RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com RM48Lx50 16/32-Bit RISC Flash Microcontroller Check for Samples: RM48L950 1 RM48Lx50 16/32-Bit RISC Flash Microcontroller 1.1 Features • High-Performance Microcontroller for Safety Critical Applications – Dual CPU’s running in lockstep – ECC on flash and RAM interfaces – Built-In Self Test for CPU and on-chip RAMs – Error Signaling Module with Error Pin – Voltage and Clock Monitoring • ARM® Cortex™ – R4F 32-bit RISC CPU – Efficient 1.6DMIPS/MHz with 8-stage pipeline – Floating-Point Unit with Single/Double Precision – 12-Region Memory Protection Unit – Open Architecture with 3rd Party Support • Operating Conditions – Up to 200MHz System Clock – Core Supply Voltage (VCC): 1.2V nominal – I/O Supply Voltage (VCCIO): 3.3V nominal • Integrated Memory – Up to 3MB Program Flash with ECC – Up to 256KB RAM with ECC – 64KB Flash for emulated EEPROM • 16- bit External Memory Interface • Common Platform Architecture – Consistent memory map across family – Real-Time Interrupt Timer (RTI) OS Timer – 96-channel Vectored Interrupt Module (VIM) – 2-channel Cyclic Redundancy Checker (CRC) • Direct Memory Access (DMA) Controller – 16 Channels and 32 Control Packets – Parity protection for control packet RAM – DMA Accesses Protected by Dedicated MPU • Frequency-Modulated Phase-Locked-Loop (FMPLL) with Built-In Slip Detector • Separate Non-Modulating PLL • IEEE 1149.1 JTAG, Boundary Scan and ARM CoreSight Components • JTAG Security Module • Trace and Calibration Capabilities – Embedded Trace Macrocell (ETM-R4) – Data Modification Module (DMM) – RAM Trace Port (RTP) – Parameter Overlay Module (POM) • Multiple Communication Interfaces – 10/100 Mbps Ethernet MAC (EMAC) • IEEE 802.3 compliant (3.3V-I/O only) • Supports MII and MDIO – USB • 2-port USB Specification, revision 2.0-compatible host controller, based on the OHCI Specification for USB, release 1.0 • One full-speed USB device compatible with the USB Specification, revision 2.0 and USB Specification, revision 1.1 – Three CAN Controllers (DCAN) • 64 mailboxes with parity protection each • Compliant to CAN protocol version 2.0B – Inter-Integrated Circuit (I2C) – Three Multi-buffered Serial Peripheral Interfaces (MibSPI) • 128 Words with Parity Protection each – Two Standard Serial Peripheral Interfaces (SPI) – Local Interconnect Network Interface (LIN) Controller • Compliant to LIN protocol version 2.1 – Standard Serial Communication Interface (SCI) • Two High-End Timer Modules (N2HET) – N2HET1: 32 programmable channels – N2HET2: 20 programmable channels – 160 Word Instruction RAM with parity protection each – Each includes Hardware Angle Generator – Dedicated Transfer Unit for each N2HET (HTU) • Two 10/12-bit Multi-Buffered ADC Modules – ADC1: 24 channels – ADC2: 16 channels – 16 shared channels – 64 result buffers with parity protection each • Packages – 144-pin Quad Flatpack (PGE) [Green] – 337-Ball Grid Array (ZWT) [Green] 1 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice. Copyright © 2011, Texas Instruments Incorporated PRODUCT PREVIEW 1 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 1.2 • • www.ti.com Applications Industrial Safety Applications – Industrial Automation – Safe PLC’s (Programmable Logic Controllers) – Power Generation and Distribution – Turbines and Windmills – Elevators