INTEGRATED CIRCUITS DATA SHEET PCF8833 STN RGB - 132 × 132 × 3 driver Objective specification 2003 Feb 14 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 CONTENTS 1 FEATURES 2 GENERAL DESCRIPTION 3 ORDERING INFORMATION 4 BLOCK DIAGRAM 5 PINNING 6 INSTRUCTIONS 10 LIMITING VALUES 11 HANDLING 12 DC CHARACTERISTICS 13 AC CHARACTERISTICS 14 APPLICATION INFORMATION 14.1 Supply and capacitor connection configuration 15 MODULE MAKER PROGRAMMING 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 VLCD calibration Factory defaults Seal bit OTP architecture Interface commands Suggestion on how to calibrate VLCD2 using MMVOP Example of filling the shift register Programming flow Programming specification 16 INTERNAL PROTECTION CIRCUITS 17 BONDING PAD INFORMATION 18 TRAY INFORMATION 19 DATA SHEET STATUS 6.1 6.2 Exit commands Function set 7 FUNCTIONAL DESCRIPTION 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 MPU interfaces Display data RAM and access arbiter Command decoder Grey scale controller Timing generator Oscillator Reset LCD voltage generator and bias level generator Column drivers, data processing and data latches Row drivers 8 PARALLEL INTERFACE 20 DEFINITIONS 8.1 8080-series 8-bit parallel interface 21 DISCLAIMERS 9 SERIAL INTERFACE 9.1 9.2 Write mode Read mode 2003 Feb 14 2 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 1 PCF8833 • Analog supply voltage range for VLCD generation VDD2 to VSS2: FEATURES • Single chip LCD controller and driver – 2.4 to 4.5 V. • 132 rows and 396 column outputs (132 × RGB) • Analog supply voltage range for reference voltage generation VDD3 to VSS1: • Low cross talk by Frame Rate Control (FRC) • 4 kbyte colours (RGB) = 4 : 4 : 4 mode – 2.4 to 3.5 V. • 256 colours (RGB) = 3 : 3 : 2 mode using the 209 kbit RAM and a Look-Up Table (LUT) • Display supply voltage range VLCD to VSS1: – 3.8 to 20 V. • 65 kbyte colours (RGB) = 5 : 6 : 5 mode using the 209 kbit RAM with dithering • Low power consumption; suitable for battery operated systems • 8 colours Power-save mode • CMOS compatible inputs • Display data RAM 132 × 132 (RGB) (4 kbyte colour) • Manufactured in silicon gate CMOS process • Interfaces: • Optimized layout for COF, Chip On Glass (COG) and Transformer Coupled Plasma (TCP) assembly. – 3-line serial interface – 8-bit 8080 Intel CPU interface. • Display features: 2 – Area scrolling GENERAL DESCRIPTION The PCF8833 is a single chip low power CMOS LCD controller driver, designed to drive colour Super-Twisted Nematic (STN) displays of 132 rows and 132 RGB columns. All necessary functions for the display are provided in a single chip, including display RAM which has a capacity of 209 kbit (132 × 12-bit × 132). The PCF8833 uses the Multiple Row Addressing (MRA) driving technique in order to achieve the best optical performance at the lowest power consumption. The PCF8833 offers 2 types of microcontroller interfaces namely the 8080 system interface and the 3-line serial interface. – 32-line partial Display mode – Software programmable colour depth mode – N-line inversion for low cross talk. • On-chip: – Oscillator for display system, requires no external components (external clock also possible) – Generation of VLCD – Segmented temperature compensation of VLCD and frame frequency. • Logic supply voltage range VDD1 to VSS1: – 1.5 to 3.3 V. 3 ORDERING INFORMATION PACKAGE TYPE NUMBER NAME PCF8833U/2DA/1 2003 Feb 14 − DESCRIPTION chip with bumps in tray 3 VERSION − Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 4 PCF8833 BLOCK DIAGRAM R0 to R131 C0 to C395 handbook, full pagewidth 34 to 429 VLCDIN2 V2H V1H VC V1L V2L VLCDSENSE VLCDOUT1 VLCDIN1 VLCDOUT2 VDD2 C1+ C1− C2+ C2− C3+ C3− C4+ C4− C5+ C5− VSS2 713, 719 731, 732 729, 730 724 to 728 722, 723 720, 721 LCD BIAS LEVEL GENERATOR 565 to 572 VOTP(drain) 557 to 564 VDD3 525 to 529 VDD1 519 to 524 VSS1 498 to 507 ORTHOGONAL FUNCTION GENERATOR DATA LATCHES LCD VOLTAGE GENERATOR VDD(tieoff) 555 OSCILLATOR DISPLAY DATA RAM 132 × 132 × 12-bits 578 577 576 GREYSCALE CONTROLLER 575 X AND Y RAM WRITE ADDRESS COUNTER DISPLAY ADDRESS READ COUNTER 574 573 625 COMMAND DECODER PCF8833 256/64 KBYTES TO 4 KBYTES COLOUR MAPPING 579, 624 VSS(tieoff) MPU INTERFACES 518 549 551 550 552 553 554 548 547 545 543 541 546 544 542 540 497 CS/SCE RD D/C/SCLK PS0 WR PS2 PS1 4 D0/SDIN SDOUT Fig.1 Block diagram. RES OSC TIMING GENERATOR ARBITER 556 496 RESET 256 COLOUR LUT 2003 Feb 14 ROW DRIVERS COLUMN DRIVERS DATA PROCESSING 712 674 to 683 684 to 690 703 to 711 530 to 539 626 to 631 632 to 637 638 to 643 644 to 649 650 to 655 656 to 661 662 to 667 668 to 673 691 to 696 697 to 702 508 to 517 VOTP(gate) 2 to 33, 430 to 461, 464 to 495, 733 to 768 D1 D2 D4 D3 D6 D5 TE D7 MGU910 T1 T2 T3 T4 T5 T6 T7 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 5 PCF8833 PINNING SYMBOL PAD TYPE DESCRIPTION R95 to R64 2 to 33 O LCD row driver outputs C0 to C395 34 to 429 O LCD column driver outputs R0 to R31 430 to 461 O LCD row driver outputs R63 to R32 464 to 495 O LCD row driver outputs RES 496 I external reset; this signal will reset the device and must be applied to properly initialize the chip (active LOW) TE 497 O/I tearing line (in Normal mode it is always an output) VSS1 498 to 507 PS system ground VSS2 508 to 517 PS system ground 518 I CS/SCE chip select parallel interface or serial chip enable (active LOW) VDD1 519 to 524 PS logic supply voltage VDD3 525 to 529 PS VDD2 530 to 539 PS VDD2 and VDD3 are the supply voltage pins for the internal voltage generator including the temperature compensation circuits; VDD2 and VDD3 can be connected together but in this case care must be taken to respect the supply voltage range (see Chapter 13); VDD1 is used as the supply for the rest of the chip. VDD1 can be connected together with VDD2 and VDD3 but in this case care must also be taken to respect the supply voltage range; see Chapter 13. VDD2 and VDD3 must not be applied before VDD1. If the internal voltage generator is not used, pins VDD2 and VDD3 must be connected to VDD1. D7 540 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D3 541 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D6 542 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D2 543 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D5 544 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D1 545 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D4 546 I/O 8-bit parallel data; in Serial mode tie to VSS1 or VDD1 D0/SDIN 547 I/O 8-bit parallel data or serial data input SDOUT 548 O serial data output; in Parallel mode tie to VDD1, VSS1 or D0 D/C/SCLK 549 I data/command indicator parallel interface or serial clock WR 550 I write clock parallel interface; in Serial mode tie to VDD1 (active LOW) RD 551 I read clock parallel interface; in Serial mode tie to VDD1 (active LOW) PS0 552 I set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or VDD1 PS1 553 I set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or VDD1 PS2 554 I set serial or parallel interface mode PS1 and PS2 must tied to either VSS1 or VDD1 2003 Feb 14 5 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver SYMBOL PCF8833 PAD TYPE DESCRIPTION OSC 555 I oscillator input or external oscillator resistor connection; when the on-chip oscillator is used this input must be connected to VDD1; an external clock signal, if used, is connected to this input and the internal oscillator must be switched off with a software command; if the oscillator and external clock are all inhibited by connecting pin OSC to VSS1, the display is not clocked and may be left in a DC state; to avoid this the chip should always be put into Power-down mode before stopping the clock. VDD(tieoff) 556 O can be used to tie inputs to VDD1 VOTP(drain) 557 to 564 PS supply voltage for OTP programming (write voltage), in Application mode must be tied to VSS1 or left open-circuit VOTP(gate) 565 to 572 PS supply voltage for OTP programming, in Application mode must be tied to VSS1 or left open-circuit T6 573 I test pin; not accessible to user; must be connected to VSS1 T5 574 I test pin; not accessible to user; must be connected to VSS1 T4 575 O test pin; not accessible to user; must be left open-circuit T3 576 O test pin; not accessible to user; must be left open-circuit T2 577 I/O test pin; not accessible to user; must be also connected to VSS1 T1 578 I/O test pin; not accessible to user; must be also connected to VSS1 VSS(tieoff) 579 O can be used to tie inputs to VSS1 VSS(tieoff) 624 O can be used to tie inputs to VSS1 T7 625 I/O test pin; not accessible to user; must be connected to VSS1 C1+ 626 to 631 I positive input pump capacitor voltage multiplier 1 C1− 632 to 637 I negative input pump capacitor voltage multiplier 1 C2+ 638 to 643 I positive input pump capacitor voltage multiplier 1 C2− 644 to 649 I negative input pump capacitor voltage multiplier 1 C3+ 650 to 655 I positive input pump capacitor voltage multiplier 1 C3− 656 to 661 I negative input pump capacitor voltage multiplier 1 C4+ 662 to 667 I positive input pump capacitor voltage multiplier 1 C4− 668 to 673 I negative input pump capacitor voltage multiplier 1 VLCDOUT1 674 to 683 O output voltage multiplier 1 VLCDIN1 684 to 690 PS LCD supply input voltage 1 C5+ 691 to 696 I positive input pump capacitor voltage multiplier 2 C5− 697 to 702 I negative input pump capacitor voltage multiplier 2 VLCDOUT2 703 to 711 O output voltage multiplier 2 VLCDSENSE VLCDIN2 V2L 712 I 713 to 719 PS LCD supply input voltage 2 voltage multiplier regulation input; must be connected to VLCDOUT2 720, 721 O LCD bias level V1L 722, 723 O LCD bias level VC 724 to 728 O LCD bias level V1H 729, 730 O LCD bias level 2003 Feb 14 6 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver SYMBOL PCF8833 PAD TYPE 731, 732 O LCD bias level R96 to R131 733 to 768 O LCD row driver outputs Dummy 1, 462, 463, 580 to 623, 769 V2H 6 DESCRIPTION INSTRUCTIONS The PCF8833 communicates with the host using an 8-bit parallel interface or a 3-line serial interface. Processing of instructions and data sent to the interface do not require the display clock. The display clock and interface clock are independent from each other. The display clock is derived from the built-in oscillator. The PCF8833 has 2 types of accesses; those defining the operating mode of the device (instructions) and those filling the display RAM. Since writing to the RAM occurs more frequently, efficient data transfer is achieved by autoincrementing the RAM address pointers. There are 3 types of instructions: 1. For defining display configuration 2. For setting X and Y addresses 3. Miscellaneous. Commands in the range of 00H to AFH not defined in Table 1 and command DDH have the same effect as no operation (NOP). All commands in range B0H to B9H and DEH to FFH are forbidden. 2003 Feb 14 7 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... D/C 7 6 5 4 3 2 1 0 DEFAULT OTP DESCRIPTION SECTION 0 0 0 0 0 0 0 0 0 00H − no operation (NOP) 6.2.1 0 0 0 0 0 0 0 0 1 01H − software reset (SWRESET) 6.2.3 0 0 0 0 0 0 0 1 0 02H − booster voltage off (BSTROFF) 6.2.4 0 0 0 0 0 0 0 1 1 03H − booster voltage on (BSTRON) 6.2.5 0 0 0 0 0 0 1 0 0 04H − read display identification (RDDIDIF) 6.2.6 0 0 0 0 0 1 0 0 1 09H − read display status (RDDST) 6.2.7 0 0 0 0 1 0 0 0 0 10H − Sleep_IN 6.2.8 0 0 0 0 1 0 0 0 1 11H − Sleep_OUT 6.2.9 0 0 0 0 1 0 0 1 0 12H − Partial mode on (PTLON) 6.2.10 0 0 0 0 1 0 0 1 1 13H − normal Display mode on (NORON) 6.2.11 0 0 0 1 0 0 0 0 0 20H − display inversion off (INVOFF) 6.2.12 8 0 0 0 1 0 0 0 0 1 21H − display inversion on (INVON) 0 0 0 1 0 0 0 1 0 22H − all pixel off (DALO) 6.2.13 6.2.14 0 0 0 1 0 0 0 1 1 23H − all pixel on (DAL) 6.2.15 0 0 0 1 0 0 1 0 1 25H − set contrast (SETCON) 1 X VCON0 00H − set contrast 6.2.16 6.2.16 0 0 0 1 0 1 0 0 0 28H − display off (DISPOFF) 6.2.17 0 0 0 1 0 1 0 0 1 29H − display on (DISPON) 6.2.18 VCON6 VCON5 VCON4 VCON3 VCON2 VCON1 0 0 0 1 0 1 0 1 0 2AH − column address set (CASET) 1 xs[7] xs[6] xs[5] xs[4] xs[3] xs[2] xs[1] xs[0] 02H − X address start; 0 ≤ xs ≤ 83H 6.2.19 6.2.19 1 xe[7] xe[6] xe[5] xe[4] xe[3] xe[2] xe[1] xe[0] 81H − X address end; xs ≤ xe ≤ 83H 6.2.19 0 0 1 0 1 0 1 1 2BH − page address set (PASET) ys[7] ys[6] ys[5] ys[4] ys[3] ys[2] ys[1] ys[0] 02H − Y address start; 0 ≤ ys ≤ 83H 6.2.20 6.2.20 1 ye[7] ye[6] ye[5] ye[4] ye[3] ye[2] ye[1] ye[0] 81H − Y address end; ys ≤ ye ≤ 83H 6.2.20 0 0 1 0 1 1 0 0 2CH − memory write (RAMWR) 6.2.21 D7 D6 D5 D4 D3 D2 D1 D0 XXH − write data 6.2.21 0 0 0 1 0 1 1 0 1 2DH − colour set (RGBSET) 6.2.22 1 X X X X R3 R2 R1 R0 00H 1 6 bytes for 6 red tones − red tone 000 6.2.22 − 6 red tones 6.2.22 PCF8833 0 1 Objective specification 0 1 Philips Semiconductors Command table; note 1 STN RGB - 132 × 132 × 3 driver 2003 Feb 14 Table 1 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 6 5 4 3 2 1 0 1 X X X X R3 R2 R1 R0 0FH 1 X X X X G3 G2 G1 G0 00H 1 DEFAULT OTP 6 bytes for 6 green tones 1 X X X X G3 G2 G1 G0 0FH 1 X X X X B3 B2 B1 B0 00H 1 2 bytes for 2 blue tones − DESCRIPTION red tone 111 SECTION 6.2.22 − green tone 000 6.2.22 − 6 green tones 6.2.22 − green tone 111 6.2.22 − blue tone 00 6.2.22 − 2 blue tones 6.2.22 6.2.22 1 X X X X B3 B2 B1 B0 0FH − blue tone 11 0 0 0 1 1 0 0 0 0 30H − partial area (PTLAR) 6.2.23 6.2.23 PTLAR active area start address PTLAR active area end address 6.2.23 1 AA1S7 AA1S6 AA1S5 AA1S4 AA1S3 AA1S2 AA1S1 AA1S0 00H − 1 AA1E7 AA1E6 AA1E5 AA1E4 AA1E3 AA1E2 AA1E1 AA1E1 1FH − 0 0 0 1 1 0 0 1 1 33H − vertical scroll definition (VSCRDEF) 6.2.24 1 TF7 TF6 TF5 TF4 TF3 TF2 TF1 TF0 00H − top fixed area 6.2.24 1 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 82H − scroll area 6.2.24 1 BF7 BF6 BF5 BF4 BF3 BF2 BF1 BF0 00H − bottom fixed area 6.2.24 9 0 0 0 1 1 0 1 0 0 34H − tearing line off (TEOFF) 6.2.25 0 0 0 1 1 0 1 0 1 35H − tearing line on (TEON) 6.2.26 1 X X X X X X X X 00H − 0 0 0 1 1 0 1 1 0 36H − memory data access control (MADCTL) 6.2.27 1 MY MX V LAO RGB X X X 00H − RAM data addressing/data control 6.2.27 0 0 0 1 1 0 1 1 1 37H − set Scroll Entry Point (SEP) 6.2.24 6.2.26 SEP7 SEP6 SEP5 SEP4 SEP3 SEP2 SEP1 SEP0 00H − scroll entry point 0 0 0 1 1 1 0 0 0 38H − Idle mode off (IDMOFF) 6.2.28 0 0 0 1 1 1 0 0 1 39H − Idle mode on (IDMON) 6.2.29 interface pixel format (COLMOD) 6.2.30 6.2.30 colour interface format 0 0 1 1 1 0 1 0 3AH − X X X X X P2 P1 P0 03H − 0 1 0 1 1 0 0 0 0 B0H x (2) set VOP (SETVOP) 6.2.31 1 X X X X VPR8 VPR7 VPR6 VPR5 08H x VOP 6.2.31 1 X X X VPR4 VPR3 VPR2 VPR1 VPR0 01H x VOP 6.2.31 0 1 0 1 1 0 1 0 BRS B4H x Bottom Row Swap (BRS) 6.2.32 PCF8833 0 Objective specification 1 6.2.24 1 Philips Semiconductors 7 STN RGB - 132 × 132 × 3 driver 2003 Feb 14 D/C This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 6 5 4 3 2 1 0 0 1 0 1 1 0 1 1 TRS DEFAULT OTP B6H x DESCRIPTION SECTION Top Row Swap (TRS) 6.2.33 1 0 1 1 1 0 0 FINV B9H − super Frame INVersion (FINV) 0 1 0 1 1 1 0 1 DOR BAH − Data ORder (DOR) 6.2.35 0 1 0 1 1 1 1 0 TCDFE BDH − enable/disable DF temp comp (TCDFE) 6.2.36 0 1 0 1 1 1 1 1 TCVOPE BFH − enable or disable VOP temp comp (TCVOPE) 6.2.37 0 1 1 0 0 0 0 0 EC C0H − Internal or external oscillator (EC) 6.2.38 0 1 1 0 0 0 0 1 0 C2H x set multiplication factor (SETMUL) 6.2.39 1 X X X X X X S1 S0 03H x multiplication factor 6.2.39 0 1 1 0 0 0 0 1 1 C3H x set TCVOP slopes A and B (TCVOPAB) 6.2.40 1 X SLB2 SLB1 SLB0 X SLA2 SLA1 SLA0 34H x 0 1 1 0 0 0 1 0 0 C4H x 1 X SLD2 SLD1 SLD0 X SLC2 SLC1 SLC0 75H x 0 1 1 0 0 0 1 0 1 C5H x set divider frequency (TCDF) 6.2.41 1 X DFA6 DFA5 DFA4 DFA3 DFA2 DFA1 DFA0 56H x set divider factor in region A 6.2.41 1 X DFB6 DFB5 DFB4 DFB3 DFB2 DFB1 DFB0 35H x set divider factor in region B 6.2.41 1 X DFC6 DFC5 DFC4 DFC3 DFC2 DFC1 DFC0 30H x set divider factor in region C 6.2.41 1 X DFD6 DFD5 DFD4 DFD3 DFD2 DFD1 DFD0 25H x set divider factor in region D 6.2.41 0 1 1 0 0 0 1 1 0 C6H x set divider frequency 8-colour mode (DF8colour) 6.2.42 1 X DF86 DF85 DF84 DF83 DF82 DF81 DF80 35H x set divider factor in 8-colour mode 6.2.42 0 1 1 0 0 0 1 1 1 C7H x set bias system (SETBS) 6.2.43 1 X X X X VB3 VB2 VB1 VB0 0BH x bias systems 6.2.43 0 1 1 0 0 1 0 0 0 C8H − temperature read back (RDTEMP) 6.2.44 0 1 1 0 0 1 0 0 1 C9H − N-Line Inversion (NLI) 6.2.45 1 NLI7 NLI6 NLI5 NLI4 NLI3 NLI2 NLI1 NLI0 13H x after NLI time slots inversion 6.2.45 0 1 1 0 1 1 0 1 0 DAH x read ID1 (RDID1) 6.2.46 10 0 6.2.34 6.2.40 set TCVOP slopes C and D (TCVOPCD) Philips Semiconductors 7 STN RGB - 132 × 132 × 3 driver 2003 Feb 14 D/C 6.2.40 6.2.40 Objective specification PCF8833 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 6 5 4 3 2 1 0 DEFAULT OTP DESCRIPTION SECTION 0 1 1 0 1 1 0 1 1 DBH x read ID2 (RDID2) 6.2.46 0 1 1 0 1 1 1 0 0 DCH x read ID3 (RDID3) 6.2.46 0 1 1 1 0 1 1 1 SFD EFH x select factory defaults(3) 6.2.47 0 1 1 1 1 0 0 0 0 F0H − enter Calibration mode 15.5 1 X X ORA2 ORA1 ORA0 X OPE CALMM 00H − set calibration control settings 15.5 0 1 1 1 1 0 0 0 1 F1H − shift data in OTP shift registers (OTPSHTIN) 15.5 1 OS7 OS6 OS5 OS4 OS3 OS2 OS1 OS0 XX − multiple data byte; any number of bytes allowed 15.5 Notes 1. X = don’t care. 2. This function can be set by OTP. 3. If the OTP bit Enable Factory Defaults (EFD) has been programmed to logic 1 (default value is logic 0), then the Set Factory Defaults (SFD) instruction is ignored and the device will always use the OTP default data. Philips Semiconductors 7 STN RGB - 132 × 132 × 3 driver 2003 Feb 14 D/C 11 Objective specification PCF8833 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.1 PCF8833 Exit commands Table 2 Command description INPUT COMMAND Sleep_IN (SLPIN) PARAMETERS CONDITIONS Power-down mode: EXIT COMMAND power-down has priority over display and Sleep_OUT booster settings, but the setting is kept display off display voltage generation off Sleep_OUT (SLPOUT) exit power-down: after reset; BSTRON and DISPON is set, Sleep_IN reset but become active only with Sleep_OUT display → DISPON/DISPOFF display voltage generation → BSTRON/BSTROFF (refresh from OTP cells if CALMM = 0) BSTROFF display voltage generation off display is switched on or off by DISPON/DISPOFF BSTRON reset BSTRON display voltage generation on display is switched on or off by DISPON/DISPOFF BSTROFF DISPOFF display off rows and columns are tied to VSS1 DISPON reset DISPON display on NORON Normal mode on full display is driven by RAM data DISPOFF PTLON SEP PTLON Partial mode on partial display area is driven by RAM data; display area outside partial area is off NORON SEP reset SEP Scroll mode on PIXON (DAL) in full Display mode (NORON) all pixels are on; in partial Display mode only partial area pixels are driven on; pixels outside partial area are off command INVON is not effective when DAL is active PIXOFF (DALO) NORON PTLON SEP reset PIXOFF (DALO) all pixel off command INVON is not effective when DALO is active PIXON (DAL) NORON PTLON SEP reset IDMOFF Idle mode off full colour resolution stored in the RAM is IDMON written to the display IDMON Idle mode on 8-colour mode became active: The MSB of data stored in RAM is evaluated only NORON PTLON reset IDMOFF reset INVOFF inverted display off INVON inverted display on TEOFF tearing pulse disabled TEON TEON tearing pulse enabled TEOFF reset 2003 Feb 14 INVON in Partial mode only pixels of partial area INVOFF reset are inverted; INVON is not effective; when DAL or DALO are active 12 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2 PCF8833 Function set 6.2.1 NO OPERATION No operation (NOP) has no effect on internal data or settings. However, it can be used to terminate data transfer (read and write). Table 3 No operation command bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 0 0 0 00H 6.2.2 After a reset, care must be taken with respect to the reset timing constraints (see Fig.50) when the PCF8833 is powered-up. The power-up must be done by sending the Sleep_OUT command. RESET The PCF8833 has a hardware and a software reset. After power-up a hardware reset (pin RES) must be applied; see Fig.50. The hardware and software resets give the same results. After a reset, the chip has the following state: After a power-up the display RAM content is undefined. Neither a hardware reset nor a software reset changes the data that is stored in the display RAM. Sending display data must stop 160 ns before issuing a hardware reset, otherwise the last word written to the display RAM may be corrupted. The row and column outputs are tied to VSS1 with a reset because power-down (Sleep_IN) is in the reset state. • All LCD outputs are set to VSS (display off) • RAM data unchanged • Power-down mode (Sleep_IN) • Command register set to default states; see Table 4 • Interface pins are set to inputs. Table 4 Reset state after hardware and software reset COMMAND DESCRIPTION RESET STATE Sleep_IN PCF8833 is in Sleep_IN mode (booster and display are switched off) − INVOFF display inversion is off − BSTRON when Sleep_OUT is active; booster is switched on − DISPON when Sleep_OUT is active; display is turned on − TEOFF tearing effect line pulse is turned off − IDMOFF Idle mode is turned off (4 kbyte colour mode, not 8-colour mode) − NORON Normal mode is active, not Scroll or Partial mode − V RAM write in X direction 0 MY no mirror Y 0 RGB colour order is RGB 0 MX no mirror X 0 LAO line address order (top to bottom) 0 BRS bottom rows are not mirrored; note 1 0 TRS top rows are not mirrored; note 1 0 FINV super frame inversion is on 1 DOR normal data order 0 TCDFE DF temperature compensation switched on 1 TCVOPE VOP temperature compensation switched on 1 EC internal oscillator 0 2003 Feb 14 13 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver COMMAND PCF8833 DESCRIPTION RESET STATE xs[7:0] x address start 2DEC xe[7:0] x address end 129DEC ys[7:0] y address start 2DEC ye[7:0] y address end 129DEC RGBSET 256 to 4 kbyte colour LUT see Section 6.2.22 AA1S[7:0] partial area start address 0DEC AA1E[7:0] partial area end address 31DEC TF[7:0] top fixed area 0DEC SA[7:0] scroll area 130DEC BF[7:0] bottom fixed area 0DEC SEP[7:0] scroll entry point 0DEC P[2:0] interface pixel format is 12-bit/pixel 011 VPR[8:0] programming of VLCD2 voltage; note 1 257DEC S[1:0] charge pump multiplication factor; note 1 11 SLA[2:0] select slope for segment A; note 1 100 SLB[2:0] select slope for segment B; note 1 011 SLC[2:0] select slope for segment C; note 1 101 SLD[2:0] select slope for segment D; note 1 111 DFA[6:0] frame frequency for segment A is 80 Hz; note 1 56DEC DFB[6:0] frame frequency for segment B is 130 Hz; note 1 35DEC DFC[6:0] frame frequency for segment C is 150 Hz; note 1 30DEC DFD[6:0] frame frequency for segment D is 180 Hz; note 1 25DEC DF8[6:0] frame frequency for 8-colour mode is 130 Hz; note 1 35DEC VB[3:0] bias system is F/Gmax = 2.5; note 1 1011 NLI[7:0] inversion is after 19 time slots (76 rows in Full mode); note 1 19DEC VCON[6:0] no contrast setting is set (twos complement number); note 1 0DEC SFD OTP programmed data is used; note 1 1 CALMM not in Calibration mode 0 OPE disable OTP programming voltage; note 2 0 ORA[2:0] OTP row address selection 000 Notes 1. These values can be set by the module maker. If the factory defaults OTP bit EFD have been set, the value cannot be changed via the interface. Otherwise, the OTP data will be used if SFD is set to logic 1, which is the reset state. 