheet contains data from the objective specification for product
development. Philips Semiconductors reserves the right to change the
specification in any manner without notice.
Notes
1. Please consult the most recently issued data sheet before initiating or completing a design.
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
20 DEFINITIONS
21 DISCLAIMERS
Short-form specification  The data in a short-form
specification is extracted from a full data sheet with the
same type number and title. For detailed information see
the relevant data sheet or data handbook.
Life support applications  These products are not
designed for use in life support appliances, devices, or
systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips
Semiconductors customers using or selling these products
for use in such applications do so at their own risk and
agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Limiting values definition  Limiting values given are in
accordance with the Absolute Maximum Rating System
(IEC 60134). Stress above one or more of the limiting
values may cause permanent damage to the device.
These are stress ratings only and operation of the device
at these or at any other conditions above those given in the
Characteristics sections of the specification is not implied.
Exposure to limiting values for extended periods may
affect device reliability.
Application information  Applications that are
described herein for any of these products are for
illustrative purposes only. Philips Semiconductors make
no representation or warranty that such applications will be
suitable for the specified use without further testing or
modification.
2003 Feb 14
Right to make changes  Philips Semiconductors
reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design
and/or performance. When the product is in full production
(status ‘Production’), relevant changes will be
communicated via a Customer Product/Process Change
Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these
products, conveys no licence or title under any patent,
copyright, or mask work right to these products, and
makes no representations or warranties that these
products are free from patent, copyright, or mask work
right infringement, unless otherwise specified.
109
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
Bare die  All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for
a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be
separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips
Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die.
Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems
after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify
their application in which the die is used.
2003 Feb 14
110
Philips Semiconductors
Objective specification
STN RGB - 132 × 132 × 3 driver
PCF8833
NOTES
2003 Feb 14
111
Philips Semiconductors – a worldwide company
Contact information
For additional information please visit http://www.semiconductors.philips.com.
Fax: +31 40 27 24825
For sales offices addresses send e-mail to: [email protected].
SCA75
© Koninklijke Philips Electronics N.V. 2003
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license
under patent- or other industrial or intellectual property rights.
Printed in The Netherlands
403512/01/pp112
Date of release: 2003
Feb 14
Document order number:
9397 750 10059