and Escalators Medical Applications – Ventilators – Defibrillators – Infusion and Insulin pumps – Radiation therapy – Robotic surgery PRODUCT PREVIEW 2 RM48Lx50 16/32-Bit RISC Flash Microcontroller Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 www.ti.com 1.3 SPNS174 – SEPTEMBER 2011 Description The RM48Lx50 is a high performance microcontroller family for safety systems. The safety architecture includes Dual CPUs in lockstep, CPU and Memory Built-In Self Test (BIST) logic, ECC on both the Flash and the data SRAM, parity on peripheral memories, and loop back capability on peripheral IOs. The RM48Lx50 integrates the ARM® Cortex™-R4F Floating Point CPU which offers an efficient 1.6 DMIPS/MHz, and has configurations which can run up to 200MHz providing up to 320 DMIPS. The device supports the little-endian [LE32] format. The RM48Lx50 has up to 3MB integrated Flash and up to 256KB data RAM configurations with single bit error correction and double bit error detection. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase operations. When in pipeline mode, the flash operates with a system clock frequency of up to 200MHz. The SRAM supports single-cycle read/write accesses in byte, halfword, and word modes. The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU. The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The device has multiple communication interfaces: three MibSPIs, up to two SPIs, one LIN, one SCI, three DCANs, one I2C, one Ethernet, and one USB module.. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or multiplexed wiring. The Ethernet module supports MII and MDIO interfaces. The USB module includes a 2-port USB host controller and a USB device controller The I2C module is a multi-master communication module providing an interface between the microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible clock source inputs to the global clock module (GCM). The GCM module manages the mapping between the available clock sources and the device clock domains. The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous external clock on the ECLK pin/ball. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of the device operating frequency. Copyright © 2011, Texas Instruments Incorporated RM48Lx50 16/32-Bit RISC Flash Microcontroller Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 3 PRODUCT PREVIEW The RM48Lx50 device features peripherals for real-time control-based applications, including two Next Generation High End Timer (N2HET) timing coprocessors with up to 44 total IO terminals and a 12-bit Analog-to-Digital converter supporting up to 24 inputs. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on its memory. A Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous transfers. The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or external Error pin/ball is triggered when a fault is detected. The nERROR can be monitored externally as an indicator of a fault condition in the microcontroller. The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous memories or other slave devices. Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built in ARM Cortex™-R4F CoreSight™ debug features. An External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port Module (RTP) is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) can re-route Flash accesses to internal memory or to the EMIF, thus avoiding the re-programming steps necessary for parameter updates in Flash. PRODUCT PREVIEW With integrated safety features and a wide choice of communication and control peripherals, the RM48Lx50 is an ideal solution for high performance real time control applications with safety critical requirements. 4 RM48Lx50 16/32-Bit RISC Flash Microcontroller Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 64K 64K 64K TRACECTL ETMDATA[31:0] TRACECLKIN TRACECLK DMMSYNC DMMDATA[15:0] Color Legend for Power Domains Core/RAM always on RAM Core #1 #2 ETM-R4 RTP DMA Dual Cortex-R4F CPUs in Lockstep DMMCLK DMMnENA 256K RAM with ECC RTPnENA 64K 3M Flash with ECC RTPSYNC RTPDATA[15:0] Functional Block Diagram RTPCLK 1.4 POM HTU1 DMM #3 #1 #2 #4 #3 #5 EMAC HTU2 USB Host Switched Central Resource Switched Central Resource Switched Central Resource Main Cross Bar: Arbitration and Prioritization Control USB Slaves USB1.OverCurrent USB1.RCV USB1.VM USB1.VP USB1.PortPower USB1.SPEED USB1.SUSPEND USB1.TXDAT USB1.TXEN USB1.TXSE0 USB2.OverCurrent USB2.RCV USB2.VM USB2.VP USB2.PortPower USB2.SPEED USB2.SUSPEND USB2.TXDAT USB2.TXEN USB2.TXSE0 Host RTI GIO GIOB[7:0] N2HET2 GIOA[7:0] N2HET1[31:0] N2HET1 ADREFLO AD2EVT VCCAD VSSAD ADREFHI AD2IN[15:0] ADREFLO AD1EVT AD1IN[7:0] AD1IN[23:8] MibADC2 N2HET2[15:0] Device VCCAD VSSAD ADREFHI nPORRST nRST ECLK ESM nERROR DCAN1 DCAN2 DCAN3 USB_FUNC.GZO USB_FUNC.PUENO USB_FUNC.PUENON USB_FUNC.RXDI USB_FUNC.RXDMI USB_FUNC.RXDPI USB_FUNC.SE0O USB_FUNC.SUSPENDO USB_FUNC.TXDO USB_FUNC.VBUSI EMIF MibADC1 VIM MibSPI1 SPI2 DCC2 MibSPI3 SPI4 I2C CAN1_RX CAN1_TX CAN2_RX CAN2_TX CAN3_RX CAN3_TX MIBSPI1_CLK MIBSPI1_SIMO[1:0] MIBSPI1_SOMI[1:0] MIBSPI1_nCS[5:0] MIBSPI1_nENA DCC1 I2C_SCL MII PMM I2C_SDA MDIO EMIF_nWAIT EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nCS[0] EMIF_ADDR[21:0] EMIF_BA[1:0] EMIF_DATA[15:0] EMIF_nDQM[1:0] EMIF_nOE EMIF_nWE EMIF_nRAS EMIF_nCAS EMIF_nRW SYS IOMM EMAC Slaves MDCLK MDIO MII_RXD[3:0] MII_RXER MII_TXD[3:0] MII_TXEN MII_TXCLK MII_RXCLK MII_CRS MII_RXDV MII_COL Peripheral Central Resource Bridge Switched Central Resource MibSPI5 SPI2_CLK SPI2_SIMO SPI2_SOMI SPI2_nCS[1:0] SPI2_nENA MIBSPI3_CLK MIBSPI3_SIMO MIBSPI3_SOMI MIBSPI3_nCS[5:0] MIBSPI3_nENA SPI4_CLK SPI4_SIMO SPI4_SOMI SPI4_nCS0 SPI4_nENA MIBSPI5_SIMO[3:0] MIBSPI5_SOMI[3:0] MIBSPI5_nCS[3:0] MIBSPI5_nENA LIN LIN_RX LIN_TX SCI SCI_RX SCI_TX Figure 1-1. Functional Block Diagram Copyright © 2011, Texas Instruments Incorporated RM48Lx50 16/32-Bit RISC Flash Microcontroller Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 5 PRODUCT PREVIEW CRC N2HET2[18,16] 64 KB Flash for EEPROM Emulation with ECC RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 1 2 RM48Lx50 16/32-Bit RISC Flash Microcontroller ...................................................... ................................. Device Operating Conditions ....................... Terminal Functions 3.1 4.8 4.9 4.10 4.11 4.12 11 PRODUCT PREVIEW 3.6 3.7 ...................... Input Timings ....................................... Output Timings ..................................... Low-EMI Output Buffers ............................ Output Buffer Drive Strengths 3.8 3.9 3.10 5.1 5.2 Peripheral Legend ................................. 117 Multi-Buffered 12bit Analog-to-Digital Converter ..................................................... 