2. Calibration mode may not be entered if the SEAL bit has been set. Programming is only possible when in Calibration mode. 2003 Feb 14 14 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.3 PCF8833 SOFTWARE RESET The software reset (SWRESET) has exactly the same effect as the hardware reset; see Section 6.2.2. After sending SWRESET any command can be sent immediately without any additional delay in between, for instance: Sleep_OUT, BSTRON and DISPON, etc. Table 5 Software reset register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 0 0 1 01H 6.2.4 Command Sleep_IN does not effect the setting of BSTRON/BSTROFF or DISPON/DISPOFF, but switches off the DC-to-DC converter (booster) and ties the display outputs to VSS1. BOOSTER VOLTAGE OFF The DC-to-DC converters are turned off and pins VLCDOUT1 and VLCDOUT2 become 3-state. In order to avoid any optical effect on the display, the sequence given in Fig.2 must be used before the internal display supply generation circuits are turned off. For the effect of possible combinations of commands Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see Table 17 and Fig.4. Figure 7 shows the effects of the combination of commands BSTRON and BSTROFF with DISPON and DISPOFF. The external LCD supply input voltages (VLCDIN1 and VLCDIN2) can be applied while the display voltage generation (BSTROFF) is off. When BSTROFF, DISPON and Sleep_OUT are set, the external LCD supply input voltages (VLCDIN1 and VLCDIN2) must be applied, otherwise the display outputs will be undefined. Table 6 Booster voltage off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 0 1 0 02H handbook, halfpage start send DISPOFF (28H) send BSTROFF (02H) end MGU911 Fig.2 Booster voltage off flow chart. 2003 Feb 14 15 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.5 PCF8833 The status of the LCD supply generation circuits can be monitored with the read display status (RDDST) command; see Section 6.2.7. BOOSTER VOLTAGE ON The LCD supply generation circuits will be switched on when the Booster voltage on (BSTRON) command is sent. The BSTRON command has a direct effect only when the PCF8833 is not in Power-down mode (Sleep_OUT is not active). Figure 3 shows two sequences for using the BSTRON command, assuming BSTROFF and DISPOFF were set before sending Sleep_OUT. In sequence A the command to switch the display on (DISPON) is sent to the PCF8833 before the BSTRON command is sent. Therefore the display will only be switched on when the LCD supply generation circuit generates a stable VLCD. In sequence B the RDDST command is used to monitor the LCD supply generation circuit and, after the D31 bit of the RDDST is set to logic 1, the DISPON command will be sent; see Section 6.2.7. With a reset DISPON (see Section 6.2.18) and BSTRON are set, the PCF8833 will start-up with Sleep_OUT (see Section 6.2.7) following the built-in start-up sequence which generates the requested voltages and switches on the display, unless DISPOFF and/or BSTROFF was sent. When the LCD supply generation circuits are switched on, it is necessary to wait for a certain time before the power circuits become stable and the display can be switched on. Because this time is dependent on the required VLCD voltage, the external components used, the applied supply voltage and some other parameters, the PCF8833 monitors the LCD supply generation circuit internally and will only switch-on the display when the LCD supply generation circuits are stable. Table 7 For the effect of possible combinations of commands Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see Table 17 and Fig.4. Figure 7 shows the effects of the combination of commands BSTRON and BSTROFF with DISPON and DISPOFF. Booster voltage on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 0 1 1 03H handbook, full pagewidth start start send Sleep_OUT 11H send Sleep_OUT 11H send DISPON 29H send BISTRON 03H send BSTRON 03H monitor D [31] RDDST 09H LCD will be switched on when LCD supply generation circuit is stable send DISPON 29H end end sequence A sequence B D31 = 1 Fig.3 Booster voltage on flow charts. 2003 Feb 14 D31 = 0 16 MGU912 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.6 PCF8833 When less than 25 read clock cycles are sent in Serial mode, the identification information read must be interrupted by a hardware reset or rising edge of SCE. READ DISPLAY IDENTIFICATION INFORMATION The Read Display Identification Information (RDDIDIF) command returns a 24-bit display identification information. The identification information is valid only 5 ms after applying a hardware reset. Therefore the RDDIDIF command should not be sent earlier than 5 ms after a hardware reset. The definition of the display identification bits is given in Table 11. The input and output data format is given in Table 9. After the command byte 04H is sent, the read starts with one dummy clock cycle followed by the 3 status bytes (see Fig.47). Table 8 Read display identification information register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 1 0 0 04H Table 9 RDDIDIF data format for Serial mode D/C 7 6 5 4 3 2 1 0 DEFAULT (S)DIN 0 0 0 0 0 0 1 0 0 04H (S)DOUT − (S)DOUT − D23 D22 D21 D20 D19 D18 D17 D16 45H − D15 D14 D13 D12 D11 D10 D9 D8 XX − D7 D6 D5 D4 D3 D2 D1 D0 XX BIT X (only one dummy clock cycle, not a full byte) X Table 10 RDDIDIF data format for Parallel mode D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 0 1 0 0 04H 1 X X X X X X X X XX 1 D23 D22 D21 D20 D19 D18 D17 D16 45H 1 D15 D14 D13 D12 D11 D10 D9 D8 XX 1 D7 D6 D5 D4 D3 D2 D1 D0 XX Table 11 Description of the display identification bits BIT D[23:16] D15 BIT DESCRIPTION RD BYTE REMARK manufacturer ID RDID1 hard wired = 45H driver/module ID (STN B/W = 0 and STN Colour = 1) RDID2 OTP programmed; see Chapter 15 RDID3(1) OTP programmed; see Chapter 15 D[14:8] driver/module version ID D[7:0] driver/module code Note 1. RDID3 will be programmed in OTP cells. This ID can be set to 03H by the module maker. 2003 Feb 14 17 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.7 PCF8833 When less than 33 read clock cycles are sent in Serial mode the status read must be interrupted by a hardware reset or a rising edge of SCE. READ DISPLAY STATUS The Read Display Status (RDDST) command returns a 32-bit display status information and can be accessed when the PCF8833 is in normal Display mode (see Section 6.2.11), in partial Display mode (see Section 6.2.23) or in Sleep_IN mode; see Section 6.2.8. The definition of the display status bits is given in Table 11. The input and output data format is as follows: After the command byte 09H is sent, the read starts with one dummy clock cycle followed by the 4 status bytes (see Fig.48). Table 12 Read display status register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 1 0 0 1 09H Table 13 RDDST data format for Serial mode D/C 7 6 (S)DIN 0 0 0 (S)DOUT − (S)DOUT − BIT 5 4 3 2 1 0 DEFAULT 0 0 1 0 0 1 09H X (only one dummy clock cycle, not a full byte) XX D31 D30 D29 D28 D27 D26 0 0 XX − 0 D22 D21 D20 D19 D18 D17 D16 XX − D15 0 D13 D12 D11 D10 D9 0 XX − 0 0 0 0 0 0 0 0 XX Table 14 RDDST data format for Parallel mode D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 0 1 0 0 1 09H 1 X X X X X X X X XX 1 D31 D30 D29 D28 D27 D26 0 0 XX 1 0 D22 D21 D20 D19 D18 D17 D16 XX 1 D15 0 D13 D12 D11 D10 D9 0 XX 1 0 0 0 0 0 0 0 0 XX 2003 Feb 14 18 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 15 Display identification bits description BIT D31 BIT DESCRIPTION STATUS booster voltage status logic 1 when BSTRON is selected and when the LCD supply generation circuits are ready logic 0 when BSTROFF is selected or when the LCD supply generation circuits are not ready D30 Y address order logic 1 when MY = 1 logic 0 when MY = 0 D29 X address order D28 vertical/horizontal addressing mode logic 1 when MX = 1 logic 0 when MX = 0 logic 1 when V = 1 logic 0 when V = 0 D27 line address order logic 1 when LAO = 1 logic 0 when LAO = 0 D26 RGB/BGR order logic 1 when RGB = 1 D[25:23] no function, but can be read D[25:23] = 000 D[22:20] interface pixel format see Section 6.2.30 logic 0 when RGB = 0 P2 = D22; P1 = D21 and P0 = D20 D19 Idle mode logic 1 when IDMON is selected logic 0 when IDMOFF is selected D18 Partial mode D17 Sleep_IN/OUT logic 1 when PTLON is selected logic 0 otherwise logic 1 when Sleep_OUT is selected logic 0 when Sleep_IN is selected D16 normal Display mode logic 1 when NORON is selected logic 0 otherwise D15 vertical Scroll mode logic 1 when SEP is selected D14 no function; but can be read D14 = 0 D13 display inversion logic 1 when INVON is selected D12 all pixels on logic 1 when DAL is selected logic 0 otherwise logic 0 when INVOFF is selected logic 0 otherwise D11 all pixels off logic 1 when DALO is selected logic 0 otherwise D10 display on/off logic 1 when DISPON is selected logic 0 when DISPOFF is selected D9 tearing effect line on/off logic 1 when TEON is selected logic 0 when TEOFF is selected D[8:0] 2003 Feb 14 no function; but can be read D[8:0] = 0:0000:0000 19 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.8 PCF8833 SLEEP_IN While in Sleep_IN mode all commands and data can be sent and will be executed as in the Sleep_OUT state, except some OTP related commands and temperature readout related commands. In the Sleep_IN mode no effect on the display can be seen. By sending the Sleep_IN command, the PCF8833 immediately enters the Power-down mode, also referred to as the Sleep mode. In the Sleep mode the output voltages of all LCD driver pins (rows and columns) are at VSS1 (ground, all pixels are in off state), and the LCD supply generation circuit and the oscillator are switched off. The Sleep_IN command does not change the state of the DISPON/DISPOFF and BSTRON/BSTROFF commands, but has the same effect as DISPOFF and BSTROFF; see Table 17. The Sleep_IN mode is exited by command Sleep_OUT; see Section 6.2.9. Table 16 Sleep_IN register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 1 0 0 0 0 10H Table 17 Sleep_IN/OUT and BSTR_ON/OFF combination BSTER_ON/BSTER_OFF Sleep_IN/Sleep_OUT Booster(1) ON ON ON ON OFF OFF OFF ON OFF OFF OFF OFF Note 1. Booster is the built-in DC-to-DC converter also called voltage multiplier or charge pump. 6.2.9 SLEEP_OUT This time is self adapting and therefore dependent on application conditions: This command must be sent to allow the PCF8833 to power-up (see Fig.4). • It is longer for: – Low VDD2 DISPON and BSTRON are set with a reset, the PCF8833 will start-up with Sleep_OUT following the built-in start-up sequence which generates the requested voltages and switches on the display, unless DISPOFF and/or BSTROFF was sent after the last reset. – Higher resistors in supply wires and/or external capacitors – Higher external capacitors – Higher required VLCD2 voltage. For the effects of possible combinations of commands Sleep_IN/Sleep_OUT and BSTRON/BSTROFF; see Table 17. • Some other conditions, which may affect start-up time are: – Partial/full mode Figure 4 illustrates the flow when sending the Sleep_OUT command. The display is only switched on, when the internally generated voltage VLCD2 is high enough. – Selected bias system – Temperature – Selected temperature coefficients. 2003 Feb 14 20 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 18 Sleep_OUT register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 1 0 0 0 1 11H handbook, full pagewidth reset HW or SW Sleep_IN D31 = 0 send Sleep_OUT Sleep_OUT BSTROFF booster BSTRON booster on D31 = 0 wait for D31 bit D31 = 1 DISPOFF display DISPON ready display on display off MGU913 D31 is the booster voltage status bit; see Section 6.2.7. Fig.4 Start-up, when leaving Power-down mode (i.e. after sending Sleep_OUT). 2003 Feb 14 21 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.10 PCF8833 A normal Display mode command is used to exit the Partial mode. How the partial display area can be programmed is given in Section 6.2.23. PARTIAL MODE ON Partial mode on (PTLON) turns on the partial Display mode. Only one partial display size can be chosen. Normal mode, Scroll mode, DALO and DAL are exited with this command. When sending DAL after PTLON, only the pixels of partial area are driven on. A sequence showing how the command PTLON can be used is illustrated in Fig.5. Table 19 Partial mode on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 0 1 0 0 1 0 12H handbook, full pagewidth Initial state (1) Sleep_OUT booster on display on normal display send PTLAR send DISPOFF partial area def display off send PTLON wait until display supply voltage is settled partial mode on send DISPON optional send PTLAR display on partial area def optional MGU914 exit partial mode send NORON send SEP normal display scroll mode (1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after display voltage has settled). When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area are inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off. Fig.5 Sequence how PTLON can be used. 2003 Feb 14 22 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.11 PCF8833 NORMAL DISPLAY MODE ON The normal Display mode on command (NORON) turns the display into Normal mode which is also the reset state. An explanation of how the command NORON can be used is illustrated in Fig.6. Table 20 Normal Display mode on register bits D/C D7 D6 D5 D4 D3 D2 D1 D0 DEFAULT 0 0 0 0 1 0 0 1 1 13H 6.2.12 DISPLAY INVERSION OFF The Display inversion off command (INVOFF) turns the display into a non-inverted screen without modifying the display data RAM. Display inversion off is the reset state of the PCF8833. Table 21 Display inversion off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 0 0 0 0 20H 6.2.13 DISPLAY INVERSION ON The Display inversion on command (INVON) turns the display into an inverted screen without modifying the display data RAM. The RAM data is read out and inverted while writing to the display. The display Inversion mode can be switched off by sending the INVOFF command; see Section 6.2.12. When sending INVON, in Partial mode only, the pixels of a partial area are inverted. INVON is overruled by DAL and DALO. In Partial mode the pixels outside of the partial are always off. Table 22 Display inversion on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 0 0 0 1 21H 6.2.14 ALL PIXELS OFF The All pixels off command (DALO) can be switched off by sending the normal display on command (NORON) (see Section 6.2.11) or by sending the partial Display mode on command (PTLON); see Section 6.2.10. Furthermore DALO is left with the command DAL; see Section 6.2.15. When DALO is active all pixels are driven, as if the display RAM was filled with all zeros (off-state). DALO does not change the data stored in the display RAM. Figure 6 illustrates how DAL (all pixels on) and DALO (all pixels off) can be used. All pixels will be switched off regardless of the display data RAM. Table 23 All pixels off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 0 0 1 0 22H 2003 Feb 14 23 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.15 PCF8833 When sending DAL after PTLON, only the pixels of the partial area are driven on. When sending INVON in Partial mode only the pixels of the partial area are inverted. INVON is over-ruled by DAL and DALO. Pixels outside the partial are always off. Figure 6 illustrates how DAL (all pixels on) and DALO (all pixels off) can be used. ALL PIXELS ON The All pixels on command (DAL) can be switched off by sending the normal display on command (NORON); (see Section 6.2.11) or by sending the partial Display mode on command (PTLON); see Section 6.2.10. Furthermore DAL is left with the command DALO; see Section 6.2.14. When DAL is active all pixels are driven, as if the display RAM was filled with all ones (on-state). DAL does not change the data stored in the display RAM. All pixels will be switched on regardless of the display data RAM. Table 24 All pixels on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 0 0 1 1 23H handbook, full pagewidth Initial state (1) Sleep_OUT booster on display on all pixel on/off send SEP send NORON send PTLON exit pixel on/off exit pixel on/off exit pixel on/off scroll mode on normal display partial mode on send DAL/DALO all pixel on/off effect in full display mode send DAL/DALO all pixel on/off effect in partial display mode MGU915 (1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after display voltage has settled). When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area are inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off. Fig.6 Flowchart representation of DAL and DALO. 2003 Feb 14 24 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.16 PCF8833 SET CONTRAST Using the Set contrast command (SETCON) the VLCD voltage and the contrast of the LCD can be adjusted. The influence of the VCON[6:0] register on the VLCD programming is explained in Section 6.2.31. The VCON[6:0] is a twos complement number; see Table 26. An overview over the complete programming range of VLCD can be found in Section 15.1. Table 25 Set contrast register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 0 1 0 1 25H 1 X VCON6 VCON5 VCON4 VCON3 VCON2 VCON1 VCON0 00H Table 26 Possible VCON values 6.2.17 VCON[6:0] DECIMAL EQUIVALENT VLCD OFFSET 0111111 63 2520 mV 0111110 62 2480 mV 0111101 61 2440 mV : : : 0000010 2 80 mV 0000001 1 40 mV 0000000 0 0 mV 1111111 −1 −40 mV 1111110 −2 −80 mV : : : 1000010 −62 −2480 mV 1000001 −63 −2520 mV 1000000 −64 −2560 mV DISPLAY OFF The Display off command (DISPOFF) connects all rows and columns to VSS1, i.e. all the pixels have a voltage of 0 V. Since the reset state of the PCF8833 is Sleep_IN (see Section 6.2.8) the display will be in the off state after a reset. The DISPOFF command can be switched off by sending the Display on command (DISPON); see Section 6.2.18. Figure 7 shows the effects of the combination of commands BSTRON and BSTROFF with DISPON and DISPOFF. Table 27 Display off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 1 0 0 0 28H 6.2.18 DISPLAY ON Using the Display on command (DISPON) the rows and columns are driven according to the current display data RAM content and according to the display timing and settings. The DISPON command is used to exit the DISPOFF state; see Section 6.2.17. Figure 4 gives additional information on the effect of the DISPON/DISPOFF command. Figure 7 shows the effects of the combination of commands BSTRON and BSTROFF with DISPON and DISPOFF. 