117 5.3 General-Purpose Input/Output 5.5 5.6 48 5.7 50 5.8 5.9 51 52 53 55 56 6 ................. 84 ........................ 91 DMA Controller ..................................... 94 Real Time Interrupt Module ........................ 97 Error Signaling Module ............................. 99 Reset / Abort / Error Sources ..................... 103 Digital Windowed Watchdog ...................... 105 Debug Subsystem ................................. 106 Peripheral Information and Electrical Specifications ......................................... 117 5.4 51 80 Vectored Interrupt Manager 4.21 48 80 Parity Protection for Accesses to peripheral RAMs External Memory Interface (EMIF) 4.20 47 77 4.15 4.19 5 69 70 4.14 4.18 System Information and Electrical Specifications ............................................................. 4.1 Device Power Domains ............................. 4.2 Voltage Monitor Characteristics .................... 4.3 Power Sequencing and Power On Reset .......... 4.4 Warm Reset (nRST) ................................ 4.5 ARM© Cortex-R4F™ CPU Information ............. 67 On-Chip SRAM Initialization and Testing ........... 82 4.17 44 Wait States Required ............................... 45 Power Consumption Over Recommended Operating Conditions ............................... 46 Input/Output Electrical Characteristics Over Recommended Operating Conditions .............. 47 3.4 3.5 59 Clock Monitoring 4.13 4.16 12 Device Recommended Operating Conditions ...... 44 Switching Characteristics over Recommended Operating Conditions for Clock Domains ........... 45 .............................................. .................................... Glitch Filters ........................................ Device Memory Map ................................ Flash Memory ...................................... Tightly-Coupled RAM Interface Module ............ Clocks ...................................................... Absolute Maximum Ratings Over Operating Free-Air Temperature Range, ...................... 44 3.2 3.3 6 4.7 ZWT BGA Package Ball-Map (337 Ball Grid Array) 2.4 4 4.6 ............................................................... 1 1.1 Features .............................................. 1 1.2 Applications .......................................... 2 1.3 Description ........................................... 3 1.4 Functional Block Diagram ............................ 5 1.1 Device Configuration ................................. 7 Device Package and Terminal Functions ......... 10 2.2 PGE QFP Package Pinout (144-Pin) ............... 10 2.3 3 www.ti.com .................... Enhanced High-End Timer (N2HET) .............. Controller Area Network (DCAN) .................. Local Interconnect Network Interface (LIN) ....... Serial Communication Interface (SCI) ............ Inter-Integrated Circuit (I2C) ...................... 126 127 131 132 133 134 Multi-Buffered / Standard Serial Peripheral Interface ..................................................... 137 ................ ................... Mechanical Data ...................................... 6.1 Thermal Data ...................................... 6.2 Packaging Information ............................ 