2003 Feb 14 25 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 28 Display on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 1 0 0 1 29H handbook, full pagewidth Initial state Sleep_OUT booster on display on Booster off send DISPOFF display off send BSTROFF (1) D31 = 0 (2) booster off Booster on send BSTRON booster on D31 = 0 wait for D31 bit D31 = 1 send DISPON display on MGU916 (1) When an external VLCD is applied, BSTROFF needs to be sent after reset (default = booster on). The setting of Display mode (Partial mode, Scroll mode, etc.) is not affected by sending DISPON/DISPOFF. (2) D31 is the booster voltage status bit; see Section 6.2.7. Fig.7 Recommendation for using commands BSTRON/BSTROFF in combination with DISPON/DISPOFF. 2003 Feb 14 26 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.19 PCF8833 COLUMN ADDRESS SET The display data RAM parameters xs and xe define the column address range of the display data RAM for writing data. Parameters xs and xe are defined between 0 and 131 (83H), and xs must be smaller then xe. Table 29 Column address set register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 1 0 1 0 2AH 1 xs[7] xs[6] xs[5] xs[4] xs[3] xs[3] xs[3] xs[0] 02H 1 xe[7] xe[6] xe[5] xe[4] xe[3] xe[2] xe[1] xe[0] 81H 6.2.20 PAGE ADDRESS SET The display data RAM parameters ys[7:0] and ye[7:0] define the page (row) address range of the display data RAM for writing data. Parameters ys and ye are defined between 0 and 131 (83H), and ys must be smaller then ye. Table 30 Page address set register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 1 0 1 1 2BH 1 ys[7] ys[6] ys[5] ys[4] ys[3] ys[3] ys[3] ys[0] 02H 1 ye[7] ye[6] ye[5] ye[4] ye[3] ye[2] ye[1] ye[0] 81H 6.2.21 MEMORY WRITE Data written to the display memory (RAM) is validated by the Memory write (RAMWR) command. Entering this command always returns the page address and column address to the start addresses xs[7:0] and ys[7:0] respectively. Content of the display data RAM is written by the data entered following this command, with the page and/or column address automatically incremented. The data Write mode turned on by this command can be automatically cancelled by entering another command. After a power-up the display RAM content is undefined. Neither a hardware reset nor a software reset changes the data stored in display RAM. Sending display data must stop 160 ns before issuing a hardware reset, otherwise the last word written to the display RAM may be corrupted. Table 31 Memory write register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 0 1 1 0 1 2CH 1 D7 D6 D5 D4 D3 D2 D1 D0 XX 2003 Feb 14 27 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.22 PCF8833 COLOUR SET With the Colour set (RGBSET) command the mapping from the 256-colour interface data is translated to the 4 kbyte colour RAM data of the PCF8833 can be changed. The translation table must be changed, if necessary, before sending 256 colour data. For the red and green pixel 8 from the available 16 grey scales can be selected. For the blue pixel 4 from the 16 grey scales can be selected. The default or reset state of the colour mapping can be found in Table 32. If the 256-to-4 kbyte colour mapping needs to be changed, the whole table must be sent. The mapping of colours is done when writing data into the RAM, through the application of the Look-Up Table (LUT). Table 32 Colour set register bits D/C D7 D6 D5 D4 D3 D2 D1 D0 DEFAULT 0 0 0 1 0 1 1 0 1 2DH 1 X X X X R3 R2 R1 R0 00H red tone 000 1 X X X X R3 R2 R1 R0 02H red tone 001 1 X X X X R3 R2 R1 R0 04H red tone 010 1 X X X X R3 R2 R1 R0 06H red tone 011 1 X X X X R3 R2 R1 R0 09H red tone 100 1 X X X X R3 R2 R1 R0 0BH red tone 101 1 X X X X R3 R2 R1 R0 0DH red tone 110 1 X X X X R3 R2 R1 R0 0FH red tone 111 1 X X X X G3 G2 G1 G0 00H green tone 000 1 X X X X G3 G2 G1 G0 02H green tone 001 1 X X X X G3 G2 G1 G0 04H green tone 010 1 X X X X G3 G2 G1 G0 06H green tone 011 1 X X X X G3 G2 G1 G0 09H green tone 100 1 X X X X G3 G2 G1 G0 0BH green tone 101 1 X X X X G3 G2 G1 G0 0DH green tone 110 1 X X X X G3 G2 G1 G0 0FH green tone 111 1 X X X X B3 B2 B1 B0 00H blue tone 00 1 X X X X B3 B2 B1 B0 04H blue tone 01 1 X X X X B3 B2 B1 B0 0BH blue tone 10 1 X X X X B3 B2 B1 B0 0FH blue tone 11 6.2.23 DESCRIPTION PARTIAL AREA The Partial area command (PTLAR) sets the partial display area and displays the RAM content of this area. In the partial Display mode the drive voltage can be reduced. Table 33 Partial area register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 0 0 0 30H 1 AA1S7 AA1S6 AA1S5 AA1S4 AA1S3 AA1S2 AA1S1 AA1S0 tbf 1 AA1E7 AA1E6 AA1E5 AA1E4 AA1E3 AA1E2 AA1E1 AA1E0 tbf 2003 Feb 14 28 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 The following steps must be followed to enter the Partial mode: When setting the addresses the following conditions must be ensured: • Set VOP (when the MMOTP cells are used the VOP for the Partial mode is predefined) • (AA1E + 1) − AA1S = 32 (only 1 partial display size setting is possible) • Set bias system (when the MMOTP cells are used the bias system for the Partial mode is predefined) • AA1 ≥ 0 and AA1E ≤ 131. Figure 8 shows how to use the Partial mode with Line Address Order (LAO) set to logic 0. Figure 9 gives an example of Partial mode with LAO set to logic 1, and Fig.10 shows the position of the partial area when the start address of the active area is AA1S ≥ (131 + 1) − 31, i.e. AA1S ≥ 101 (AA1S must be set in multiples of 4). • Set start address of active area AA1S[7:0]; can be set in multiples of 4 • Set end address of active area AA1E[7:0] + 1; can be set in multiples of 4 • Enter Partial mode (PTLON). Figure 11 shows how the Partial mode can be used. handbook, full pagewidth RAM display AA1S [7:0] = 4 partial area 32 rows AA1E [7:0] +1 = 36 0 ROW 0 1 ROW 1 2 ROW 2 3 ROW 3 4 ROW 4 5 ROW 5 6 ROW 6 7 ROW 7 8 ROW 8 9 ROW 9 10 ROW 10 11 ROW 11 12 ROW 12 13 ROW 13 24 ROW 24 25 ROW 25 26 ROW 26 27 ROW 27 28 ROW 28 29 ROW 29 30 ROW 30 31 ROW 31 32 ROW 32 33 ROW 33 34 ROW 34 35 ROW 35 36 37 ROW 36 ROW 37 38 ROW 38 39 40 ROW 39 ROW 40 41 ROW 41 42 ROW 42 127 ROW 127 128 ROW 128 129 ROW 129 130 ROW 130 131 ROW 131 partial area MGU917 Fig.8 Partial Display mode for LAO = 0. 2003 Feb 14 29 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 RAM display AA1E [7:0] +1 = 128 partial area 32 rows AA1S [7:0] = 96 0 ROW 0 1 ROW 1 2 ROW 2 3 ROW 3 4 ROW 4 5 ROW 5 6 ROW 6 7 ROW 7 8 ROW 8 9 ROW 9 10 ROW 10 11 ROW 11 12 ROW 12 13 ROW 13 24 ROW 24 25 ROW 25 26 ROW 26 27 ROW 27 28 ROW 28 29 ROW 29 30 ROW 30 31 ROW 31 32 ROW 32 33 ROW 33 34 ROW 34 35 ROW 35 36 ROW 36 37 ROW 37 ROW 38 38 40 ROW 39 ROW 40 41 ROW 41 42 ROW 42 127 ROW 127 128 ROW 128 129 ROW 129 130 ROW 130 131 ROW 131 39 partial area MGU918 Fig.9 Partial Display mode for LAO = 1. 2003 Feb 14 30 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 RAM display partial area AA1E [7:0] +1 = 28 0 ROW 0 1 ROW 1 2 ROW 2 3 ROW 3 4 ROW 4 5 ROW 5 27 ROW 27 28 29 ROW 28 ROW 29 30 ROW 30 31 ROW 31 32 ROW 32 ROW 33 33 34 AA1S [7:0] = 128 32 rows partial area ROW 34 35 36 ROW 35 37 ROW 37 38 ROW 38 39 ROW 39 40 ROW 40 41 ROW 41 42 ROW 42 43 ROW 43 44 ROW 44 45 ROW 45 46 ROW 46 47 48 ROW 47 ROW 48 49 ROW 49 50 51 ROW 50 ROW 51 52 ROW 52 53 ROW 53 127 ROW 127 128 129 ROW 128 ROW 129 130 ROW 130 131 ROW 131 ROW 36 MGU919 Fig.10 Partial Display mode for LAO = 0 and AA1S[7:0] = 128. 2003 Feb 14 31 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 Initial state (1) Sleep_OUT booster on display on normal display send PTLAR send DISPOFF partial area def display off send PTLON wait until display supply voltage is settled partial mode on send DISPON optional send PTLAR display on partial area def optional MGU920 exit partial mode send NORON send SEP normal display scroll mode (1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after the display voltage has settled). When sending DAL after PTLON, only the pixels of partial area are driven on. When sending INVON, in Partial mode only the pixels of partial area are inverted. INVON is over-ruled by DAL and DALO. Pixels outside partial area always stay off. Fig.11 Recommended sequence for setting Partial mode. 2003 Feb 14 32 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.24 PCF8833 VERTICAL SCROLLING DEFINITION In the PCF8833 three different scrolling modes can be used. These scrolling modes differ from each other in the way the RAM to display mapping is done. The vertical scrolling is defined as follows: • Vertical scrolling definition (VSCRDEF) command • TF[7:0] defines the number of lines for the top fixed area on the display, there is no top fixed area when TF[7:0] = 0 • SA[7:0] defines the number of lines for the scrolling area on the display • BF[7:0] defines the number of lines for the bottom fixed area on the display, there is no bottom fixed area when BF[7:0] = 0. Figure 12 illustrates the 4 scrolling configurations that can be defined. Table 34 Vertical scrolling definition register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 0 1 1 33H 1 TF7 TF6 TF5 TF4 TF3 TF2 TF1 TF0 00H 1 SA7 SA6 SA5 SA4 SA3 SA2 SA1 SA0 82H 1 BF7 BF6 BF5 BF4 BF3 BF2 BF1 BF0 00H handbook, full pagewidth centre screen scroll bottom screen scroll top screen scroll whole screen scroll MGU921 Fixed area (RAM content displayed) Scrolling area Fig.12 Scrolling modes on the display. There are 3 different scrolling modes, which are selected as follows: 1. TF + SA + BF = 130 rolling Scroll mode; see Section 6.2.24.1 2. TF + SA + BF = 131 non-rolling Scroll mode; see Section 6.2.24.2 3. TF + SA + BF = 132 non-rolling Scroll mode; see Section 6.2.24.3. The recommended sequence for setting up the scroll modes is illustrated in Fig.13. 2003 Feb 14 33 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 Initial state (1) Sleep_OUT booster on display on normal display send VSCRDEF scroll area def send SEP scroll mode on set a new scroll area send NORON normal display send VSCRDEF scroll area def send SEP scroll mode on exit scroll mode send NORON send PLTON normal display partial mode MGU922 (1) If the initial state is Sleep_IN, the same sequence is valid, but Sleep_OUT has to be sent to see the effect on the display (after the display voltage has settled). Fig.13 Recommended sequence for setting up Scroll modes. 2003 Feb 14 34 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.24.1 PCF8833 Rolling Scroll mode Figure 15 gives an example for when the PCF8833 is working in the rolling Scroll mode. The RAM-to-display mapping for the rolling Scroll mode when a 132 × 130 (columns × rows) display is connected to the PCF8833 is illustrated in Fig.14. In this case rows 0 and 131 must be left open. When a 132 × 132 display is connected, there will be a one-to-one mapping between the RAM and the display, and there will be no unused rows. When the rolling Scroll mode is used the following sequence can be applied: • After the desired time interval increment the scroll address to SEP + n for a n-line step • Keep incrementing the scroll address (SEP) at regular intervals. The rolling Scroll mode is activated when the Set Entry Scroll Point (SEP) is set; see Table 35. The rolling Scroll mode is left when the normal Display mode on (NORON) or the partial Display mode on (PTLON) is selected. Table 35 Set entry scroll point register bits D/C 7 D6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 1 1 37H 1 SEP7 SEP6 SEP5 SEP4 SEP3 SEP2 SEP1 SEP0 00H handbook, full pagewidth TF [7:0] RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 SA [7:0] 2 unused rows BF [7:0] TF [7:0] SA [7:0] 121 122 123 124 125 126 127 128 129 130 131 120 121 124 125 126 127 128 129 130 131 131 BF [7:0] MGU923 Fig.14 RAM to display mapping for the rolling Scroll mode (TF + SA + BF = 130) for LAO = 0. 2003 Feb 14 35 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth TF = 8 PCF8833 RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 SEP 0 1 2 3 4 5 6 7 8 TF = 8 SEP [7:0] SA = 114 120 121 8 9 2 unused rows BF = 8 121 122 123 124 125 126 127 128 129 130 131 SEP − 1 124 125 126 127 128 129 130 131 131 MGU924 Fig.15 The rolling Scroll mode (TF + SA + BF = 130) for LAO = 0. 2003 Feb 14 36 BF = 8 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.24.2 PCF8833 Non-rolling Scroll mode An example is given in Figure 17 for the case when the PCF8833 is working in the non-rolling Scroll mode (TF + SA + BF = 131). The RAM-to-display mapping for the non-rolling Scroll mode when a 132 × 130 (columns × rows) display is connected to the PCF8833 is illustrated in Fig.16. In this case unused rows and columns are to be left open, for instance row 0 and 131. If a 132 × 132 display is connected to the PCF8833 the content of row 0 and 131 will be the same as the content which is displayed in row 1 and 130, respectively. By doing so, the display data RAM will have 1 row in the background, whose content can be updated when it is not displayed. When the non-rolling Scroll mode is used the following sequence can be applied: • Fill the background memory • After the desired time interval increment the scroll address to SEP + n for a n-line step • Keep filling the background memory and incrementing scroll address (SEP) at regular intervals to obtain a smooth scrolling. The non-rolling Scroll mode is activated when the Set Entry Scroll point is set; see Table Fig.36. The non-rolling Scroll mode is left when the normal Display mode on (NORON) or the partial Display mode on (PTLON) is selected. Table 36 Set entry scroll point register bits 7 D/C 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 1 1 37H 1 SEP7 SEP6 SEP5 SEP4 SEP3 SEP2 SEP1 SEP0 00H handbook, full pagewidth TF [7:0] RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 SA [7:0] 1 buffer row 1 unused row BF [7:0] TF [7:0] SA [7:0] − 1 121 122 123 124 125 126 127 128 129 130 131 120 121 124 125 126 127 128 129 130 131 131 BF [7:0] MGU925 Fig.16 RAM to display mapping for the non-rolling Scroll mode (TF + SA + BF = 131) for LAO = 0. 2003 Feb 14 37 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 SEP 0 1 2 3 4 5 6 7 8 TF = 8 TF = 8 1 buffer row SEP [7:0] SA − 1 = 114 121 122 8 9 1 unused row 121 122 123 124 125 126 127 128 129 130 131 BF = 8 SEP − 2 124 125 126 127 128 129 130 131 131 BF = 8 MGU926 Fig.17 The non-rolling Scroll mode (TF + SA + BF = 131) for LAO = 0. 6.2.24.3 Non-rolling Scroll mode When the non-rolling Scroll mode is used the following sequence can be applied. The RAM-to-display mapping for the non-rolling Scroll mode when a 132 × 130 (columns × rows) display is connected to the PCF8833 is illustrated in Fig.18. In this case unused rows and columns are to be left open, for instance row 0 and 131. If a 132 × 132 display is connected to the PCF8833 the content of row 0 and 131 will be the same as the content which is displayed in row 1 and 130, respectively. By doing so the display data RAM will have 2 rows in the background, whose content can be updated when they are not displayed. • Fill the background memory • After the desired time interval increment the scroll address to SEP + n for a n-line step • Keep filling the background memory and incrementing scroll address (SEP) at regular intervals to obtain a smooth scrolling. The non-rolling Scroll mode is left when the normal Display mode on (NORON) or the partial Display mode on (PTLON) is selected. The non-rolling Scroll mode is activated when the Set Entry Scroll Point is set; see Table Fig.37. Figure 19 shows an example for when the PCF8833 is working in the non-rolling Scroll mode (TF + SA + BF = 132). 2003 Feb 14 38 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 37 Set entry scroll point register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 1 1 37H 1 SEP7 SEP6 SEP5 SEP4 SEP3 SEP2 SEP1 SEP0 00H handbook, full pagewidth TF [7:0] RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 SA [7:0] − 2 SA [7:0] 2 buffer rows BF [7:0] TF [7:0] 121 122 123 124 125 126 127 128 129 130 131 120 121 124 125 126 127 128 129 130 131 131 BF [7:0] MGU927 Fig.18 RAM to display mapping for the non-rolling Scroll mode (TF + SA + BF = 132) for LAO = 0. 2003 Feb 14 39 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth TF = 8 PCF8833 RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 SEP 0 1 2 3 4 5 6 7 8 TF = 8 2 buffer rows SEP [7:0] SA − 2 = 114 122 123 8 9 BF = 8 121 122 123 124 125 126 127 128 129 130 131 SEP − 3 124 125 126 127 128 129 130 131 131 MGU928 Fig.19 The non-rolling Scroll mode (TF + SA + BF = 132) for LAO = 0. 2003 Feb 14 40 BF = 8 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.24.4 PCF8833 Effect of LAO on scroll modes An example of when the PCF8833 is working in the non-rolling Scroll mode (TF + SA + BF = 132) with the Line Address Order (LAO) bit set to logic 1, is illustrated in Fig.20. The Scroll modes described in Sections 6.2.24.1 and 6.2.24.2 also work on the same principle when the LAO bit is set to logic 1. handbook, full pagewidth BF = 8 RAM (132 x 132) display (132 x 130) 0 0 1 2 3 4 5 6 7 SEP + 3 0 1 2 3 4 5 6 7 8 9 10 BF = 8 123 8 9 SA − 2 = 114 SEP [7:0] 2 buffer rows TF = 8 SEP − 1 SEP 124 125 126 127 128 129 130 131 131 123 124 125 126 127 128 129 130 131 MGU929 Fig.20 The non-rolling Scroll mode (TF + SA + BF = 132); with LAO = 1. 2003 Feb 14 41 TF = 8 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.25 PCF8833 TEARING EFFECT LINE OFF The Tearing effect line off (TEOFF) command ties the TE pin LOW. Table 38 Tearing effect line off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 0 0 34H 6.2.26 TEARING EFFECT LINE ON The Tearing effect line on (TEON) command turns the TE line of the display on. The TE signal indicates the start of a super-frame (equals 16 frames). In 4 kbyte colour mode a whole super-frame is needed to write full colour depth. In 8-colour mode the available colour depth is written in one frame. The tearing signal goes HIGH when the last line of a super-frame is read. The HIGH time is 850 µs (see Fig.21). Table 39 Tearing effect line on register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 0 1 35H 1 X X X X X X X X 00H Note 1. X = don’t care. handbook, full pagewidth superframe period (16 frames ) TE signal 850 µs Fig.21 Tearing effect line: distribution of pulses. 2003 Feb 14 42 MGU930 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.27 PCF8833 MEMORY DATA ACCESS CONTROL The display data RAM access conditions can be defined by using the Memory data access control (MADCTL) command. The used single control bits together with their reset states are given in Table 41. Table 40 Memory data access control register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 0 1 1 0 36H V LAO(1) RGB X X X 00H 1 MY MX Note 1. Refer to Section 6.2.24.4 for an explanation of LAO on scroll modes and to Section 6.2.23 for an explanation of LAO on Partial mode. Table 41 Explanation of the memory data access control bits BIT LOGIC 0 (RESET STATE) LOGIC 1 MY no mirror Y mirror Y MX no mirror X mirror X V RAM write in X direction vertical RAM write; in Y direction LAO line address order (top to bottom) line address order (bottom to top) RGB RGB BGR The relationship between RAM and display for the MX, MY, RGB and LAO control bits is illustrated Fig.22. Combinations of MX, MY and V are described in more detail in Section 7.2. DISPLAY page address column drivers D7 = 0 D7 = 1 0 1 2 131 D3 = 0:RGB D3 = 1:BGR 0,0 D4 = 1 0 1 2 131 RAM 131 2 1 0 131 131 D6 = 0 0 1 2 D6 = 1 131 interface D4 = 0 2 1 0 column address MGU931 Fig.22 Display data RAM access control. 2003 Feb 14 43 2 1 0 row drivers handbook, full pagewidth Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.28 PCF8833 IDLE MODE OFF The Idle mode off (IDMOFF) command turns off the Idle mode and the PCF8833 is working in the 4 kbyte colour mode. This command is similar to the Idle mode on command (IDMON); see Section 6.2.29. Table 42 Idle mode off register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 1 0 0 0 38H 6.2.29 IDLE MODE ON The Idle mode on (IDMON) command activates the Idle mode of the LCD driver in order to reduce the power consumption. When the Idle mode is switched on, the number of colours is reduced to 8 (only the MSB of data stored in the RAM is used). In addition to the reduction in the number of colours, the frame frequency can also be reduced. The frame frequency for the Idle mode can be programmed separately from the frame frequency in 4 kbyte colour mode; see Section 6.2.41. Table 43 Idle mode on register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 1 0 0 1 39H 6.2.30 COLOUR INTERFACE PIXEL FORMAT By using the Colour interface pixel format command (COLMOD) different interface RGB formats can be chosen. The choice of an RGB format also influences the way display data is transferred to the display data RAM via the interface; see Section 7.1.3. The different interface RGB formats are given in Table 45. Table 44 Colour interface pixel format register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 0 0 1 1 1 0 1 0 3AH 1 X X X X X P2 P1 P0 03H Note 1. X = don’t care. 2003 Feb 14 44 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 45 Interface formats The generated VLCD can be calculated with equation (1). Figure 24 is the graphical equivalent to equation (1). V LCD = a + 〈 MMVOPCAL [ 5:0 ] + VCON [ 6:0 ] + (1) V PR [ 8:0 ]〉 × b INTERFACE FORMATS P2 P1 P0 0 0 0 no action 0 0 1 no action 0 1 0 8-bit/pixel(1) 0 1 1 12-bit/pixel(2) 1 0 0 no action 1 0 1 16-bit/pixel(3) 1 1 0 no action 1 1 1 no action Where: • a is a fixed constant value; see Table 47 • b is a fixed constant value; see Table 47 • VPR[8:0] is the programmed VOP value; the programming range for VPR[8:0] is 5 to 410 (19AH) • MMVOPCAL[5:0] is the value of the offset stored in the OTP cells in twos complement format; see Section 15.1 • VCON[6:0] is the set contrast value which can be set via the interface and is in twos complement format; see Section 6.2.16. Notes 1. PCF8833 is switched into 256 colour mode, 256 colours are mapped to the 4 kbyte RAM with a LUT; see Section 6.2.22. The VOP[8:0] value must be in the VLCD programming range as shown in Fig.24. Evaluating equation (1), values outside of the programming range indicated in Fig.24 may result. Calculated values below 0 will be mapped to VOP = 0; resulting VOP values higher than 445 will be mapped to VOP = 445. An overview of the complete programming range of VLCD can be found in Section 15.1. 2. PCF8833 is switched into 4 kbyte colour mode, which is also the reset state. 3. PCF8833 is switched into 64 kbyte colour mode, which is achieved by means of dithering. 6.2.31 As the programming range for the internally generated VLCD allows values above the maximum allowed VLCD (20 V) the user has to ensure, while setting the VPR register and selecting the temperature compensation, that under all conditions and including all tolerances the VLCD remains below 20 V. SET VOP The set VOP command (SETVOP) is used to program the optimum LCD supply voltage VLCD. The reset state of VPR[8:0] is 257DEC (13.88 V). The optimum LCD supply voltage can be calculated as explained in Section 6.2.43. The VOP value is programmed via the VPR register. Besides the VPR register the VOP value can be calibrated by means of OTP cells or changed with the VCON register (see Fig.23). Table 46 Set VOP register bits; note 1 D/C D7 D6 D5 D4 D3 D2 D1 D0 DEFAULT 0 1 0 1 1 0 0 0 0 B0H 1 X X X X VPR8 VPR7 VPR6 VPR5 08H 1 X X X VPR4 VPR3 VPR2 VPR1 VPR0 01H Note 1. X = don’t care. 2003 Feb 14 45 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 47 Parameters of VLCD SYMBOL VALUE UNIT b 0.04 V a 3.6 V VPR [8:0] handbook, full pagewidth b 8 7 6 5 4 3 2 1 0 VCON [6:0] a MMVOPCAL [5:0] VOP [8:0] VLCD MGU932 Fig.23 Setting of VOP. handbook, full pagewidth MGU933 programming range (05H to 19AH) V LCD b a 00 01 02 03 04 05 06 ... 410DEC Fig.24 VLCD programming range of the PCF8833. 2003 Feb 14 46 V OP Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.32 PCF8833 BOTTOM ROW SWAP The Bottom Row Swap (BRS) command enables the bottom rows of the PCF8833 to be swapped (mirrored) in order to make an optimum glass layout. The function of the BRS command in combination with the function of the Top Row Swap (TRS) is illustrated in Figures 25, 26, 27 and 28. A description of the TRS function is given in Section 6.2.33. The reset state of the BRS command is defined in Table 49. Table 48 Bottom row swap register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 0 1 1 0 1 0 BRS B4H Table 49 Bottom row swap reset state BIT LOGIC 0 (RESET STATE) LOGIC 1 BRS bottom rows are not mirrored bottom rows are mirrored 6.2.33 TOP ROW SWAP The Top Row Swap (TRS) command enables the top rows of the PCF8833 to be swapped (mirrored) in order to make an optimum glass layout. The function of the TRS command in combination with BRS is illustrated in Figures 25, 26, 27 and 28. The description of BRS function can be found in Section 6.2.32. The reset state of the TRS command is given in Table 51. Table 50 Top row swap register bits D/C D7 D6 D5 D4 D3 D2 D1 D0 DEFAULT 0 1 0 1 1 0 1 1 TRS B6H Table 51 Top row swap reset state BIT LOGIC 0 (RESET STATE) LOGIC 1 TRS top rows are not mirrored top rows are mirrored 2003 Feb 14 47 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth 36 rows 131 PCF8833 96 32 63 32 rows 0 31 PCF8833 32 rows 95 64 columns 32 rows 0 31 32 63 DISPLAY 64 95 96 131 MGU934 Fig.25 Row sequence for BRS = 0 and TRS = 0. handbook, full pagewidth 36 rows 96 131 63 32 32 rows 0 31 32 rows PCF8833 32 rows 95 64 columns 0 31 32 DISPLAY 64 63 95 96 131 MGU935 Fig.26 Row sequence for BRS = 0 and TRS = 1. 2003 Feb 14 48 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth 36 rows 131 PCF8833 96 32 63 32 rows 32 0 PCF8833 64 95 columns 32 rows 32 rows 0 31 32 63 DISPLAY 64 95 96 131 MGU936 Fig.27 Row sequence for BRS = 1 and TRS = 0. handbook, full pagewidth 36 rows 96 131 63 32 32 rows 31 0 PCF8833 64 95 columns 32 rows 32 rows 0 31 32 63 DISPLAY 64 95 96 131 MGU937 Fig.28 Row sequence for BRS = 1 and TRS = 1. 2003 Feb 14 49 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.34 PCF8833 SUPER FRAME INVERSION The Super frame inversion command (FINV), which is the inversion of the row functions after all rows are written to can be switched off for the PCF8833. When switched off, the inversion of the row functions will then only be done with N-line inversion. Inversion of the row functions is needed so as to avoid a DC component over the LCD display. A detailed description of the N-line inversion is given in Section 6.2.45. The FINV control bit reset state is defined in Table 52. Table 52 Super frame inversion register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 0 1 1 1 0 0 FINV B9H Table 53 Super frame inversion reset state BIT LOGIC 0 LOGIC 1 (RESET STATE) FINV super frame inversion is off super frame inversion is on 6.2.35 DATA ORDER The data order (DOR) of the data which will be written into the RAM can be changed (swapped). The DOR command is explained and the reset state defined in Table 55. Table 54 Data order register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 0 1 1 1 0 1 DOR BAH Table 55 Data order reset state BIT LOGIC 0 (RESET STATE) LOGIC 1 DOR normal data order MSB/LSB transposed for RAM data 6.2.36 TEMPERATURE COMPENSATED FRAME FREQUENCY The PCF8833 incorporates a temperature segmented frame frequency programming; see Section 6.2.41. This segmented frame frequency can be disabled by using the temperature compensated frame frequency (TCDFE) command. The TCDFE control bit reset state is defined in Table 57. When the non-segmented frame frequency is chosen, the frame frequency in segment B (DFB) is valid; see Section 6.2.41. Table 56 Temperature compensated frame frequency register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 0 1 1 1 1 0 TCDFE BDH 2003 Feb 14 50 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 57 Temperature compensated frame frequency reset state BIT LOGIC 0 LOGIC 1 (RESET STATE) TCDFE non-segmented frame frequency segmented frame frequency 6.2.37 TEMPERATURE COMPENSATED VLCD The PCF8833 incorporates a temperature segmented VOP programming; see Section 6.2.40. By using the temperature compensated VLCD (TCVOPE) command the temperature segmented VLCD can be disabled. The TCVOPE control bit reset state is defined in Table 59. When the non-segmented VLCD programming is chosen the LCD supply voltage is flat, i.e. no compensation over the specified temperature range (offset VT in Fig.30 is 0). The TCVOPE command is also used to read back the temperature via the interface; see Section 6.2.44. Table 58 Temperature segmented VLCD register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 0 1 1 1 1 1 TCVOPE BFH Table 59 Temperature segmented VLCD reset state BIT LOGIC 0 LOGIC 1 (RESET STATE) TCVOPE no temperature compensated VLCD segmented temperature compensated VLCD 6.2.38 INTERNAL OR EXTERNAL OSCILLATOR The Internal/external oscillator (EC) command selects the internal or external oscillator. When an external oscillator is used the external clock signal has to be connected to the OSC pad; see Section 7.6. The EC control bit reset state is defined in Table 61. Table 60 Internal/external oscillator register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 0 0 EC C0H Table 61 Internal/external oscillator reset state BIT LOGIC 0 (RESET STATE) LOGIC 1 EC internal oscillator external clock applied 2003 Feb 14 51 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.39 PCF8833 SET MULTIPLICATION FACTOR The Set multiplication factor (SETMUL) command sets the multiplication factor of voltage multiplier 1. A detailed explanation of the LCD voltage supply architecture is given in Section 7.8. The different multiplication factor settings for voltage multiplier 1 are given in Table 63. Table 62 Set multiplication factor register bits; note 1 D/C D7 D6 D5 D4 D3 D2 D1 D0 DEFAULT 0 1 1 0 0 0 0 1 0 C2H 1 X X X X X X S1 S0 03H Note 1. X = don’t care. Table 63 Multiplication factor settings voltage multiplier S1 S0 MULTIPLICATION FACTOR 0 0 2 × multiplication 0 1 3 × multiplication 1 0 4 × multiplication 1 1 5 × multiplication; note 1 Note 1. Reset state. 6.2.40 SET TCVOP SLOPES A, B, C AND D The Set TCVOP slopes A, B, C and D (TCVOPAB and TCVOPCD) command splits the temperature range into 4 parts and can be programmed by using the following commands. Due to the temperature dependency of the liquid crystals viscosity, the LCD controlling voltage VLCD might have to be adjusted at different temperatures to maintain optimum contrast. There are four equally spaced temperature regions. For each temperature region a different temperature coefficient can be selected. Each coefficient can be selected from a choice of eight different slopes, or multiplication factors (see Table 66) by setting TCVOPAB and TCVOPCD. The controlled VLCD will not be changed linearly, but in 40 mV steps (parameter b in Table 47). Slopes SLA, SLB, SLC and SLD are overwritten by OTP values if these are set. Table 64 Set TCVOP slopes A and B register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 0 1 1 C3H 1 X SLB2 SLB1 SLB0 X SLA2 SLA1 SLA0 34H Note 1. X = don’t care. 2003 Feb 14 52 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 65 Set TCVOP slopes C and D register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 1 0 0 C4H 1 X SLD2 SLD1 SLD0 X SLC2 SLC1 SLC0 75H Note 1. X = don’t care. Table 66 Set TCVOP slopes multiplication factors; note 1 SLA[2:0] SLB[2:0] SLC[2:0] SLD[2:0] MA MB MC MD SLOPE 111 1.250 −53.33 mV/°C 110 1.000 −42.66 mV/°C 101 0.875 −37.33 mV/°C 100 0.750 −32.00 mV/°C 011 0.625 −26.66 mV/°C 010 0.500 −21.33 mV/°C 001 0.375 −16.00 mV/°C 000 0.250 −10.66 mV/°C Note 1. For the reset state refer to Table 4. Values overwritten by OTP. handbook, full pagewidth MA MB MC MD MGU938 VLCD −40 −10 20 50 80 Fig.29 Example of segmented temperature coefficients. 2003 Feb 14 53 T (°C) Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Temperature compensation is implemented by adding an offset to the VOP value. Previously, in Section 6.2.31, VOP was calculated by adding VPR, VCON and MMVOPCAL settings together. Now, an additional offset VT is added. The resolution of the readout is (−40 to +80 °C)/128 = 0.9375 °C/LSB; where 0 represents −40 °C and 127 represents +79 °C; see Section 6.2.44. The final result for VLCD calculation is a 9-bit positive number. Care must be taken by the user to ensure that the ranges of VPR, MMVOPCAL, VCON and temperature compensation do not cause clipping, and hence undesired results (see Fig.24). The adders will not permit overflow or underflow and will clamp results to either end of the range (VOP = 0 or 445). Also, temperatures outside the range −40 to +79 °C will be clamped to the last valid offset. The temperature readout function can also be used to read back the temperature value via the interface; see equation (12). The offset value may be calculated from Table 67. The effect on VLCD can be calculated by multiplying the offset value with the value of b. For example T = −8 °C: TD = 34 and MB = 0.5: VLCD(OS) = 40 mV × (64 − 34) × 0.5 = 600 mV. The temperature readout generates an 8-bit result TD[7:0]. This temperature readout number is used for temperature compensation. handbook, full pagewidth TEMPERATURE READOUT SLA SLB SLC A complete overview of the programming range of VLCD can be found in Section 15.1. SLD OFFSET 8 VT TD 8 zero offset −40 +80 T (°C) 0 b VCON [5:0] VOP [8:0] VPR [8:0] a MMVOPCAL [5:0] 9 VLCD MGU939 Fig.30 Segmented temperature compensation. 2003 Feb 14 54 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 67 Offset value TEMPERATURE RANGE TD EQUIVALENT OFFSET EQUATION VT <−40 °C 0 32 × (MB + MA) −40 °C to < −10 °C 0 to 31 (32 × MB) + MA × (32 − TD) 6.2.41 −10 to < 20 °C 32 to 63 (64 − TD) × MB 20 °C to < 50 °C 64 to 95 −(TD − 64) × MC 50 to < 80 °C 96 to 127 −((32 × MC) + MD × (TD − 96)) ≥80 °C >127 −(32 × MC + 31 × MD) FRAME FREQUENCY PROGRAMMING Where fosc is the oscillator frequency which is defined in Chapter 13. The PCF8833 incorporates temperature segmented Frame frequency programming (TCDF). The temperature range is split into 4 areas as shown in Fig.31. The Divider Factor (DF) is a 7-bit number so the upper programming range is limited to 127DEC resulting in a minimum frame frequency of 35.8 Hz. The lower programming range is limited to 20DEC resulting in a maximum frame frequency of 227 Hz. The frame frequency is derived from the built-in oscillator, and thus the tolerance of the frame frequency has the same ratio as that given for the oscillator frequency; see Chapter 13. In each of the segments a Division Factor (DF) can be programmed which determines the Frame Frequency (FF). In equation (2) the frame frequency can be calculated from a given division factor. 1 ---------- × f osc 132 (2) FF = -------------------------DF When Partial mode is selected (see Sections 6.2.10 and 6.2.23) the same segmented frame frequencies will be used as for the full Display mode. Table 68 Frame frequency programming register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 1 0 1 C5H 1 X DFA6 DFA5 DFA4 DFA3 DFA2 DFA1 DFA0 38H 1 X DFB6 DFB5 DFB4 DFB3 DFB2 DFB1 DFB0 35H 1 X DFC6 DFC5 DFC4 DFC3 DFC2 DFC1 DFC0 30H 1 X DFD6 DFD5 DFD4 DFD3 DFD2 DFD1 DFD0 25H Note 1. X = don’t care. 2003 Feb 14 55 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 handbook, full pagewidth DFA DFB DFC DFD MGU940 frame frequency −40 −11 35 49 79 T (°C) Fig.31 Segmented temperature frame frequency. 6.2.42 FRAME FREQUENCY PROGRAMMING IN 8-COLOUR MODE When the Idle mode is selected (see Section 6.2.29) the frame frequency is determined from division factor DF8. In the Idle mode the PCF8833 works in 8-colour mode and therefore a lower frame frequency can be chosen which will be the same over the whole temperature range. Calculation of the frame frequency and determining the division factor is the same as explained in Section 6.2.41. When Partial mode is selected (see Sections 6.2.10 and 6.2.23) the same frame frequency will be used as for the full Display mode in Idle mode. Table 69 Frame frequency programming in 8-colour mode register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 1 1 0 C6H 1 X DF86 DF85 DF84 DF83 DF82 DF81 DF80 35H Note 1. X = don’t care. 6.2.43 SET BIAS SYSTEM The LCD supply voltage and the bias voltages, which can be chosen, depend on the Liquid Crystal (LC) that is used. In equation (3) the relationship between the VON/VOFF ratio of LC parameters and the bias system (a) for a given display size (N) is given. V ON ------------- = V OFF 2 a + N + 2a ----------------------------2 a + N – 2a 2003 Feb 14 (3) 56 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 When the required bias system (a) is defined, the LCD supply voltage for a display size N can be determined; see equation (4). N V LCD = 2a × V ON × -------------------------------------2 P ( a + N + 2a ) The bias voltages needed in a MRA LCD driver depends on the number of simultaneous selected rows (P). The bias voltages of the PCF8833 are given for P = 4 and P = 1; see Fig.32. In the PCF8833 the maximum column voltage (GMAX) is always lower or equal to the row voltage F. (4) The parameter P in equation (4) is the number of simultaneous selected rows. For the maximum number of rows of 132, P = 4 is chosen. When partial Display mode is selected the P value is set to 1 internally. handbook, full pagewidth VLCD2 VLCD2 F Gmax V2H F Gmax V2H V1H VC VC VC VC V1L V2L VSS −Gmax V2L −F VSS P=4 −Gmax −F P=1 MGU941 Fig.32 Bias levels for a MRA system with P = 4 and P = 1. The bias voltage levels are a function of the row voltage F and a: The value of F is determined by (α + 2) × R and the value of Gmax is determined by 2 × R. V LCD F = -----------2 (5) F ≥ G max (6) The relationship between the ratio F/Gmax and α: (α + 2) α a (α + 2) × R F -------------- = --- = ----------------------------- = ------------------ = 1 + --p 2×R 2 2 G max (9) or: G max × a F = ---------------------p (7) F α = ------------- – 1 × 2 G max F a -------------- = --G max p (8) The relation between a and α for a given p is the following: α a = --- + 1 × p 2 Depending on the value of p, the bias levels are set in the ratio of: a α = --- – 1 × 2 p (11) This leads to the following bias systems given in Table 70. p = 1: αR − 2R − 2R − αR p = 4: αR − R − R − R − R − αR Where the value of α is in the range from 0 to 4. 2003 Feb 14 (10) 57 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 70 Bias system ratios a VB[3:0] F/Gmax α 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111 1.000 1.250 1.375 1.500 1.625 1.750 1.875 2.000 2.125 2.250 2.375 2.500 2.625 2.750 2.875 3.000 0.00 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 P = 1 (N = 32)(1) not allowed 1.500 1.625 1.750 1.875 2.000 2.125 2.250 2.375 2.500 2.625 2.750 2.875 3.000 P = 4 (N = 132)(1) not allowed 8.0 8.5 9.0 9.5 10.0(2) not allowed Notes 1. For Partial mode internally P = 1 is set, otherwise P = 4 is selected. Limitations for Partial mode given in Section 6.2.43.2 for respectively for full Display mode given in Section 6.2.43.1 have to be taken into account. 