5.10 Ethernet Media Access Controller 149 5.11 Universal Serial Bus Controller 152 Contents 153 153 153 Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1.1 Device Configuration 1.1.1 Device and Development-Support Tool Nomenclature The figure below illustrates the numbering and symbol nomenclature for the RM48Lx50 . x RM 4 8 L 9 5 0 ZWT T R Prefix: Shipping Options: x = Not Qualified Removed when qualified R = Tape and Reel RM = Real Time Microcontroller Temperature Range: T = -40...+105oC CPU: Package Type: 4 = ARM Cortex-R4 PGE = 144 Pin Package ZWT = 337 BGA Package Series Number Architecture: Reserved Flash / RAM Size: Network Interfaces: 9 = 3MB flash, 256kB RAM 7 = 2MB flash, 256kB RAM 5 = 2MB flash, 192kB RAM 5 = Ethernet and USB PRODUCT PREVIEW L = Lockstep Figure 1-1. RM48x Device Numbering Conventions 1.1.2 Orderable Part Numbers Table 1-1. Orderable Part Numbers (1) (2) Orderable Part # Part # Flash RAM EMAC (1) USB (2) RM48L550PGET RM48L550 2MB 192kB Yes Yes RM48L550ZWTT RM48L550 2MB 192kB Yes Yes RM48L750PGET RM48L750 2MB 256kB Yes Yes RM48L750ZWTT RM48L750 2MB 256kB Yes Yes RM48L950PGET RM48L950 3MB 256kB Yes Yes RM48L950ZWTT RM48L950 3MB 256kB Yes Yes 10/100 2 host ports, or 1 host port + 1 device port 1.1.3 Device Identification 1.1.3.1 Device Identification Code Register The device identification code register identifies several aspects of the device including the silicon version. The details of the device identification code register are shown in Table 1-2. The device identification code register value for this device is: • Rev 0 = 0x802AAD05 Contents Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 7 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Figure 1-2. Device ID Bit Allocation Register 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 CP-15 UNIQUE ID TECH R-1 R-00000000010101 R-0 15 12 11 2 1 0 TECH 14 13 I/O VOLT AGE PERIPH PARITY FLASH ECC 10 9 RAM ECC 8 7 6 VERSION 5 4 3 1 0 1 R-101 R-0 R-1 R-10 R-1 R-00000 R-1 R-0 R-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset PRODUCT PREVIEW 8 Contents Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 1-2. Device ID Bit Allocation Register Field Descriptions Bit Field 31 CP15 Value Description Indicates the presence of coprocessor 15 1 30-17 UNIQUE ID 16-13 TECH 10101 CP15 present Silicon version (revision) bits. This bitfield holds a unique number for a dedicated device configuration (die). Process technology on which the device is manufactured. 0101 I/O VOLTAGE I/O voltage of the device. 0 11 PERIPHERAL PARITY FLASH ECC Parity on peripheral memories Flash ECC 10 8 I/O are 3.3v Peripheral Parity 1 10-9 F021 RAM ECC Program memory with ECC Indicates if RAM memory ECC is present. 1 ECC implemented 7-3 REVISION Revision of the Device. 2-0 101 The platform family ID is always 0b101 1.1.3.2 Die Identification Registers The four die ID registers at addresses 0xFFFFE1F0, 0xFFFFE1F4, 0xFFFFE1F8 and FFFFE1FC form a 128-bit dieid with the information as shown in Table Table 1-3. Table 1-3. Die-ID Registers Item # of Bits X Coord. on Wafer 8 Bit Location 7..0 Y Coord. on Wafer 8 15..8 Wafer # 6 21..16 Lot # 24 45..22 Reserved 82 127..46 Contents Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 9 PRODUCT PREVIEW 12 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2 Device Package and Terminal Functions PGE QFP Package Pinout (144-Pin) 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 TMS