2. Reset state. Table 71 Set bias system register bits; note 1 D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 0 1 1 1 C7H 1 X X X X VB3 VB2 VB1 VB0 0BH Note 1. X = don’t care. 6.2.43.1 Limitations on bias voltages in Normal mode LCD2 V - – V LCD1 = 0 to 0.5 V --------------2 VDD1: 1.5 to 3.3 V VLCD1: 5.5 to 11 V 6.2.43.2 VLCD2: 10 to 20 V VDD1: 1.5 to 3.3 V (VLCD2 − VLCD1): 4.5 to 9 V VLCD1: 2.9 to 12 V V LCD2 --------------– V LVD1 = 0 to 1 V 2 VLCD2: 3.8 to 12 V ( V LCD2 – V LCD1 ) max = 0.5 V but for VLCD2: 10 to 11 V: 2003 Feb 14 Limitations on bias voltages in Partial mode 58 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.44 PCF8833 A measurement can be initiated by sending the instruction to set TCVOPE (to either logic 1 or logic 0), irrespective of whether temperature compensation is disabled or not. TEMPERATURE READBACK The PCF8833 has a built-in temperature readback (RDTEMP) measurement device. The measured value is provided as an 8-bit digital value TD[7:0] which can be read back via the interface. After initialization, the measurement will take approximately 5 ms to complete. It is recommended to read the register twice to qualify the returned result, especially if the measurement is triggered automatically. The temperature can be determined from TD[7:0] using the following formula: T = ( 0.9375 × TD – 40 )°C (12) The input and output data format for the temperature readback is given in Table 73. Temperature measurements are started automatically every ten seconds when the digital temperature compensation is active (default). Table 72 Temperature readback register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 1 1 0 0 0 C8H Table 73 Temperature readback data format D/C 7 6 5 4 3 2 1 0 DEFAULT (S)DIN 0 1 1 0 1 1 0 0 0 C8H (S)DOUT − TD[7] TD[6] TD[5] TD[4] TD[3] TD[2] TD[1] TD[0] XX SYMBOL 6.2.45 N-LINE INVERSION The N-line inversion (NLI) command inverts the row functions after N-line row time slots in order to avoid a DC component on the LCD display. Thus, when N-line is set to 19DEC inversion of the row functions will occur after 76 rows. With FINV = 1 (see Section 6.2.34) the super-frame inversion is active and the NLI counter always starts at super-frame start. When FINV = 0 a DC voltage may remain on the display depending on the NLI setting. When FINV = 0 and NLI = 0 there is no inversion, which results in a DC voltage on the display. Table 74 N-line inversion register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 0 0 1 0 0 1 C9H 1 NLI7 NLI6 NLI5 NLI4 NLI3 NLI2 NLI1 NLI0 13H Table 75 N-line inversion NLI[7:0] DESCRIPTION 0000 0000 no N-line inversion (super frame inversion) 0000 0001 inversion after 4 rows in full Display mode or 1 row in Partial mode 0000 0010 inversion after 8 rows in full Display mode or 2 rows in Partial mode : : 2003 Feb 14 59 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 6.2.46 PCF8833 ID1 is the manufacture ID and is hardwired in the PCF8833. READBACK The PCF8833 can be identified when the readback commands (RDID1, RDID2 and RDID3) are sent via the interface. When the readback command is sent, the PCF8833 will send back an 8-bit number. ID2 is the version ID and is programmed in the module maker OTP cells; see Chapter 15. ID3 is the module ID and is programmed in the module maker OTP cells; see Chapter 15. Depending on the SCLK speed the readback bit D7 might get corrupted. When the speed is reduced to at least half of the specified maximum speed, at least for the D7 bit, the transferred bit is valid. Table 76 RDID1 data format SYMBOL D/C 7 6 5 4 3 2 1 0 DEFAULT (S)DIN 0 1 1 0 1 1 0 1 0 DAH (S)DOUT − 0 1 0 0 0 1 0 1 45H 6 5 4 3 2 1 0 DEFAULT Table 77 RDID2 data format; note 1 SYMBOL D/C 7 (S)DIN 0 1 1 0 1 1 0 1 1 DBH (S)DOUT − X X X X X X X X 80H 6 5 4 3 2 1 0 DEFAULT Note 1. X = don’t care. Table 78 RDID3 data format; note 1 SYMBOL D/C 7 (S)DIN 0 1 1 0 1 1 1 0 0 DCH (S)DOUT − X X X X X X X X 03H Note 1. X = don’t care. 6.2.47 ENABLE OR DISABLE FACTORY DEFAULTS (SFD) The Enable or disable factory defaults (SFD) command will enable or disable the factory defaults stored in the MMOTP cells; see Section 15.2. These factory defaults can be set by the module maker. If the OTP bit EFD (enable factory defaults) has been set, these values can not be changed via the interface and the SFD command will have no effect. Otherwise, the data specified by commands will only be used if SFD is set to logic 0. The reset state of the SFD is defined in Table 80. Table 79 Enable/disable factory defaults register bits D/C 7 6 5 4 3 2 1 0 DEFAULT 0 1 1 1 0 1 1 1 SFD EFH 2003 Feb 14 60 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 80 Enable/disable factory defaults reset state 7 BIT LOGIC 0 LOGIC 1 (RESET STATE) SFD registers must be set via the interface OTP programmed data is used FUNCTIONAL DESCRIPTION 7.1 MPU interfaces The PCF8833 can interface to a microcontroller with an 8-bit parallel or a serial interface to transmit both data and commands to the PCF8833. 7.1.1 HARDWIRED INTERFACE SELECTION The selection of a given interface is done by setting pins PS0, PS1 and PS2 as shown in Table 81. Inputs PS1 and PS2 must be connected to VDD1 or VSS1. Table 81 Interface selection; note 1 PS2 PS1 PS0 INTERFACE READBACK SELECT X X 0 serial (3-line) via the read instruction X X 1 8080 MPU basic RD write strobe Note 1. X = don’t care. 7.1.2 GENERAL PROTOCOL The generally supported protocol for programming the LCD driver is shown in Fig.33. handbook, full pagewidth S TB TB TB TB TB P MGU942 S = start data transmission; P = stop data transmission; TB = transmission byte. Fig.33 Programming protocol. 2003 Feb 14 61 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 7.1.3 PCF8833 There are 2 bytes used to transfer 1 pixel with the 16-bit colour depth information; see Table 83. The most significant bits are R4, G5 and B4. When the data transfer is stopped after the first write, the data is not transferred to the display data RAM. The 16-bit data coming from the interface is mapped by means of dithering to 12-bit data. The dithered 12-bit data is then stored in the RAM. DISPLAY DATA FORMATTING Different display data formats are available because different colour depths are supported by the PCF8833. The colour depths supported are as follows: • 4 kbyte colours (12-bit/pixel), RGB 4 : 4 : 4 bits input; see Table 82. The data coming from the interface is directly stored in RAM. In one byte, 1 pixel is transferred with the 8-bit colour depth information; see Table 84. The most significant bits are R2, G2 and B1. The 8-bit data coming from the interface is mapped by means of a look-up table (see Section 6.2.22) to 12-bit data. The mapped 12-bit data is then stored in the RAM. • 65 kbyte colours (16-bit/pixel), RGB 5 : 6 : 5 bits input; see Table 83. The 16-bit data coming from the interface is mapped by means of dithering to 12-bit data. The dithered 12-bit data is then stored in the RAM. • 256 colours (8-bit/pixel), RGB 3 : 3 : 2 bits input; see Table 84. The 8-bit data coming from the interface is mapped by means of the Look-Up Table (LUT) (see Section 6.2.22) to 12-bit data. The mapped 12-bit data is then stored in the RAM. There are 3 bytes used to define 2 pixels with the 12-bit colour depth information; see Table 82. The most significant bits are R3, G3 and B3. Data is transferred to the RAM only when all the information i.e. RGB data of that particular pixel is sent. Table 82 Write data for RGB 4 : 4 : 4 bits input D/C 7 6 5 4 3 2 1 0 1st write 1 R3 R2 R1 R0 G3 G2 G1 G0 2nd write 1 B3 B2 B1 B0 R3 R2 R1 R0 3rd write 1 G3 G2 G1 G0 B3 B2 B1 B0 BYTE Table 83 Write data for RGB 5 : 6 : 5 bits input BYTE D/C 7 6 5 4 3 2 1 0 1st write 1 R4 R3 R2 R1 R0 G5 G4 G3 2nd write 1 G2 G1 G0 B4 B3 B2 B1 B0 Table 84 Write data for RGB 3 : 3 : 2 bits input BYTE 1st write 7.2 7.2.1 D/C 7 6 5 4 3 2 1 0 1 R2 R1 R0 G2 G1 G0 B1 B0 Display data RAM and access arbiter DISPLAY DATA RAM The PCF8833 has an integrated 132 × 132 × 12-bit single port static RAM. This 209 kbit memory allows a 132 × 132 (RGB) image with a 12-bpp resolution (4 kbyte colour) to be stored on-chip. 2003 Feb 14 62 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 7.2.2 PCF8833 RAM ACCESS ARBITER For example, if the whole display content is written, the window will be defined by the following values: xs = 0 (0H), ys = 0 (0H), xe = 131 (83H) and ys = 131 (83H). The function of the arbiter is to handle the data flow. If a write access is done on the RAM and a read access is requested at the same time, then the arbiter will ensure that there are no data collisions. Writing data to the RAM has priority. Therefore no handshaking is done at the interface side and the data can be applied to the interface without having data read/write errors on the RAM. 7.2.3 In the vertical addressing mode (V = 1), the Y address increments after each pixel. After the last Y address (Y = ye), Y wraps around to ys and X increments to address the next column. In horizontal addressing mode (V = 0), the X address increments after each pixel. After the last X address (X = xe), X wraps around to xs and Y increments to address the next row. After the very last address (X = xe and Y = ye) the address pointers wrap around to address (X = xs and Y = ys). WR ADDRESS COUNTER The address counter sets the addresses of the display data RAM for writing. For flexibility in handling a wide variety of display architectures, the command ‘Memory Data Access Control (MADCTL)’ (see Section 6.2.27) defines flags MX and MY, which allows mirroring of the X and Y addresses. All combinations of flags are allowed. Figures 34, 35 and 36 show the possible combinations of writing to the display RAM. When MX, MY and V is changed, the data must be re-written to the display RAM. Data is written pixel wise into the RAM of the PCF8833. The data for one pixel is collected (RGB 4 : 4 : 4 bit) before it is written into the display data RAM. The RAM locations are addressed by the address pointers. The address ranges are X = 0 to X = 131 (83H) and Y = 0 to Y = 131 (83H). Addresses outside of these ranges are not allowed. Before writing to the RAM a window must be defined into which data will be written. The window is programmable via the command registers xs and ys (designating the start address) and xe and ye (designating the end address). xs xe 7.2.4 DISPLAY ADDRESS COUNTER The display address counter generates the addresses for readout of the display data RAM. xs MGU943 handbook, halfpage 0 xe MGU944 handbook, halfpage 0 ys Y address Y address ys ye 131 ye 131 0 X address 131 0 V = 0; MX = 0 and MY = 0. X address V = 1; MX = 0 and MY = 0. Fig.34 Sequence of writing data bytes into RAM showing function of V bit. 2003 Feb 14 63 131 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver xs xe PCF8833 xe MGU945 handbook, halfpage 0 xs MGU946 handbook, halfpage 0 ys Y address Y address ys ye 131 ye 131 0 X address 131 131 V = 0; MX = 0 and MY = 1. xs xe X address 0 V = 0; MX = 1 and MY = 0. xe MGU947 handbook, halfpage 131 xs MGU948 handbook, halfpage 131 ye Y address Y address ye ys 0 ys 0 0 X address 131 131 V = 0; MX = 0 and MY = 0. X address 0 V = 0; MX = 1 and MY = 1. Fig.35 Sequence of writing data bytes into RAM with horizontal addressing (V = 0) showing function MX and MY. 2003 Feb 14 64 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver xs xe PCF8833 xe MGU949 handbook, halfpage 0 xs MGU950 handbook, halfpage 0 ys Y address Y address ys ye 131 ye 131 0 X address 131 131 V = 1; MX = 0 and MY = 0. xs xe X address 0 V = 1; MX = 1 and MY = 0. xs MGU951 handbook, halfpage 131 xe MGU952 handbook, halfpage 131 ye Y address Y address ye ys 0 ys 0 0 X address 131 131 V = 1; MX = 0 and MY = 1. X address 0 V = 1; MX = 1 and MY = 1. Fig.36 Sequence of writing data bytes into RAM with vertical addressing (V = 1) showing function MX and MY. 2003 Feb 14 65 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 7.3 PCF8833 • All column and row outputs are set to VSS1 (display off) Command decoder • RAM data undefined The command decoder identifies command words arriving at the interface and routes the following data bytes to their destination. The command set is given in Chapter 6. 7.4 • Power-down mode • Command register set to default states; see Table 4. Grey scale controller 7.8 For a grey scale driving scheme, Frame Rate Control (FRC) with carefully controlled mixing of the FRC pattern on each pixel is used. The special mixing ensures that the pattern placed on each pixel is different from each of its neighbours. In frame rate control 16 frames form together to produce a super-frame. All 16 frames have the same duration. 7.5 The LCD voltage generator and the bias level generator is illustrated in Fig.37. The VLCD is generated by means of two voltage multipliers, with voltage multiplier 1 being programmable; see Section 6.2.39. Behaviour of voltage multiplier 2 depends on the mode. In the full Display mode, voltage multiplier 2 behaves as a doubler. In the partial Display mode voltage multiplier 2 feeds the voltage of VLCDIN1 directly to VLCDOUT2. Timing generator The LCD voltage generator requires in total 9 external components (capacitors). The recommended values and voltage ranges for the external components are specified in Table 85. The given values should be referred to as information only. It is recommended to check how patterns with high load are displayed before finalizing the values. The timing generator produces the various signals required to drive the internal circuitry. Internal chip operation is not affected by operations on the data bus. 7.6 Oscillator The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD1. An external clock signal, if used, is connected to the OSC input. In this case the internal oscillator must be switched off by a software command; see Section 6.2.38. 7.7 LCD voltage generator and bias level generator The bias level generator generates the required bias levels according to the programmed bias systems; see Section 6.2.43. To save power it is recommended to apply capacitors to bias level pads (V2H, V1H, VC, V1L and V2L) of approximately 1 µF. A capacitor at VC pad is expected to be the most effective. Depending on the application of the VC capacitor it might be advantageous or even necessary to set the OPT bit VCBW = 1; see Table 97 and Section 15.8. Reset The chip has a hardware and a software reset. After power-up a hardware reset (pin RES) must be applied. The hardware and software reset give the same results. After a reset, the chip has the following state; see Section 6.2.2: Table 85 External components ITEM CAPACITOR VALUE VOLTAGE RANGE C1 to C4; CVLCD1 1 to 4.7 µF 16 V C5; CVLCD2 1 to 4.7 µF 25 V CVDD2 1 to 4.7 µF 4.5 V CVDD1 1 µF 3.3 V 2003 Feb 14 66 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 VLCDOUT2 C5+ VLCD C5 VOLTAGE MULTIPLIER 1 C4+ C4 C4− C3+ C3 C5− VLCDIN1 VLCDOUT1 CVLCD2 VLCDIN2 V2H VOLTAGE MULTIPLIER 2 CVLCD1 V1H C3− C2+ C2 VLCDSENSE C2− C1+ VC BIAS LEVEL GENERATION C1 C1− VDD2 VSS2 V1L MONITOR VDD3 CVDD2 CVDD1 VSS1 VDD1 V2L VSS1 VSS MGU953 Fig.37 LCD voltage and bias level generator. 7.9 Column drivers, data processing and data latches 8 PARALLEL INTERFACE The 8080-series 8-bit bidirectional interface can be used for communication between the microcontroller and the PCF8833. The selection of this interfaces is done with pins PS2, PS1 and PS0; see Section 7.1.1. The column drivers section includes 132 × 3 column outputs (C0 to C395) which should be connected directly to the LCD. When less than 396 columns are required, the unused column outputs must be left open-circuit. The interface functions of the 8080-series parallel interface are given in Table 86. The column output signals are generated in the data processing block by reading out data from the display RAM and processing with the appropriate orthogonal function which represents the simultaneously selected rows. Table 86 8080-series parallel interface function; note 1. D/C RD WR 0 1 R command write The row drivers section includes 132 row outputs which should be connected directly to the LCD. When less than 132 rows are required the unused column outputs must be left open-circuit. 1 1 R command data write 1 1 R display data write 0 R 1 read status register 1 R 1 none When the PCF8833 is operating in full Display mode, 4 rows are always selected simultaneously. In partial Display mode the active row output signals are selected one after the other. 1 R R forbidden 7.10 Row drivers 2003 Feb 14 Note 1. R = rising edge. 67 OPERATION Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 When sending commands to the PCF8833 the D/C line must be pulled HIGH when the command data is transferred (see Fig.38). The same is valid when RAM data is sent to the PCF8833 (see Fig.39). When using the RDDIDIF (see Section 6.2.6) or RDDST (see Section 6.2.7) commands the PCF8833 sends 24 or 32 data bits respectively back to the microcontroller. The protocol for the RDDIDIF and RDDST commands is illustrated in Fig.41. The PCF8833 can send data back to the microcontroller in 2 different ways. The protocol for the RDID1, RDID2, RDID3 and RDTEMP commands is illustrated in Fig.40. Descriptions of these commands is given in Chapter 6. When reading out RDTEMP it is recommended to read this data several times to validate the readout number. handbook, full pagewidth S The parallel interface timing diagram is illustrated in Fig.52. For the dummy read cycle the time tACC is referenced to the rising edge of the RD signal. TB TB TB TB TB TB command command data command command command command P CS D/C WR D7 to D0 MGU954 Fig.38 Parallel bus protocol, write to register (PS[2:0] = XX1). handbook, full pagewidth S command RAM data RAM data RAM data RAM data RAM data command RAM data RAM data RAM data RAM data RAM data CS D/C WR D7 to D0 (input) MGU955 Fig.39 Parallel bus protocol, write to display RAM (PS[2:0] = XX1). 2003 Feb 14 68 P Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth S TB dummy read PCF8833 dummy read TB TB TB TB P command command CS D/C WR RD D7 to D0 (input) read command D7 to D0 (output) MGU956 Fig.40 Parallel bus protocol, read from register (PS[2:0] = XX1) for RDID1, RDID2, RDID3 and RDTEMP commands. handbook, full pagewidth S TB dummy read RDDIDIF = 24 bits, RDDST = 32 bits TB TB P command command CS D/C WR RD D7 to D0 (input) D7 to D0 (output) read command RDDIDIF = 24 bits, RDDST = 32 bits MGU957 Fig.41 Parallel bus protocol, read from register (PS[2:0] = XX1) for the RDDIDIF and RDDST commands. 2003 Feb 14 69 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 9 PCF8833 Any instruction can be sent in any order to the PCF8833; the MSB is transmitted first. The serial interface is initialized when SCE is HIGH. In this state, SCLK pulses have no effect and no power is consumed by the serial interface. A falling edge on pin SCE enables the serial interface and indicates the start of data transmission. SERIAL INTERFACE Communication with the microcontroller can also occur via a clock-synchronized serial peripheral interface. The selection of this interface is achieved with pin PS0; see Section 7.1.1. The serial interface is a 3-line bidirectional interface for communication between the microcontroller and the LCD driver chip. The 3 lines are chip enable (SCE), Serial Clock (SCLK) and Serial Data (SD). The PCF8833 is connected to the SD pin of the microcontroller by two pins SDIN (data input) and SDOUT (data output) which are connected together. 9.1 Figure 42 shows the protocol of the Write mode: • When SCE is HIGH, SCLKs are ignored. The serial interface is initialized during the HIGH time of SCE. • At the falling edge of SCE SCLK must be LOW (see Fig.51) • SDIN is sampled at the rising edge of SCLK • D/C indicates, whether the byte is a command (D/C = 0) or data (D/C = 1). It is sampled with the first rising SCLK edge. Write mode The Write mode of the interface means that the microcontroller writes commands and data to the PCF8833. Each data packet contains a control bit D/C and a transmission byte. If bit D/C is logic 0, the following byte is interpreted as a command byte. The command set is given in Table 1. If bit D/C is logic 1, the following bytes are stored in the display data RAM or registers. After every RAM data byte the address counter increments automatically. Figure 42 shows the general format of the Write mode and the definition of the transmission byte. • If SCE stays LOW after the last bit of a data/command byte, the serial interface will receive the D/C bit of the next byte at the next rising edge of SCLK (see Fig.43). • A reset pulse at pin RES interrupts the transmission. The data being written into the RAM may be corrupted. The registers are cleared. If SCE is LOW after the rising edge of RES, the serial interface is ready to receive the D/C bit of a data/command byte; see Figs 44 and 50. transmission byte (TB) may be a command OR a data byte handbook, full pagewidth D/C D7 D6 D5 D4 D3 D2 MSB D/C D1 D0 LSB TB D/C TB D/C TB MGU958 Fig.42 Serial data stream, Write mode. 2003 Feb 14 70 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth S PCF8833 TB P TB SCE SCLK SDIN DC b7 b6 b5 b4 b3 b2 b1 b0 DC b7 b6 b5 b4 b3 b2 b1 b0 MGU959 Fig.43 Serial bus protocol, write to register with control bit in transmission (PS[2:0] = XX0). handbook, full pagewidth S P TB SCE RES SCLK SDIN DC b7 b6 b5 b4 b3 b2 DC b7 b6 b5 b4 b3 b2 b1 b0 MGU960 Fig.44 Serial bus protocol, Write mode, interrupted by reset (RES); (PS[2:0] = XX0). handbook, full pagewidth S P TB SCE RES SCLK SDIN DC b7 b6 b5 b4 b3 b2 DC b7 b6 b5 b4 b3 b2 b1 b0 MGU961 Fig.45 Serial bus protocol, Write mode, interrupted by chip enable (SCE); (PS[2:0] = XX0). 2003 Feb 14 71 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... The Read mode of the serial interface means that the microcontroller reads data from the PCF8833. The PCF8833 can send data back to the microcontroller in two different ways. The serial bus protocol for the RDID1, RDID2, RDID3 and RDTEMP commands is illustrated in Fig.46. Descriptions of these commands are given in Section 6.2. After a command has been issued, a byte is transmitted in the opposite direction (using SDOUT). In order to reach the timing characteristics as given in Chapter 13 data bit b7 must be handled as a don’t care. When the speed of the clock is slowed down to at least half of maximum speed, at least for reading b7, the reading of data bit b7 is valid. The PCF8833 samples the SDIN data at rising SCLK edges, but shifts SDOUT data at falling SCLK edges. Thus the microcontroller is supposed to read SDOUT data at rising SCLK edges. After the read command has been sent, the SDIN line must be set to 3-state not later than the falling SCLK edge of the last bit (see Fig.46). When using the RDDIDIF (see Section 6.2.6) or RDDST (see Section 6.2.7) commands the PCF8833 sends 24 or 32 data bits respectively back to the microcontroller. The serial bus protocols for the RDDIDIF and RDDST commands are illustrated in Figs. 47 and 48. After one of these commands has been sent 3 or 4 bytes respectively are transmitted in the opposite direction (using SDOUT) after one dummy clock cycle is given. The 8th read bit is shorter than the others because it is terminated by the rising SCLK edge; see Figs 46, 47 and 48. The last rising SCLK edge sets SDOUT to 3-state. The serial interface timing diagram is illustrated in Fig.51. For the dummy read cycle the time tACC is referenced to the rising edge of the SCLK signal. Philips Semiconductors Read mode STN RGB - 132 × 132 × 3 driver 2003 Feb 14 9.2 72 S TB TB P TB SCE SCLK SDIN SDOUT DC b7 b6 b5 b4 b3 b2 b1 b0 DC b7 b6 b5 b4 b3 b2 b1 b7 b6 b5 b4 b3 b2 b1 b0 b0 MGU962 Objective specification PCF8833 Fig.46 Serial bus protocol, Read mode (PS[2:0] = XX0) for RDID1,RDID2, RDID3 and RDTEMP commands. This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... TB P TB SCE SCLK DC SDIN b7 b6 b5 b4 b3 b2 b1 b0 SDOUT DC d23 d22 d21. . . d3 d2 d1 b7 b6 b5 b4 b3 b2 b1 b0 d0 MGU963 Fig.47 Serial bus protocol, Read mode (PS[2:0] = XX0) for the RDDIDIF command. Philips Semiconductors TB STN RGB - 132 × 132 × 3 driver 2003 Feb 14 S 73 S TB TB P TB SCE SCLK SDIN SDOUT DC b7 b6 b5 b4 b3 b2 b1 b0 DC d31 d30 d29. . . d3 d2 d1 b7 b6 b5 b4 b3 b2 b1 b0 d0 PCF8833 Fig.48 Serial bus protocol, Read mode (PS[2:0] = XX0) for the RDDST command. Objective specification MGU964 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 10 LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 60134); note 1. SYMBOL PARAMETER MIN. MAX. UNIT VSS2 system ground voltage −0.5 +0.5 V VDD1 logic supply voltage 1 −0.5 +4.0 V VDD2 supply voltage 2 for the internal voltage generator −0.5 +6.5 V VDD3 analog supply 3 for the internal voltage generator −0.5 +4.0 V VLCDIN1 LCD supply voltage input 1 −0.5 +16 V VLCDIN2 LCD supply voltage input 2 −0.5 +20 V VLCDSENSE voltage multiplier input voltage −0.5 +20 V VOTP(gate) supply voltage 1 for OPT programming −0.5 +10 V VOTP(drain) supply voltage 2 for OPT programming (Vwrite) −0.5 +10 V IDDn supply current at all VDD pins −50 +50 mA ISSn negative supply current at all VSS pins −50 +50 mA VI, VO input/output voltage except for row and column outputs −0.5 VDD + 0.5 V output voltage for row and column outputs −0.5 VLCD2 + 0.5 V II DC input current −10 +10 mA IO DC output current −10 +10 mA Ptot total power dissipation − 300 mW Tstg storage temperature −55 +125 °C Tj junction temperature − 125 °C Note 1. Parameters are valid over the operating temperature range; all voltages are referenced to VSS1; unless otherwise specified. 11 HANDLING Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is recommended to take normal precautions appropriate to handling MOS devices (see “Handling MOS Devices”). 2003 Feb 14 74 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 12 DC CHARACTERISTICS VDD1 = 1.5 to 3.3 V; VDD2 = VDD3 = 2.4 to 3.5 V; VSS = 0 V; VLCD = 3.8 to 20.0 V; Tamb = −40 to +85 °C; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Supplies 1.5 − 3.3 V note 1 2.4 − 4.5 V supply voltage 3 for the internal voltage generator note 1 2.4 − 3.5 V VLCDIN1 LCD supply voltage input 1 LCD input voltage 1 externally supplied (both voltage multipliers are disabled) − − 16.0 V VLCDIN2 LCD supply voltage input 2 LCD input voltage 2 externally supplied (both voltage multipliers are disabled) − − 20.0 V VLCDOUT1 LCD supply voltage output 1 LCD voltage internally generated with voltage multiplier 1 (voltage generator enabled); note 2 3.8 − 10.0 V VLCDOUT2 LCD supply voltage output 2 LCD voltage internally generated with voltage multiplier 2 (voltage generator enabled); note 2 3.8 − 20.0 V VLCD(tol) tolerance of generated VLCD with calibration; note 3 −70 − +70 mV VDD1 logic supply voltage 1 VDD2 supply voltage 2 for the internal voltage generator VDD3 Static current consumption IDD1 logic supply current notes 5 and 6 − 1.5 5 µA IDD2, IDD3 supply current for the internal voltage generator notes 5 and 6 − 0.5 1 µA − 100 − µA 1000 − µA Dynamic current consumption IDD1 logic supply current Normal mode; note 5 IDD1 logic supply current during RAM access Normal mode; notes 5 and 7; − see Fig.49 IDD2, IDD3 supply current for the internal voltage generator Normal mode; note 5 − tbf − µA IDD(tot) total supply current (VDD1 + VDD2, Normal mode; note 5 VDD3) − tbf − µA Logic inputs and outputs VOL LOW-level output voltage IOL = 0.5 mA VSS1 − 0.2VDD1 V VOH HIGH-level output voltage IOH = −0.5 mA 0.8VDD1 − VDD1 V VIL LOW-level input voltage VSS1 − 0.3VDD1 V VIH HIGH-level input voltage 0.7VDD1 − VDD1 V IL leakage current −1 − +1 µA 2003 Feb 14 VI = VDD1 or VSS1 75 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver SYMBOL PCF8833 PARAMETER CONDITIONS MIN. TYP. MAX. UNIT Column and row outputs Ro(col) column output resistance C0 to C395 VLCD2 = 10 V − − 5 kΩ Ro(row) row output resistance R0 to R131 VLCD2 = 10 V − − 5 kΩ Vbias(col) bias tolerance C0 to C395 −100 0 100 mV Vbias(row) bias tolerance R0 to R131 −100 0 100 mV Notes 1. VDD2 and VDD3 always have to be higher than or equal to VDD1. 2. The maximum possible VLCD voltage that may be generated is dependent on supply voltage VDD2, temperature and (display) load. 3. Valid for values of temperature, VPR and TC used at the calibration and with temperature calibration disabled. 4. Power-save mode. 5. Conditions are: VDD1 = 2.75 V, VDD2 = 2.75 V, VLCD2 = 13.9 V, voltage multiplier 1 at 5 × VDD2, inputs at VDD1 or VSS1, interface inactive, internal VLCD generation, VLCD2 output is loaded by 400 µA and VLCD1 output is loaded by 0 µA and Tamb = 25 °C. 6. During power-down all static currents are switched off. 7. VDD1 = 1.8 V and interface cycle time Tcyc = 333 ns. MGU965 8 handbook, halfpage I DD1, I DD3 (mA) 6 (4) 4 (3) 2 (2) (1) 0 0 2 4 6 8 fcyc (MHz) (1) VDD1 = 1.5 V (2) VDD1 = 1.8 V (3) VDD1 = 2.5 V (4) VDD1 = 3.3 V Fig.49 Dynamic current consumption IDD1, IDD3 for different VDD1 supplies when writing data from interface to display RAM at ambient temperature. 2003 Feb 14 76 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 13 AC CHARACTERISTICS VDD1 = 1.5 to 3.3 V; VDD2 = VDD3 = 2.4 to 3.5 V; VSS1 = VSS2 = 0 V; Tamb = −40 to +85 °C; note 1; unless otherwise specified. SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT fframe LCD frame frequency (internal clock) VDD1 = 3.0 V − tbf − Hz fosc oscillator frequency notes 2 and 3 − 600 − kHz fclk(ext) external clock frequency − tbf − kHz 500 − − ns Reset; see Fig.50 tW(RESL) reset LOW pulse width note 4 tRSS reset spike suppression − − 100 ns tSU;RESL reset LOW pulse set-up time after power-on 0 − 1 µs tRT initialization 0 − 5 ms tRI interface ready after reset pulse 0 − 1 µs note 5 Serial interface; VDD1(min) = 1.65 V; note 6; see Fig.51 TSCYC serial clock SCLK period (SCLK) 150 − − ns tSHW SCLK pulse width HIGH 60 − − ns tSLW SCLK pulse width LOW 60 − − ns tSDS SDIN data set-up time 60 − − ns tSDH SDIN data hold time 60 − − ns tACC SDOUT access time CL = 30 pF 10 − 50 ns tOH SDOUT output disable time CL = 5 pF; R = 3 kΩ 25 − 50 ns tSCC SCLK to SCE time 20 − − ns tCHW SCE pulse width HIGH 40 − − ns tCSS SCE to SCLK set-up time 60 − − ns tCSH SCE to SCLK hold time 65 − − ns 10 − − ns 8-bit parallel (8080-type) interface; VDD1(min) = 1.65 V; note 6; see Fig.52 tCS CS-WR and CS-RD time tAH D/C address hold time 10 − − ns tAS address set-up time 10 − − ns TCYC system cycle time 160 − − ns tCCLW WR control pulse width LOW Write mode 38 − − ns tCCLR RD control pulse width LOW Read mode 38 − − ns tCCHW WR control pulse width HIGH Write mode 90 − − ns tCCHR RD control pulse width HIGH Read mode 90 − − ns tDS D0 to D7 data set-up time 10 − − ns tDH D0 to D7 data hold time 10 − − ns tACC read access time note 8; CL = 30 pF − − 30 ns tOH output disable time note 8; CL = 5 pF; R = 3 kΩ; note 9 30 − 160 ns 2003 Feb 14 note 7 77 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Notes 1. VDD2 and VDD3 always have to be larger than or equal to VDD1. 2. Not directly observable at any pin. 3. After calibration the following fosc can be expected at 25 °C: 600 kHz ±4%; at different temperatures an additional variation of +0.12%/°C will not be exceeded. 4. All timing values are valid within the operating supply voltage and ambient temperature range and are referenced to VIL and VIH with an input voltage swing of VSS1 to VDD1. 5. The initialization incorporates the start-up of the internal circuitry including the readout of the OTP cells. The start-up time for the internal voltage generation is not included. 6. The input signal rise time and fall time (tr and tf) are specified at 15 ns or less. When the cycle time is used at high speed, the specification is tr + tf ≤ (tCYC − tCCLW − tCCHW) or tr + tf ≤ (tCYC – tCCLR − tCCHR). 7. CS can be permanently tied LOW. 8. The output disable time and read access time is applicable after the second read cycle (see Fig.40). 9. For VDD1 = 1.8 V possible variation of tOH is between 40 and 80 ns for a temperature range of −40 to +85 °C. handbook, full pagewidth VDD1 t RSS VIH RES VIL t SU;RESL t RT t W(RESL) Status resetting normal operation VDD1 VIH RES VIL t W(RESL) resetting Status t RI Interface: commands/data t RT t W(RESL) not accepted normal operation t RI accepted not accepted accepted MGU966 Fig.50 Reset timing. 2003 Feb 14 78 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidtht CHW PCF8833 t CSS t CSH t CHW SCE T SCYC t SCC t SLW t SHW SCLK tr tr t SDS t SDH SDIN t ACC SDOUT t OH high-impedance MGU967 Fig.51 Serial interface timing. handbook, full pagewidth D/C t AS t AH t CS CS T CYC t CCLR, t CCLW t CCHR, t CCHW WR, RD t DS t DH D0 to D7 (Write) t ACC t OH D0 to D7 (Read) MGU968 Fig.52 Parallel interface timing (8080 type). 2003 Feb 14 79 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 14 APPLICATION INFORMATION handbook, full pagewidth DISPLAY 132 × 132 (RGB) VSS1 VSS2 VDD3 VDD2 VDD1 PCF8833 66 VLCDOUT1 VLCDIN1 396 VLCDSENSE VLCDOUT2 VLCDIN2 66 MGU969 I/O Fig.53 Application configuration. Figure 54 shows a typical supply and capacitor connections for the PCF8833. 2003 Feb 14 80 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 common ITO/connector resistance resistance handbook, full pagewidth 12 Ω 600 Ω VOTP(drain) VOTP(gate) 15 Ω <2Ω <2Ω 15 Ω 200 Ω VSS1 VSS2 VDD3 15 Ω 30 Ω GND 60 Ω GND 5Ω 15 Ω < 1 kΩ GND 60 Ω VDD2 VDD1 VLCDOUT2 VLCDIN2 VLDSENSE C5+ 60 Ω C5 PCF8833 C5− 5Ω 30 Ω 15 Ω GND 30 Ω C4 30 Ω VLCDOUT1 VLCDIN1 C4+ C4− 30 Ω C3+ C3 30 Ω C3− 30 Ω C2+ C2 30 Ω C2− 30 Ω C1+ C1 30 Ω C1− MGU970 The indicated resistor values are the maximum recommended values. The recommended capacitor values are given in Table 85. Fig.54 I/O configuration for the PCF8833. 2003 Feb 14 81 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 • Identification bits ID2[7:0] and ID3[7:0] 15 MODULE MAKER PROGRAMMING • TRS and BRS The One Time Programmable (OTP) technology has been implemented in the PCF8833. It enables the module maker to perform an LCD supply voltage calibration after it has been assembled on an LCD module. The module maker can also pre-define command set registers in order to provide the setmaker with a ‘plug and play’ module where only display related data has to be sent. • Factory default bit EFD • Seal bit. 15.1 VLCD calibration The first feature included is the ability to adjust the VLCD voltage with a 6-bit code (MMVOPCAL). This code is implemented in twos complement notation giving rise to a positive or negative offset to the VPR register. The adder in the circuit has underflow and overflow protection. In the event of an overflow, the output will be clamped to VOP = 445; during an underflow the output will be clamped to 0. The PCF8833 features the following module maker programming facilities: • VLCD calibration • Multiplication factor S[1:0] to FS[1:0] for full Display mode and PS[1:0]) for partial Display mode • Set VPR[8:0] to FVPR[8:0] for full Display mode and PVPR[8:0] for partial Display mode Figure 55 illustrates how the high voltage generator setting VOP is controlled. Compared to equation (1) in Section 6.2.31, Fig.55 also takes the temperature compensation VT into account (see Section 6.2.40), which is reflected in the following equation: VLCD = a + (VT[7:0] + MMVOPCAL[5:0] + VCON[6:0] + VPR[8:0]) × b • Set bias system VB[3:0] to FVB[3:0] for full Display mode and PVB[3:0] for partial Display mode • Segmented temperature compensation slopes for VLCD, SLA [2:0], SLB[2:0], SLC[2:0] and SLD[2:0] • Segmented temperature frame frequencies DFA[6:0], DFB[6:0], DFC[6:0] and DFD[6:0] • Frame frequency 8-colour mode DF8[6:0] handbook, full pagewidth Temperature compensation VT, 8-bit value range − 128 to + 127 VT [7:0] OTP VLCD calibration, 6-bit offset range −32 to + 31 MMVOPCAL [5:0] range − 64 to + 63 VCON register, 7-bit VCON [6:0] VPR register, 9-bit value VPR [8:0] range 0 to 445 usable range 5 to 410 Fig.55 VLCD calibration. 2003 Feb 14 82 + VOP range 0 to 445 MGU971 to high voltage generator Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 87 Possible MMVOPCAL values 15.2 MMVOPCAL[5:0] DECIMAL EQUIVALENT VLCD OFFSET 011111 31 +1240 mV 011110 30 +1200 mV 011101 29 +1160 mV : : : 000010 2 +80 mV 000001 1 +40 mV 000000 0 0 mV 111111 −1 −40 mV 111110 −2 −80 mV : : : 100010 −30 −1200 mV 100001 −31 −1240 mV 100000 −32 −1280 mV Factory defaults It is possible to change to settings defined by registers which can be set via the interface, except ID2[7:0] and ID3[7:0] which are defined only by OTP cells. The selection of the factory defaults mode is made by setting the factory default OTP bit EFD. The factory default setting of the following features can be predefined with OTP cells: • Multiplication factor S[1:0] for full and partial Display mode The operation can be thought of as a switch that selects between two sources for the data. When the factory defaults are selected (EFD = 1), changing the values via the interface is not possible, not even by sending the SFD command. • Set VPR[8:0] for full and partial Display mode • Set bias system VB[3:0] for full and partial Display mode • Segmented temperature compensation slopes for VLCD, SLA[2:0], SLB[2:0], SLC[2:0] and SLD[2:0] • Segmented temperature frame frequencies DFA[6:0], DFB[6:0], DFC[6:0] and DFD[6:0] • Frame frequency 8-colour mode DF8[6:0] • TRS and BRS • Identification bits ID2[7:0] and ID3[7:0]. Table 88 Factory default bit EFD EFD ACTION 0 configuration data is taken from the interface if SFD = 0 or from the OTP if SFD = 1 1 OTP values are used for configuration 2003 Feb 14 83 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver handbook, full pagewidth PCF8833 INTERFACE SFD default = 1 OR OTP CELL EFD default = 0 INTERFACE INTERFACE REGISTERS e.g. SLA [2:0] 0 to temperature compensation circuit OTP DEFAULTS e.g. SLA [2:0] 1 MGU972 Fig.56 Factory defaults. 15.3 Bit 7 of every data byte is not used. An example sequence on how to fill the matrix is given in Table 96. Seal bit The module maker programming is performed in the Calibration mode. This mode is entered via a special interface command (CALMM). To prevent erroneous programming, a seal bit has been implemented which prevents the device from entering Calibration mode. This seal bit, once programmed, cannot be reversed, thus further changes in programmed values are not possible. Applying the programming voltage when not in CALMM mode will have no effect on the programmed values. The default value of the OTP cells is shown in Table 91. These values may be changed by programming the OTP cell. The programming of a cell will invert the default value. This inversion may only happen once per cell, as the programming is irreversible. Table 93 shows an example on how to program the OTP cells to receive the values given in Table 92. Some examples are given below: 1. The default for DFA[0] is 0; see Table 91, and it is required to have DFA[0] = 1; see Table 92. This means that the value needs to be inverted. Therefore the OTP cell has to be programmed (a 1 in Table 93). Table 89 Seal bit definition SEAL BIT 15.4 ACTION 0 Calibration mode enabled 1 Calibration mode disabled 2. The default for DFA[4] is 1; see Table 91, and it is required to have DFA[4] = 0; see Table 92. This means that the value needs to be inverted. Therefore the OTP cell has to be programmed (a 1 in Table 93). OTP architecture An OTP cell is divided into a non-volatile programmable instance containing the value and a register, where the value is made accessible to the rest of the chip. 3. The default for DFA[5] is 1; see Table 91, and it is required to have DFA[5] = 1; see Table 92. This means that it is not necessary to change the value. Therefore it is not necessary to program the OTP cell (a 0 in Table 93). In the PCF8833 104 OTP cells are available for the module maker. These cells are organised in a matrix of 7 rows and 15 columns, where the last row is only partially used; see Table 90. All the rows of one particular column of the matrix are filled in parallel by sending 1 byte of data with the OTPSHTIN command. Byte 15 is sent first (containing PVB[3:0], BRS and TRS) and byte 0 last (containing MMVOP[5:0] or SEAL). 2003 Feb 14 4. The default for DFA[6] is 0; see Table 91, and it is required to have DFA[6] = 0; see Table 92. This means that it is not necessary to change the value. Therefore it is not necessary to program the OTP cell (a 0 in Table 93). 84 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 SEAL DFA0 DFB0 DFC0 DFD0 DF80 ID20 ID27 ID36 SLA0 SLC0 FVPR0 FVPR6 PVPR3 EFD TRS 1 MMVOP0 DFA1 DFB1 DFC1 DFD1 DF81 ID21 ID30 ID37 SLA1 SLC1 FVPR1 FVPR7 PVPR4 VCBW BRS (1) 2 MMVOP1 DFA2 DFB2 DFC2 DFD2 DF82 ID22 ID31 FS0 SLA2 SLC2 FVPR2 FVPR8 PVPR5 FVB0 PVB0 3 MMVOP2 DFA3 DFB3 DFC3 DFD3 DF83 ID23 ID32 FS1(1) SLB0 SLD0 FVPR3 PVPR0 PVPR6 FVB1 PVB1 PS0(2) PS1(2) SLB1 SLD1 FVPR4 PVPR1 PVPR7 FVB2 PVB2 SLB2 SLD2 FVPR5 PVPR2 PVPR8 FVB3 PVB3 4 MMVOP3 DFA4 DFB4 DFC4 DFD4 DF84 ID24 ID33 5 MMVOP4 DFA5 DFB5 DFC5 DFD5 DF85 ID25 ID34 6 MMVOP5 DFA6 DFB6 DFC6 DFD6 DF86 ID26 ID35 Notes 1. FS[1:0] is the multiplication factor used in full Display mode, compare to S[1:0]; see Section 6.2.39. 2. PS[1:0] is the multiplication factor used in partial Display mode, compare to S[1:0]; see Section 6.2.39. not used Philips Semiconductors BIT STN RGB - 132 × 132 × 3 driver 2003 Feb 14 Table 90 OTP array: content 85 Objective specification PCF8833 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 91 OTP array: default values BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 0 0 1 0 0 2 0 0 0 1 0 0 0 1 1 1 1 0 1 0 1 1 3 0 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 4 0 1 0 1 1 0 0 0 1 1 1 0 0 1 0 1 5 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 6 0 0 0 0 0 0 0 0 not used Table 92 OTP array: desired values BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 0 0 0 1 0 0 2 0 0 1 1 0 0 0 1 1 1 1 0 1 0 1 1 3 1 1 0 1 1 0 0 0 1 1 1 0 1 0 1 1 4 1 0 0 1 1 0 0 0 1 1 1 0 0 1 0 1 5 0 1 1 0 0 1 0 0 1 0 1 0 1 0 1 1 6 0 0 0 0 0 0 0 0 not used Table 93 OTP array: values to be programmed BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 0 0 2003 Feb 14 86 not used Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 15.5 PCF8833 Interface commands Table 94 contains a list of all OTP related commands. Table 94 OTP related commands COMMAND BYTE(1) NAME HEX D/C DESCRIPTION D7 D6 D5 D4 D3 D2 D1 D0 0 1 1 1 1 0 0 0 0 1 X X ORA0 X OPE CALMM Sleep_OUT 0 0 0 0 1 0 0 0 1 11 generate a refresh of the OTP if CALMM = 0 OTPSHTIN 0 1 1 1 1 0 0 0 1 F1 1 X D6 D5 D4 D3 D2 D1 D0 start shifting data in the shift register; the shifting is executed as long as D/C = 1 0 1 1 1 0 1 1 1 SFD CALMM SFD ORA2 ORA1 F0 CALMM command entry CALMM mode (CALMM) enable programming (OPE) set address (ORA) EE/EF set factory default (see Sections 6.2.47 and 15.2) Note 1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be 0. 15.5.1 CALIBRATION MODULE MAKER MODE 15.5.3 When CALMM = 1 the device enters the calibration module maker mode. This mode enables the filling of the OTP matrix and allows programming of the non-volatile OTP cells to take place. The OTP matrix (see Table 90) is filled using the OTPSHTIN command, which is similar to the RAM write command. First the appropriate command is sent, then the following data bytes are shifted bytewise into the OTP matrix from left to right, i.e. the new byte is loaded into byte 0, whereas the data of byte 0 is shifted into byte 1 and so on. Bit 7 of the data is not used. The shifting is enabled as long as D/C remains at logic 1. The VOTP(drain) pad is not connected directly to the OTP cells, but through a switch that must be closed for programming by setting OPE to logic 1. The OTP row to be programmed may be chosen by setting the OTP row address ORA[2:0]. 15.5.2 15.6 REFRESH Suggestion on how to calibrate VLCD2 using MMVOP In order to calibrate the programming of VLCD2, the sequence in Table 95 is suggested to determine what MMVOP value has to be programmed. The action of the refresh instruction is to force the registers of the OTP matrix to load the value from the non-volatile part of the OTP cell. This instruction takes up to 1 ms to complete. During this time all other instructions may be sent. It is assumed that the relevant parameters, the VLCD2 programming, VPR and the number of stages S, are set via the interface. This implies that SFD is set to logic 0 and that all OTP settings except MMVOP are ignored. In the PCF8833 the refresh instruction is associated with the Sleep_OUT instruction such that the shift register is automatically refreshed every time the Sleep_OUT instruction is sent. No refresh may be started when in CALMM mode, i.e. whenever CALMM = 1. 2003 Feb 14 SHIFT IN 87 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... D/C ADDR 7 6 5 4 3 2 1 0 DESCRIPTION 1 0 0 0 0 0 0 0 0 1 01H reset (may also be hardware reset) 2 − − − − − − − − − − wait 1 ms for refresh to take effect 3 0 1 1 1 0 1 1 1 0 EEH set SFD = 0 in order to use interface values 4 0 0 0 1 0 1 0 0 0 28H send DISPOFF to prevent rows and columns to toggle 5 0 1 0 1 1 0 0 0 0 B0H set VPR to desired value 1 X X X X VPR8 VPR7 VPR6 VPR5 − 1 X X X VPR4 VPR3 VPR2 VPR1 VPR0 − 0 1 1 0 0 0 0 1 0 C2H 1 X X X X X X S1 S0 − 0 1 1 1 1 0 0 0 0 F0H 6 7 set multiplication stages to desired value enter CALMM mode 88 1 X X 0 0 0 x 0 1 01H ORA = 000 OPE = 0 CALMM = 1 8 0 0 0 0 1 0 0 0 1 11H send Sleep_OUT (no refresh because CALMM = 1) 9 − − − − − − − − − − 1 1 1 0 0 0 10 0 1 1 X 11 − − − − − − − 12 − − − − − − 13 0 1 1 1 1 1 X X 0 0 wait until D31 = 1 (V stable); note 2 1 F1H 0 − set MMVOP[5:0] and SEAL = 0 − − − check VLCD2 after VLCD2 has settled − − − − repeat steps 10 to 11 until desired VLCD2 is reached 0 0 0 0 F0H exit CALMM mode; if required 0 x 0 0 00H ORA = 000 OPE = 0 CALMM = 0 MMVOP5 MMVOP4 MMVOP3 MMVOP2 MMVOP1 MMVOP0 send OTPSHTIN; note 3 1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0. PCF8833 3. The chip stays in shift operation as long as D/C is logic 1. Objective specification Notes 2. D31 is the booster voltage status bit; see Section 6.2.7. Philips Semiconductors COMMAND BYTE(1) STEP STN RGB - 132 × 132 × 3 driver 2003 Feb 14 Table 95 Sequence to determine MMVOP Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 15.7 PCF8833 Example of filling the shift register Table 96 shows the sequence of commands to fill the OTP matrix as defined in Table 93. Table 96 Sequence for filling the OTP matrix COMMAND BYTE(1) STEP D/C 1 0 DESCRIPTION ADDR 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 01H 2 reset (may also be hardware reset) wait 1 ms for refresh to take effect 3 0 1 1 1 1 0 0 0 0 F0H enter CALMM mode 1 X X 0 0 0 X 0 1 01H ORA = 000; OPE = 0; CALMM = 1 4 0 1 1 1 1 0 0 0 1 F1H send OTPSHTIN; note 2 shift15 1 X X 0 0 0 0 0 0 00H set PVB[3:0]; BRS and TRS shift14 1 X X 0 0 0 0 0 0 00H set FVB[3:0]; 0 and EFD shift13 1 X X 0 0 0 0 0 0 00H set PVPR[8:3] shift12 1 X X 0 0 0 0 0 0 00H set PVPR[2:0] and FVPR[8:6] shift11 1 X X 0 0 0 0 0 0 00H set FVPR[5:0] shift10 1 X X 0 0 0 0 0 0 00H set SLD[2:0] and SLC[2:0] shift9 1 X X 0 0 0 0 0 0 00H set SLB[2:0] and SLA[2:0] shift8 1 X X 0 0 0 0 0 0 00H set PS[1:0]; FS[1:0] and ID3[7:6] shift7 1 X 0 0 0 0 0 0 0 00H set ID3[5:0] and ID2[7] shift6 1 X 0 0 0 0 0 0 0 00H set ID2[6:0] shift5 1 X 0 0 0 0 0 0 0 00H set DF8[6:0] shift4 1 X 0 0 0 0 0 0 0 00H set DFD[6:0] shift3 1 X 0 0 0 0 0 0 0 00H set DFC[6:0] shift2 1 X 0 0 0 0 1 1 1 07H set DFB[6:0] shift1 1 X 0 0 1 0 0 0 1 11H set DFA[6:0] shift0 1 X 0 0 1 1 0 1 0 1AH set MMVOP[5:0] and SEAL 5 0 1 1 1 1 0 0 0 0 F0H exit CALMM mode; if required 1 X X 0 0 0 X 0 0 00H ORA = 000; OPE = 0; CALMM = 0 Notes 1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0. 2. The chip stays in shift operation as long as D/C is logic 1. 15.8 Programming flow In order to program an OTP cell, the associated register must be set to logic 1 and a programming voltage of 8 V should to be applied to pins VOTP(gate) and VOTP(drain) for 50 ms. It is strongly recommended to use the sequence shown in Table 97 to program the OTP cells. In any event the requirements stated in Section 15.9 must be met. Important: Whenever a new row in the OTP matrix is selected (change of ORA[2:0]), the OTP cells must not be connected to pin VOTP(drain) (set OPE = 0). For an example see steps 9 to 11 in Table 97. 2003 Feb 14 89 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... D/C ADDR 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 1 set VOTP(gate) = 0 V; VOTP(drain) = 0 V 0 1 DESCRIPTION 0 01 reset (may also be hardware reset) 2 wait 1 ms for refresh to take effect 3 set VOTP(gate) = 8 V; VOTP(drain) = 8 V 4 5 0 1 1 1 1 0 0 0 0 F0 enter CALMM mode 1 X X 0 0 0 X 0 1 01 ORA = 000; OPE = 0; CALMM = 1 0 1 1 1 1 0 0 0 1 F1 send OTPSHTIN; note 2 shift15 1 X X PVB3 PVB2 PVB1 PVB0 BRS TRS set PVB[3:0]; BRS and TRS shift14 1 X X FVB3 FVB2 FVB1 FVB0 VCBW EFD set FVB[3:0]; VCBW and EFD; note 3 : shift0 1 x 6 0 1 1 1 1 0 0 0 0 F0 select row 0 in OTP matrix 1 X X 0 0 0 X 0 1 01 ORA = 000; OPE = 0; CALMM = 1 90 7 MMVOP5 MMVOP4 MMVOP3 MMVOP2 MMVOP1 MMVOP0 0 set MMVOP[5:0] and SEAL = 0 0 1 1 1 1 0 0 0 0 F0 enable programming 1 X X 0 0 0 X 1 1 03 ORA = 000; OPE = 1; CALMM = 1 8 9 10 11 Philips Semiconductors COMMAND BYTE(1) STEP STN RGB - 132 × 132 × 3 driver 2003 Feb 14 Table 97 Sequence to program OTP cells wait for 50 ms until OTP cells are programmed 0 1 1 1 1 0 0 0 0 F0 disable programming 1 X X 0 0 0 X 0 1 01 ORA = 000; OPE = 0; CALMM = 1 0 1 1 1 1 0 0 0 0 F0 select row 1 in OTP matrix 1 X X 0 0 1 X 0 1 09 ORA = 001; OPE = 0; CALMM = 1 0 1 1 1 1 0 0 0 0 F0 enable programming 1 X X 0 0 1 X 1 1 0B ORA = 001; OPE = 1; CALMM = 1 Objective specification PCF8833 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... ADDR 7 6 5 4 3 2 1 12 13 wait for 50 ms until OTP cells are programmed 0 1 1 1 1 0 0 0 0 F0 disable programming 1 X X 0 0 1 X 0 1 09 ORA = 001; OPE = 0; CALMM = 1 0 1 1 1 1 0 0 0 0 F0 exit CALMM mode 1 X X 0 0 0 X 0 0 00 ORA = 000; OPE = 0; CALMM = 0 14 15 DESCRIPTION 0 repeat steps 10 to 13 for rows 2 to 6 16 set VOTP(gate) = 0 V; VOTP(drain) = 0 V Notes 1. X = don’t care. For hexadecimal representation, don’t care bits are assumed to be logic 0. 2. The chip stays in shift operation as long as D/C is logic 1. 3. When VCBW = 1 the VC buffer is switched to a weak buffer. Default is VCBW = 0, where the VC buffer is powerful. To save power a capacitor could be connected to VC pad. Depending on the application it might be advantageous or even necessary to program VCBW = 1. Philips Semiconductors D/C STN RGB - 132 × 132 × 3 driver 2003 Feb 14 COMMAND BYTE(1) STEP 91 Objective specification PCF8833 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver 15.9 PCF8833 Programming specification For programming OTP cells, the VOTP(gate) and VOTP(drain) voltages have to be applied as indicated in Fig.57. Voltages VOTP(gate) and VOTP(drain) can be applied at the same time or can have a staggered sequence as indicated by cases a and b of Fig.57. Depending on the series resistance in the supply wires, up to 16 OTP bits can be programmed at the same time. Each OTP cell can only be programmed once. Table 98 Programming specification (see Fig.57) SYMBOL PARAMETER VOTP(gate) voltage applied to VOTP(gate) pin relative to VSS1 VOTP(drain) voltage applied to VOTP(drain) pin relative to VSS1 CONDITION programming active; note 1 MIN. tbf TYP. 8 MAX. tbf UNIT V programming inactive tbf 0 tbf V programming active; note 1 tbf 8 tbf V programming inactive tbf 0 tbf V tbf 100 tbf µA tbf 500 tbf µA 0 25 40 °C IOTP(gate) current drawn by VOTP(gate) during programming IOTP(drain) current drawn by VOTP(drain) during programming Tamb(prog) ambient temperature during programming tOPESU set-up time of OPE as a function of VOTP(gate) and VOTP(drain) VOTP(gate) and VOTP(drain) > 0 V 1 − − ms tOPEHD hold time of OPE as a function of VOTP(gate) and VOTP(drain) VOTP(gate) and VOTP(drain) > 0 V 1 − − ms tWRITEPW pulse width of programming voltage 45 50 55 ms per programmed OTP cell Note 1. The voltage drop across the ITO track and any connector must be taken into account to guarantee a sufficiently high voltage at the chip pins. 2003 Feb 14 92 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 t OPESU handbook, full pagewidth t OPEHD OPE VOTP(gate) VOTP(drain) t WRITEPW (a) VOTP(drain) applied before VOTP(gate) t OPESU t OPEHD OPE VOTP(gate) VOTP(drain) t WRITEPW (b) VOTP(gate) applied before VOTP(drain) Fig.57 Programming waveforms, OPE rises after VOTP(gate) and VOTP(drain). 2003 Feb 14 93 MGU973 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 16 INTERNAL PROTECTION CIRCUITS handbook, full pagewidth VDD1 VDD2 VDD3 VSS1 VSS1 VSS1 VSS2 VLCDIN1 VSS2 -SUPPLY VDD2 VSS2 VLCDOUT1 VLCDIN1 VLCDOUT1 VSS1 VSS1 VSS1 VLCDIN2 VLCDOUT2, VLCDSENSE VLCDIN2 VLCDOUT2 VLCDSENSE 4 MΩ 4 MΩ VSS1 VSS1 V2L, V1L V2H, V1H, VC VLCDIN1 T7 VLCDIN2 VLCDIN2 VSS1 VSS1 VLCDIN2 VSS1 MGU977 Fig.58 Protection circuit diagram; part 1. 2003 Feb 14 94 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 WR, DC/SCLK, RD, handbook, full pagewidth PS [2:0], OSC, CS/SCE, T1, T2, T3, T4, T5, T6, SDOUT, D [7:1], TE, D0/SDIN RES, VDD(tieoff), VSS(tieoff) VDD1 VOTP(gate), VOTP(drain) VDD1 200 kΩ VSS1 VSS1 C1+, C2+, C3+, C4+, C5+, C5– VSS1 C1–, C2–, C3–, C4– C0 to C395, R0 to R131 VDD1 VLCDIN2 VSS1 VSS1 VSS1 MGU978 Fig.59 Protection circuit diagram; part 2. 2003 Feb 14 95 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 17 BONDING PAD INFORMATION handbook, full pagewidth pad 462 R31 pad 463 R63 C191 R32 R0 RES TE C395 VSS(tieoff) T7 C384 C383 VSS1 C1+ C1− VSS2 C2+ CS/SCE C144 C143 C2− VDD1 C3+ VDD3 C3− C336 C335 VDD2 C4+ D7 D3 D6 D5 D2 D1 D4 D0/SDIN SDOUT D/C/SCLK WR RD PS0 PS1 PS2 OSC VDD(tieoff) C4− C96 C95 VLCDOUT1 VLCDIN1 C5+ C288 C287 C5− VLCDOUT2 C48 C47 VLCDSENSE VOTP(drain) VLCDIN2 VOTP(gate) V2L V1L C240 C239 T6 T5 T4 T3 T2 T1 VSS(tieoff) VC V1H V2H R96 C0 R64 C192 R131 pad 769 active pads dummy pads alignment marks MGU976 Fig.60 Bonding pad location. 2003 Feb 14 R95 pad 1 96 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 99 Bonding pad locations All x and y coordinates are referenced to the centre of the chip (dimensions in µm; see Fig.61). COORDINATES SYMBOL COORDINATES SYMBOL PAD x y dummy 1 −11351.208 −1035.694 R95 2 −11231.880 −1035.694 R94 3 −11179.080 −1035.694 R93 4 −11126.280 −1035.694 R92 5 −11073.480 −1035.694 R91 6 −11020.680 −1035.694 R90 7 −10967.880 −1035.694 R89 8 −10915.080 −1035.694 R88 9 −10862.280 −1035.694 R87 10 −10809.480 −1035.694 R86 11 −10756.680 −1035.694 R85 12 −10703.880 −1035.694 R84 13 −10651.080 −1035.694 R83 14 −10598.280 −1035.694 R82 15 −10545.480 −1035.694 R81 16 −10492.680 −1035.694 R80 17 −10439.880 −1035.694 R79 18 −10387.080 −1035.694 R78 19 −10334.280 −1035.694 R77 20 −10281.480 −1035.694 R76 21 −10228.680 −1035.694 R75 22 −10175.880 −1035.694 R74 23 −10123.080 −1035.694 R73 24 −10070.280 −1035.694 R72 25 − 10017.480 −1035.694 R71 26 −9964.680 −1035.694 R70 27 −9911.880 −1035.694 R69 28 −9859.080 −1035.694 R68 29 −9806.280 −1035.694 R67 30 −9753.480 −1035.694 R66 31 −9700.680 −1035.694 R65 32 −9647.880 −1035.694 R64 33 −9595.080 −1035.694 C0 34 −9369.448 −1030.568 C1 35 −9322.984 −1030.568 C2 36 −9276.520 −1030.568 C3 37 −9230.056 −1030.568 2003 Feb 14 97 PAD x y C4 38 −9183.592 −1030.568 C5 39 −9137.128 −1030.568 C6 40 −9090.664 −1030.568 C7 41 −9044.200 −1030.568 C8 42 −8997.736 −1030.568 C9 43 −8951.272 −1030.568 C10 44 −8904.808 −1030.568 C11 45 −8858.344 −1030.568 C12 46 −8811.880 −1030.568 C13 47 −8765.416 −1030.568 C14 48 −8718.952 −1030.568 C15 49 −8672.488 −1030.568 C16 50 −8626.024 −1030.568 C17 51 −8579.560 −1030.568 C18 52 −8533.096 −1030.568 C19 53 −8486.632 −1030.568 C20 54 −8440.168 −1030.568 C21 55 −8393.704 −1030.568 C22 56 −8347.240 −1030.568 C23 57 −8300.776 −1030.568 C24 58 −8254.312 −1030.568 C25 59 −8207.848 −1030.568 C26 60 −8161.384 −1030.568 C27 61 −8114.920 −1030.568 C28 62 −8068.456 −1030.568 C29 63 −8021.992 −1030.568 C30 64 −7975.528 −1030.568 C31 65 −7929.064 −1030.568 C32 66 −7882.600 −1030.568 C33 67 −7836.136 −1030.568 C34 68 −7789.672 −1030.568 C35 69 −7743.208 −1030.568 C36 70 −7696.744 −1030.568 C37 71 −7650.280 −1030.568 C38 72 −7603.816 −1030.568 C39 73 −7557.352 −1030.568 C40 74 −7510.888 −1030.568 C41 75 −7464.424 −1030.568 C42 76 −7417.960 −1030.568 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES SYMBOL COORDINATES PAD SYMBOL x y PAD x y C43 77 −7371.496 −1030.568 C82 116 −5502.200 −1030.568 C44 78 −7325.032 −1030.568 C83 117 −5455.736 −1030.568 C45 79 −7278.568 −1030.568 C84 118 −5409.272 −1030.568 C46 80 −7232.104 −1030.568 C85 119 −5362.808 −1030.568 C47 81 −7185.640 −1030.568 C86 120 −5316.344 −1030.568 C48 82 −7081.976 −1030.568 C87 121 −5269.880 −1030.568 C49 83 −7035.512 −1030.568 C88 122 −5223.416 −1030.568 C50 84 −6989.048 −1030.568 C89 123 −5176.952 −1030.568 C51 85 −6942.584 −1030.568 C90 124 −5130.488 −1030.568 C52 86 −6896.120 −1030.568 C91 125 −5084.024 −1030.568 C53 87 −6849.656 −1030.568 C92 126 −5037.560 −1030.568 C54 88 −6803.192 −1030.568 C93 127 −4991.096 −1030.568 C55 89 −6756.728 −1030.568 C94 128 −4944.632 −1030.568 C56 90 −6710.264 −1030.568 C95 129 −4898.168 −1030.568 C57 91 −6663.800 −1030.568 C96 130 −4794.504 −1030.568 C58 92 −6617.336 −1030.568 C97 131 −4748.040 −1030.568 C59 93 −6570.872 −1030.568 C98 132 −4701.576 −1030.568 C60 94 −6524.408 −1030.568 C99 133 −4655.112 −1030.568 C61 95 −6477.944 −1030.568 C100 134 −4608.648 −1030.568 C62 96 −6431.480 −1030.568 C101 135 −4562.184 −1030.568 C63 97 −6385.016 −1030.568 C102 136 −4515.720 −1030.568 C64 98 −6338.552 −1030.568 C103 137 −4469.256 −1030.568 C65 99 −6292.088 −1030.568 C104 138 −4422.792 −1030.568 C66 100 −6245.624 −1030.568 C105 139 −4376.328 −1030.568 C67 101 −6199.160 −1030.568 C106 140 −4329.864 −1030.568 C68 102 −6152.696 −1030.568 C107 141 −4283.400 −1030.568 C69 103 −6106.232 −1030.568 C108 142 −4236.936 −1030.568 C70 104 −6059.768 −1030.568 C109 143 −4190.472 −1030.568 C71 105 −6013.304 −1030.568 C110 144 −4144.008 −1030.568 C72 106 −5966.840 −1030.568 C111 145 −4097.544 −1030.568 C73 107 −5920.376 −1030.568 C112 146 −4051.080 −1030.568 C74 108 −5873.912 −1030.568 C113 147 −4004.616 −1030.568 C75 109 −5827.448 −1030.568 C114 148 −3958.152 −1030.568 C76 110 −5780.984 −1030.568 C115 149 −3911.688 −1030.568 C77 111 −5734.520 −1030.568 C116 150 −3865.224 −1030.568 C78 112 −5688.056 −1030.568 C117 151 −3818.760 −1030.568 C79 113 −5641.592 −1030.568 C118 152 −3772.296 −1030.568 C80 114 −5595.128 −1030.568 C119 153 −3725.832 −1030.568 C81 115 −5548.664 −1030.568 C120 154 −3679.368 −1030.568 2003 Feb 14 98 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES SYMBOL COORDINATES PAD SYMBOL x y PAD x y C121 155 −3632.904 −1030.568 C160 194 −1763.608 −1030.568 C122 156 −3586.440 −1030.568 C161 195 −1717.144 −1030.568 C123 157 −3539.976 −1030.568 C162 196 −1670.680 −1030.568 C124 158 −3493.512 −1030.568 C163 197 −1624.216 −1030.568 C125 159 −3447.048 −1030.568 C164 198 −1577.752 −1030.568 C126 160 −3400.584 −1030.568 C165 199 −1531.288 −1030.568 C127 161 −3354.120 −1030.568 C166 200 −1484.824 −1030.568 C128 162 −3307.656 −1030.568 C167 201 −1438.360 −1030.568 C129 163 −3261.192 −1030.568 C168 202 −1391.896 −1030.568 C130 164 −3214.728 −1030.568 C169 203 −1345.432 −1030.568 C131 165 −3168.264 −1030.568 C170 204 −1298.968 −1030.568 C132 166 −3121.800 −1030.568 C171 205 −1252.504 −1030.568 C133 167 −3075.336 −1030.568 C172 206 −1206.040 −1030.568 C134 168 −3028.872 −1030.568 C173 207 −1159.576 −1030.568 C135 169 −2982.408 −1030.568 C174 208 −1113.112 −1030.568 C136 170 −2935.944 −1030.568 C175 209 −1066.648 −1030.568 C137 171 −2889.480 −1030.568 C176 210 −1020.184 −1030.568 C138 172 −2843.016 −1030.568 C177 211 −973.720 −1030.568 C139 173 −2796.552 −1030.568 C178 212 −927.256 −1030.568 C140 174 −2750.088 −1030.568 C179 213 −880.792 −1030.568 C141 175 −2703.624 −1030.568 C180 214 −834.328 −1030.568 C142 176 −2657.160 −1030.568 C181 215 −787.864 −1030.568 C143 177 −2610.696 −1030.568 C182 216 −741.400 −1030.568 C144 178 −2507.032 −1030.568 C183 217 −694.936 −1030.568 C145 179 −2460.568 −1030.568 C184 218 −648.472 −1030.568 C146 180 −2414.104 −1030.568 C185 219 −602.008 −1030.568 C147 181 −2367.640 −1030.568 C186 220 −555.544 −1030.568 C148 182 −2321.176 −1030.568 C187 221 −509.080 −1030.568 C149 183 −2274.712 −1030.568 C188 222 −462.616 −1030.568 C150 184 −2228.248 −1030.568 C189 223 −416.152 −1030.568 C151 185 −2181.784 −1030.568 C190 224 −369.688 −1030.568 C152 186 −2135.320 −1030.568 C191 225 −323.224 −1030.568 C153 187 −2088.856 −1030.568 C192 226 −219.560 −1030.568 C154 188 −2042.392 −1030.568 C193 227 −173.096 −1030.568 C155 189 −1995.928 −1030.568 C194 228 −126.632 −1030.568 C156 190 −1949.464 −1030.568 C195 229 −80.168 −1030.568 C157 191 −1903.000 −1030.568 C196 230 −33.704 −1030.568 C158 192 −1856.536 −1030.568 C197 231 +12.760 −1030.568 C159 193 −1810.072 −1030.568 C198 232 +59.224 −1030.568 2003 Feb 14 99 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES SYMBOL COORDINATES PAD SYMBOL x y PAD x y C199 233 +105.688 −1030.568 C238 272 +1917.784 −1030.568 C200 234 +152.152 −1030.568 C239 273 +1964.248 −1030.568 C201 235 +198.616 −1030.568 C240 274 +2067.912 −1030.568 C202 236 +245.080 −1030.568 C241 275 +2114.376 −1030.568 C203 237 +291.544 −1030.568 C242 276 +2160.840 −1030.568 C204 238 +338.008 −1030.568 C243 277 +2207.304 −1030.568 C205 239 +384.472 −1030.568 C244 278 +2253.768 −1030.568 C206 240 +430.936 −1030.568 C245 279 +2300.232 −1030.568 C207 241 +477.400 −1030.568 C246 280 +2346.696 −1030.568 C208 242 +523.864 −1030.568 C247 281 +2393.160 −1030.568 C209 243 +570.328 −1030.568 C248 282 +2439.624 −1030.568 C210 244 +616.792 −1030.568 C249 283 +2486.088 −1030.568 C211 245 +663.256 −1030.568 C250 284 +2532.552 −1030.568 C212 246 +709.720 −1030.568 C251 285 +2579.016 −1030.568 C213 247 +756.184 −1030.568 C252 286 +2625.480 −1030.568 C214 248 +802.648 −1030.568 C253 287 +2671.944 −1030.568 C215 249 +849.112 −1030.568 C254 288 +2718.408 −1030.568 C216 250 +895.576 −1030.568 C255 289 +2764.872 −1030.568 C217 251 +942.040 −1030.568 C256 290 +2811.336 −1030.568 C218 252 +988.504 −1030.568 C257 291 +2857.800 −1030.568 C219 253 +1034.968 −1030.568 C258 292 +2904.264 −1030.568 C220 254 +1081.432 −1030.568 C259 293 +2950.728 −1030.568 C221 255 +1127.896 −1030.568 C260 294 +2997.192 −1030.568 C222 256 +1174.360 −1030.568 C261 295 +3043.656 −1030.568 C223 257 +1220.824 −1030.568 C262 296 +3090.120 −1030.568 C224 258 +1267.288 −1030.568 C263 297 +3136.584 −1030.568 C225 259 +1313.752 −1030.568 C264 298 +3183.048 −1030.568 C226 260 +1360.216 −1030.568 C265 299 +3229.512 −1030.568 C227 261 +1406.680 −1030.568 C266 300 +3275.976 −1030.568 C228 262 +1453.144 −1030.568 C267 301 +3322.440 −1030.568 C229 263 +1499.608 −1030.568 C268 302 +3368.904 −1030.568 C230 264 +1546.072 −1030.568 C269 303 +3415.368 −1030.568 C231 265 +1592.536 −1030.568 C270 304 +3461.832 −1030.568 C232 266 +1639.000 −1030.568 C271 305 +3508.296 −1030.568 C233 267 +1685.464 −1030.568 C272 306 +3554.760 −1030.568 C234 268 +1731.928 −1030.568 C273 307 +3601.224 −1030.568 C235 269 +1778.392 −1030.568 C274 308 +3647.688 −1030.568 C236 270 +1824.856 −1030.568 C275 309 +3694.152 −1030.568 C237 271 +1871.320 −1030.568 C276 310 +3740.616 −1030.568 2003 Feb 14 100 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES SYMBOL COORDINATES PAD SYMBOL x y PAD x y C277 311 +3787.080 −1030.568 C316 350 +5656.376 −1030.568 C278 312 +3833.544 −1030.568 C317 351 +5702.840 −1030.568 C279 313 +3880.008 −1030.568 C318 352 +5749.304 −1030.568 C280 314 +3926.472 −1030.568 C319 353 +5795.768 −1030.568 C281 315 +3972.936 −1030.568 C320 354 +5842.232 −1030.568 C282 316 +4019.400 −1030.568 C321 355 +5888.696 −1030.568 C283 317 +4065.864 −1030.568 C322 356 +5935.160 −1030.568 C284 318 +4112.328 −1030.568 C323 357 +5981.624 −1030.568 C285 319 +4158.792 −1030.568 C324 358 +6028.088 −1030.568 C286 320 +4205.256 −1030.568 C325 359 +6074.552 −1030.568 C287 321 +4251.720 −1030.568 C326 360 +6121.016 −1030.568 C288 322 +4355.384 −1030.568 C327 361 +6167.480 −1030.568 C289 323 +4401.848 −1030.568 C328 362 +6213.944 −1030.568 C290 324 +4448.312 −1030.568 C329 363 +6260.408 −1030.568 C291 325 +4494.776 −1030.568 C330 364 +6306.872 −1030.568 C292 326 +4541.240 −1030.568 C331 365 +6353.336 −1030.568 C293 327 +4587.704 −1030.568 C332 366 +6399.800 −1030.568 C294 328 +4634.168 −1030.568 C333 367 +6446.264 −1030.568 C295 329 +4680.632 −1030.568 C334 368 +6492.728 −1030.568 C296 330 +4727.096 −1030.568 C335 369 +6539.192 −1030.568 C297 331 +4773.560 −1030.568 C336 370 +6642.856 −1030.568 C298 332 +4820.024 −1030.568 C337 371 +6689.320 −1030.568 C299 333 +4866.488 −1030.568 C338 372 +6735.784 −1030.568 C300 334 +4912.952 −1030.568 C339 373 +6782.248 −1030.568 C301 335 +4959.416 −1030.568 C340 374 +6828.712 −1030.568 C302 336 +5005.880 −1030.568 C341 375 +6875.176 −1030.568 C303 337 +5052.344 −1030.568 C342 376 +6921.640 −1030.568 C304 338 +5098.808 −1030.568 C343 377 +6968.104 −1030.568 C305 339 +5145.272 −1030.568 C344 378 +7014.568 −1030.568 C306 340 +5191.736 −1030.568 C345 379 +7061.032 −1030.568 C307 341 +5238.200 −1030.568 C346 380 +7107.496 −1030.568 C308 342 +5284.664 −1030.568 C347 381 +7153.960 −1030.568 C309 343 +5331.128 −1030.568 C348 382 +7200.424 −1030.568 C310 344 +5377.592 −1030.568 C349 383 +7246.888 −1030.568 C311 345 +5424.056 −1030.568 C350 384 +7293.352 −1030.568 C312 346 +5470.520 −1030.568 C351 385 +7339.816 −1030.568 C313 347 +5516.984 −1030.568 C352 386 +7386.280 −1030.568 C314 348 +5563.448 −1030.568 C353 387 +7432.744 −1030.568 C315 349 +5609.912 −1030.568 C354 388 +7479.208 −1030.568 2003 Feb 14 101 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES COORDINATES SYMBOL SYMBOL PAD x y PAD x y C355 389 +7525.672 −1030.568 C394 428 +9394.968 –1030.568 C356 390 +7572.136 −1030.568 C395 429 +9441.432 –1030.568 C357 391 +7618.600 −1030.568 R0 430 +9596.664 –1035.694 C358 392 +7665.064 −1030.568 R1 431 +9649.464 –1035.694 C359 393 +7711.528 −1030.568 R2 432 +9702.264 –1035.694 C360 394 +7757.992 −1030.568 R3 433 +9755.064 –1035.694 C361 395 +7804.456 −1030.568 R4 434 +9807.864 –1035.694 C362 396 +7850.920 −1030.568 R5 435 +9860.664 –1035.694 C363 397 +7897.384 −1030.568 R6 436 +9913.464 –1035.694 C364 398 +7943.848 −1030.568 R7 437 +9966.264 –1035.694 C365 399 +7990.312 –1030.568 R8 438 +10019.064 –1035.694 C366 400 +8036.776 –1030.568 R9 439 +10071.864 −1035.694 C367 401 +8083.240 –1030.568 R10 440 +10124.664 −1035.694 C368 402 +8129.704 –1030.568 R11 441 +10177.464 −1035.694 C369 403 +8176.168 –1030.568 R12 442 +10230.264 −1035.694 C370 404 +8222.632 –1030.568 R13 443 +10283.064 −1035.694 C371 405 +8269.096 –1030.568 R14 444 +10335.864 −1035.694 C372 406 +8315.560 –1030.568 R15 445 +10388.664 −1035.694 C373 407 +8362.024 –1030.568 R16 446 +10441.464 −1035.694 C374 408 +8408.488 –1030.568 R17 447 +10494.264 −1035.694 C375 409 +8454.952 –1030.568 R18 448 +10547.064 −1035.694 C376 410 +8501.416 –1030.568 R19 449 +10599.864 −1035.694 C377 411 +8547.880 –1030.568 R20 450 +10652.664 −1035.694 C378 412 +8594.344 –1030.568 R21 451 +10705.464 −1035.694 C379 413 +8640.808 –1030.568 R22 452 +10758.264 −1035.694 C380 414 +8687.272 –1030.568 R23 453 +10811.064 −1035.694 C381 415 +8733.736 –1030.568 R24 454 +10863.864 −1035.694 C382 416 +8780.200 –1030.568 R25 455 +10916.664 −1035.694 C383 417 +8826.664 –1030.568 R26 456 +10969.464 −1035.694 C384 418 +8930.328 –1030.568 R27 457 +11022.264 −1035.694 C385 419 +8976.792 –1030.568 R28 458 +11075.064 −1035.694 C386 420 +9023.256 –1030.568 R29 459 +11127.864 −1035.694 C387 421 +9069.720 –1030.568 R30 460 +11180.664 −1035.694 C388 422 +9116.184 –1030.568 R31 461 +11233.464 −1035.694 C389 423 +9162.648 –1030.568 dummy 462 +11358.424 −1035.694 C390 424 +9209.112 –1030.568 dummy 463 +11358.424 +1035.694 C391 425 +9255.576 –1030.568 R63 464 +11233.464 +1035.694 C392 426 +9302.040 –1030.568 R62 465 +11180.664 +1035.694 C393 427 +9348.504 –1030.568 R61 466 +11127.864 +1035.694 2003 Feb 14 102 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES COORDINATES SYMBOL SYMBOL PAD x y PAD x y R60 467 +11075.064 +1035.694 VSS1 506 +8540.664 +1035.694 R59 468 +11022.264 +1035.694 VSS1 507 +8487.864 +1035.694 R58 469 +10969.464 +1035.694 VSS2 508 +8329.464 +1035.694 R57 470 +10916.664 +1035.694 VSS2 509 +8276.664 +1035.694 R56 471 +10863.864 +1035.694 VSS2 510 +8223.864 +1035.694 R55 472 +10811.064 +1035.694 VSS2 511 +8171.064 +1035.694 R54 473 +10758.264 +1035.694 VSS2 512 +8118.264 +1035.694 R53 474 +10705.464 +1035.694 VSS2 513 +8065.464 +1035.694 R52 475 +10652.664 +1035.694 VSS2 514 +8012.664 +1035.694 R51 476 +10599.864 +1035.694 VSS2 515 +7959.864 +1035.694 R50 477 +10547.064 +1035.694 VSS2 516 +7907.064 +1035.694 R49 478 +10494.264 +1035.694 VSS2 517 +7854.264 +1035.694 R48 479 +10441.464 +1035.694 CS/SCE 518 +7643.064 +1035.694 R47 480 +10388.664 +1035.694 VDD1 519 +7431.864 +1035.694 R46 481 +10335.864 +1035.694 VDD1 520 +7379.064 +1035.694 R45 482 +10283.064 +1035.694 VDD1 521 +7326.264 +1035.694 R44 483 +10230.264 +1035.694 VDD1 522 +7273.464 +1035.694 R43 484 +10177.464 +1035.694 VDD1 523 +7220.664 +1035.694 R42 485 +10124.664 +1035.694 VDD1 524 +7167.864 +1035.694 R41 486 +10071.864 +1035.694 VDD3 525 +7009.464 +1035.694 R40 487 +10019.064 +1035.694 VDD3 526 +6956.664 +1035.694 R39 488 +9966.264 +1035.694 VDD3 527 +6903.864 +1035.694 R38 489 +9913.464 +1035.694 VDD3 528 +6851.064 +1035.694 R37 490 +9860.664 +1035.694 VDD3 529 +6798.264 +1035.694 R36 491 +9807.864 +1035.694 VDD2 530 +6639.864 +1035.694 R35 492 +9755.064 +1035.694 VDD2 531 +6587.064 +1035.694 R34 493 +9702.264 +1035.694 VDD2 532 +6534.264 +1035.694 R33 494 +9649.464 +1035.694 VDD2 533 +6481.464 +1035.694 R32 495 +9596.664 +1035.694 VDD2 534 +6428.664 +1035.694 RES 496 +9332.664 +1035.694 VDD2 535 +6375.864 +1035.694 TE 497 +9174.264 +1035.694 VDD2 536 +6323.064 +1035.694 VSS1 498 +8963.064 +1035.694 VDD2 537 +6270.264 +1035.694 VSS1 499 +8910.264 +1035.694 VDD2 538 +6217.464 +1035.694 VSS1 500 +8857.464 +1035.694 VDD2 539 +6164.664 +1035.694 VSS1 501 +8804.664 +1035.694 D7 540 +5953.464 +1035.694 VSS1 502 +8751.864 +1035.694 D3 541 +5795.064 +1035.694 VSS1 503 +8699.064 +1035.694 D6 542 +5636.664 +1035.694 VSS1 504 +8646.264 +1035.694 D2 543 +5478.264 +1035.694 VSS1 505 +8593.464 +1035.694 D5 544 +5319.864 +1035.694 2003 Feb 14 103 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES COORDINATES SYMBOL SYMBOL PAD x y PAD x y D1 545 +5161.464 +1035.694 dummy 584 +825.880 +1035.694 D4 546 +5003.064 +1035.694 dummy 585 +773.080 +1035.694 D0/SDIN 547 +4844.664 +1035.694 dummy 586 +720.280 +1035.694 SDOUT 548 +4686.264 +1035.694 dummy 587 +667.480 +1035.694 DC/SCLK 549 +4527.864 +1035.694 dummy 588 +614.680 +1035.694 WR 550 +4369.464 +1035.694 dummy 589 +561.880 +1035.694 RD 551 +4211.064 +1035.694 dummy 590 +509.080 +1035.694 PS0 552 +4052.664 +1035.694 dummy 591 +456.280 +1035.694 PS1 553 +3894.264 +1035.694 dummy 592 +403.480 +1035.694 PS2 554 +3735.864 +1035.694 dummy 593 +350.680 +1035.694 OSC 555 +3577.464 +1035.694 dummy 594 +297.880 +1035.694 VDDTIEOFF 556 +3419.064 +1035.694 dummy 595 +245.080 +1035.694 VOTPdrain 557 +3207.864 +1035.694 dummy 596 +192.280 +1035.694 VOTPdrain 558 +3155.064 +1035.694 dummy 597 +139.480 +1035.694 VOTPdrain 559 +3102.264 +1035.694 dummy 598 +86.680 +1035.694 VOTPdrain 560 +3049.464 +1035.694 dummy 599 +33.880 +1035.694 VOTPdrain 561 +2996.664 +1035.694 dummy 600 −18.920 +1035.694 VOTPdrain 562 +2943.864 +1035.694 dummy 601 −71.720 +1035.694 VOTPdrain 563 +2891.064 +1035.694 dummy 602 −124.520 +1035.694 VOTPdrain 564 +2838.264 +1035.694 dummy 603 −177.320 +1035.694 VOTPgate 565 +2679.864 +1035.694 dummy 604 −230.120 +1035.694 VOTPgate 566 +2627.064 +1035.694 dummy 605 −282.920 +1035.694 VOTPgate 567 +2574.264 +1035.694 dummy 606 −335.720 +1035.694 VOTPgate 568 +2521.464 +1035.694 dummy 607 −388.520 +1035.694 VOTPgate 569 +2468.664 +1035.694 dummy 608 −441.320 +1035.694 VOTPgate 570 +2415.864 +1035.694 dummy 609 −494.120 +1035.694 VOTPgate 571 +2363.064 +1035.694 dummy 610 −546.920 +1035.694 VOTPgate 572 +2310.264 +1035.694 dummy 611 −599.720 +1035.694 T6 573 +2099.064 +1035.694 dummy 612 −652.520 +1035.694 T5 574 +1940.664 +1035.694 dummy 613 −705.320 +1035.694 T4 575 +1782.264 +1035.694 dummy 614 −758.120 +1035.694 T3 576 +1623.864 +1035.694 dummy 615 −810.920 +1035.694 T2 577 +1465.464 +1035.694 dummy 616 −863.720 +1035.694 T1 578 +1307.064 +1035.694 dummy 617 −916.520 +1035.694 VSSTIEOFF 579 +1148.664 +1035.694 dummy 618 −969.320 +1035.694 dummy 580 +1037.080 +1035.694 dummy 619 −1022.120 +1035.694 dummy 581 +984.280 +1035.694 dummy 620 −1074.920 +1035.694 dummy 582 +931.480 +1035.694 dummy 621 −1127.720 +1035.694 dummy 583 +878.680 +1035.694 dummy 622 −1180.520 +1035.694 2003 Feb 14 104 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES SYMBOL COORDINATES PAD SYMBOL x PAD y x y dummy 623 −1233.320 +1035.694 C4+ 662 −4375.976 +1035.694 VSSTIEOFF 624 −1410.904 +1035.694 C4+ 663 −4428.776 +1035.694 T7 625 −1683.176 +1035.694 C4+ 664 −4481.576 +1035.694 C1+ 626 −1841.576 +1035.694 C4+ 665 −4534.376 +1035.694 C1+ 627 −1894.376 +1035.694 C4+ 666 −4587.176 +1035.694 C1+ 628 −1947.176 +1035.694 C4+ 667 −4639.976 +1035.694 C1+ 629 −1999.976 +1035.694 C4– 668 −4798.376 +1035.694 C1+ 630 −2052.776 +1035.694 C4– 669 −4851.176 +1035.694 C1+ 631 −2105.576 +1035.694 C4– 670 −4903.976 +1035.694 C1− 632 −2263.976 +1035.694 C4– 671 −4956.776 +1035.694 C1− 633 −2316.776 +1035.694 C4– 672 −5009.576 +1035.694 C1− 634 −2369.576 +1035.694 C4– 673 −5062.376 +1035.694 C1− 635 −2422.376 +1035.694 VLCDOUT1 674 −5220.776 +1035.694 C1− 636 −2475.176 +1035.694 VLCDOUT1 675 −5273.576 +1035.694 C1− 637 −2527.976 +1035.694 VLCDOUT1 676 −5326.376 +1035.694 C2+ 638 −2686.376 +1035.694 VLCDOUT1 677 −5379.176 +1035.694 C2+ 639 −2739.176 +1035.694 VLCDOUT1 678 −5431.976 +1035.694 C2+ 640 −2791.976 +1035.694 VLCDOUT1 679 −5484.776 +1035.694 C2+ 641 −2844.776 +1035.694 VLCDOUT1 680 −5537.576 +1035.694 C2+ 642 −2897.576 +1035.694 VLCDOUT1 681 −5590.376 +1035.694 C2+ 643 −2950.376 +1035.694 VLCDOUT1 682 −5643.176 +1035.694 C2− 644 −3108.776 +1035.694 VLCDOUT1 683 −5695.976 +1035.694 C2− 645 −3161.576 +1035.694 VLCDIN1 684 −5854.376 +1035.694 C2− 646 −3214.376 +1035.694 VLCDIN1 685 −5907.176 +1035.694 C2− 647 −3267.176 +1035.694 VLCDIN1 686 −5959.976 +1035.694 C2− 648 −3319.976 +1035.694 VLCDIN1 687 −6012.776 +1035.694 C2− 649 −3372.776 +1035.694 VLCDIN1 688 −6065.576 +1035.694 C3+ 650 −3531.176 +1035.694 VLCDIN1 689 −6118.376 +1035.694 C3+ 651 −3583.976 +1035.694 VLCDIN1 690 −6171.176 +1035.694 C3+ 652 −3636.776 +1035.694 C5+ 691 −6329.576 +1035.694 C3+ 653 −3689.576 +1035.694 C5+ 692 −6382.376 +1035.694 C3+ 654 −3742.376 +1035.694 C5+ 693 −6435.176 +1035.694 C3+ 655 −3795.176 +1035.694 C5+ 694 −6487.976 +1035.694 C3− 656 −3953.576 +1035.694 C5+ 695 −6540.776 +1035.694 C3− 657 −4006.376 +1035.694 C5+ 696 −6593.576 +1035.694 C3− 658 −4059.176 +1035.694 C5− 697 −6751.976 +1035.694 C3− 659 −4111.976 +1035.694 C5− 698 −6804.776 +1035.694 C3− 660 −4164.776 +1035.694 C5− 699 −6857.576 +1035.694 C3− 661 −4217.576 +1035.694 C5− 700 −6910.376 +1035.694 2003 Feb 14 105 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 COORDINATES COORDINATES SYMBOL SYMBOL PAD x y PAD x y C5− 701 −6963.176 +1035.694 R103 740 −9753.480 +1035.694 C5− 702 −7015.976 +1035.694 R104 741 −9806.280 +1035.694 VLCDOUT2 703 −7174.376 +1035.694 R105 742 −9859.080 +1035.694 VLCDOUT2 704 −7227.176 +1035.694 R106 743 −9911.880 +1035.694 VLCDOUT2 705 −7279.976 +1035.694 R107 744 −9964.680 +1035.694 VLCDOUT2 706 −7332.776 +1035.694 R108 745 −10017.480 +1035.694 VLCDOUT2 707 −7385.576 +1035.694 R109 746 −10070.280 +1035.694 VLCDOUT2 708 −7438.376 +1035.694 R110 747 −10123.080 +1035.694 VLCDOUT2 709 −7491.176 +1035.694 R111 748 −10175.880 +1035.694 VLCDOUT2 710 −7543.976 +1035.694 R112 749 −10228.680 +1035.694 VLCDOUT2 711 −7596.776 +1035.694 R113 750 −10281.480 +1035.694 VLCDSENSE 712 −7649.576 +1035.694 R114 751 −10334.280 +1035.694 VLCDIN2 713 −7807.976 +1035.694 R115 752 −10387.080 +1035.694 VLCDIN2 714 −7860.776 +1035.694 R116 753 −10439.880 +1035.694 VLCDIN2 715 −7913.576 +1035.694 R117 754 −10492.680 +1035.694 VLCDIN2 716 −7966.376 +1035.694 R118 755 −10545.480 +1035.694 VLCDIN2 717 −8019.176 +1035.694 R119 756 −10598.280 +1035.694 VLCDIN2 718 −8071.976 +1035.694 R120 757 −10651.080 +1035.694 VLCDIN2 719 −8124.776 +1035.694 R121 758 −10703.880 +1035.694 V2L 720 −8341.212 +1035.694 R122 759 −10756.680 +1035.694 V2L 721 −8394.012 +1035.694 R123 760 −10809.480 +1035.694 V1L 722 −8499.612 +1035.694 R124 761 −10862.280 +1035.694 V1L 723 −8552.412 +1035.694 R125 762 −10915.080 +1035.694 VC 724 −8658.012 +1035.694 R126 763 −10967.880 +1035.694 VC 725 −8710.812 +1035.694 R127 764 −11020.680 +1035.694 VC 726 −8763.612 +1035.694 R128 765 −11073.480 +1035.694 VC 727 −8816.412 +1035.694 R129 766 −11126.280 +1035.694 VC 728 −8869.212 +1035.694 R130 767 −11179.080 +1035.694 V1H 729 −8974.812 +1035.694 R131 768 −11231.880 +1035.694 V1H 730 −9027.612 +1035.694 dummy 769 −11351.208 +1035.694 V2H 731 −9133.212 +1035.694 Alignment marks (see Fig.62) V2H 732 −9186.012 +1035.694 Alignment circle 1 +593.120 733 −9383.880 −11175.032 R96 +1035.694 Alignment circle 2 +11184.888 +593.120 R97 734 −9436.680 +1035.694 Alignment circle 3 +746.240 735 −9489.480 −8717.192 R98 +1035.694 Alignment circle 4 +9362.408 +746.240 R99 736 −9542.280 +1035.694 R100 737 −9595.080 +1035.694 R101 738 −9647.880 +1035.694 R102 739 −9700.680 +1035.694 2003 Feb 14 106 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Table 100 Bonding pad dimensions ITEM DIMENSIONS Minimum bump pitch UNIT µm columns: 46.464 all other: 52.800 columns: 28.424 × 105.248 Bump dimensions µm all other: 32.736 × 95.348 Bump height 15 µm Wafer thickness (excluding bumps) 381 µm 22.93 mm handbook, full pagewidth 2.34 mm PC8833-1 pitch y Fig.61 Bonding pads dimensions. x MGU974 handbook, halfpage 80 µm y center x center MGU975 Fig.62 Alignment circle detail (80 µm diameter). 2003 Feb 14 107 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 18 TRAY INFORMATION x handbook, full pagewidth C y D B F E MGU979 Fig.63 Tray details. Table 101 Tray dimensions handbook, halfpage PC8833-1 MGU980 The orientation of the IC in a pocket is indicated by the position of the IC type name on the die surface with respect to the chamfer on the upper left corner of the tray. Refer to the bonding pad location diagram for the orientating and position of the type name on the die surface. Fig.64 Tray alignment. 2003 Feb 14 108 DIMENSIONS DESCRIPTION VALUE B pocket pitch y direction 4.45 mm C pocket width x direction 23.07 mm D pocket width y direction 2.47 mm E tray width x direction 50.8 mm F tray width y direction 50.8 mm x number of pockets in x direction 1 y number of pockets in y direction 10 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 19 DATA SHEET STATUS LEVEL DATA SHEET STATUS(1) PRODUCT STATUS(2)(3) Development DEFINITION I Objective data II Preliminary data Qualification This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. III Product data This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Production This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. Notes 1. Please consult the most recently issued data sheet before initiating or completing a design. 2. The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. 3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. 20 DEFINITIONS 21 DISCLAIMERS Short-form specification The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Life support applications These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Limiting values definition Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. Application information Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 2003 Feb 14 Right to make changes Philips Semiconductors reserves the right to make changes in the products including circuits, standard cells, and/or software described or contained herein in order to improve design and/or performance. When the product is in full production (status ‘Production’), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. 109 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 Bare die All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately indicated in the data sheet. There are no post packing tests performed on individual die or wafer. Philips Semiconductors has no control of third party procedures in the sawing, handling, packing or assembly of the die. Accordingly, Philips Semiconductors assumes no liability for device functionality or performance of the die or systems after third party sawing, handling, packing or assembly of the die. It is the responsibility of the customer to test and qualify their application in which the die is used. 2003 Feb 14 110 Philips Semiconductors Objective specification STN RGB - 132 × 132 × 3 driver PCF8833 NOTES 2003 Feb 14 111 Philips Semiconductors – a worldwide company Contact information For additional information please visit http://www.semiconductors.philips.com. Fax: +31 40 27 24825 For sales offices addresses send e-mail to: [email protected]. SCA75 © Koninklijke Philips Electronics N.V. 2003 All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Printed in The Netherlands 403512/01/pp112 Date of release: 2003 Feb 14 Document order number: 9397 750 10059