N2HET1[28] N2HET1[08] MIBSPI1NCS[0] VCCIO VSS VSS VCC MIBSPI5CLK MIBSPI5SIMO[0] MIBSPI5SOMI[0] MIBSPI5NENA MIBSPI1NENA MIBSPI1CLK MIBSPI1SOMI MIBSPI1SIMO N2HET1[26] N2HET1[24] CAN1RX CAN1TX VSS VCC AD1EVT AD1IN[15] / AD2IN[15] AD1IN[23] / AD2IN[07] AD1IN[08] / AD2IN[08] AD1IN[14] / AD2IN[14] AD1IN[22] / AD2IN[06] AD1IN[06] AD1IN[13] / AD2IN[13] AD1IN[05] AD1IN[12] / AD2IN[12] AD1IN[04] AD1IN[11] / AD2IN[11] AD1IN[03] AD1IN[02] 2.2 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 AD1IN[10] / AD2IN[10] AD1IN[01] AD1IN[09] / AD2IN[09] VCCAD VSSAD ADREFLO ADREFHI AD1IN[21] / AD2IN[05] AD1IN[20] / AD2IN[04] AD1IN[19] / AD2IN[03] AD1IN[18] / AD2IN[02] AD1IN[07] AD1IN[0] AD1IN[17] / AD2IN[01] AD1IN[16] / AD2IN[0] VCC VSS MIBSPI3NCS[0] MIBSPI3NENA MIBSPI3CLK MIBSPI3SIMO MIBSPI3SOMI VSS VCC VCC VSS nPORRST VCC VSS VSS VCCIO N2HET1[15] MIBSPI1NCS[2] N2HET1[13] N2HET1[06] MIBSPI3NCS[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 GIOB[3] GIOA[0] MIBSPI3NCS[3] MIBSPI3NCS[2] GIOA[1] N2HET1[11] FLTP1 FLTP2 GIOA[2] VCCIO VSS CAN3RX CAN3TX GIOA[5] N2HET1[22] GIOA[6] VCC OSCIN Kelvin_GND OSCOUT VSS GIOA[7] N2HET1[01] N2HET1[03] N2HET1[0] VCCIO VSS VSS VCC N2HET1[02] N2HET1[05] MIBSPI5NCS[0] N2HET1[07] TEST N2HET1[09] N2HET1[4] PRODUCT PREVIEW nTRST TDI TDO TCK RTCK VCC VSS nRST nERROR N2HET1[10] ECLK VCCIO VSS VSS VCC N2HET1[12] N2HET1[14] GIOB[0] N2HET1[30] CAN2TX CAN2RX MIBSPI1NCS[1] LINRX LINTX GIOB[1] VCCP VSS VCCIO VCC VSS N2HET1[16] N2HET1[18] N2HET1[20] GIOB[2] VCC VSS Figure 2-3. PGE QFP Package Pinout (144-Pin) Note: Pins can have multiplexed functions. Only the default function is depicted in above diagram. 10 Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com ZWT BGA Package Ball-Map (337 Ball Grid Array) A B C D E F G H J K L M N P T U V W AD1IN [06] AD1IN[11] / AD2IN[11] VSSAD VSSAD 19 AD1IN[08] AD1IN[14] AD1IN[13] / / / AD2IN[08] AD2IN[14] AD2IN[13] AD1IN [04] AD1IN [02] VSSAD 18 AD1IN [05] AD1IN[10] / AD2IN[10] AD1IN [01] 19 VSS VSS TMS N2HET1 [10] MIBSPI5 NCS[0] MIBSPI1 SIMO MIBSPI1 NENA MIBSPI5 CLK MIBSPI5 SIMO[0] N2HET1 [28] DMM_ DATA[0] CAN3RX 18 VSS TCK TDO nTRST N2HET1 [08] MIBSPI1 CLK MIBSPI1 SOMI MIBSPI5 NENA MIBSPI5 SOMI[0] N2HET1 [0] DMM_ DATA[1] CAN3TX NC 17 TDI RST EMIF_ ADDR[21] EMIF_ nWE MIBSPI5 SOMI[1] DMM_ CLK MIBSPI5 SIMO[3] MIBSPI5 SIMO[2] N2HET1 [31] EMIF_ nCS[3] EMIF_ nCS[2] EMIF_ nCS[4] EMIF_ nCS[0] NC 16 RTCK NC EMIF_ ADDR[20] EMIF_ BA[1] MIBSPI5 SIMO[1] DMM_ NENA MIBSPI5 SOMI[3] MIBSPI5 SOMI[2] DMM_ SYNC NC NC NC NC NC 15 NC NC EMIF_ EMIF_ ETM ETM ETM ETM ETM ETM ETM ETM ETM ADDR[19] ADDR[18] DATA[06] DATA[05] DATA[04] DATA[03] DATA[02] DATA[16] DATA[17] DATA[18] DATA[19] 14 N2HET1 [26] nERROR EMIF_ EMIF_ ETM ADDR[17] ADDR[16] DATA[07] VCCIO 13 N2HET1 [17] N2HET1 [19] EMIF_ ADDR[15] NC ETM DATA[12] VCCIO 12 ECLK N2HET1 [04] EMIF_ ADDR[14] NC ETM DATA[13] VCCIO VSS VSS VCC VSS 11 N2HET1 [14] N2HET1 [30] EMIF_ ADDR[13] NC ETM DATA[14] VCCIO VSS VSS VSS 10 CAN1TX CAN1RX EMIF_ ADDR[12] NC ETM DATA[15] VCC VCC VSS VCCIO VCCIO VCC R AD1IN[15] AD1IN[22] / / AD1EVT AD2IN[15] AD2IN[06] AD1IN [03] AD1IN[09] / 17 AD2IN[09] AD1IN[23] AD1IN[12] AD1IN[19] / / / ADREFLO AD2IN[07] AD2IN[12] AD2IN[03] VSSAD 16 AD1IN[21] AD1IN[20] / / ADREFHI AD2IN[05] AD2IN[04] VCCAD 15 AD1IN [0] 14 NC 13 NC NC VCCIO NC NC AD1IN[18] / AD2IN[02] VCCIO ETM DATA[01] NC AD1IN[17] AD1IN[16] / / AD2IN[01] AD2IN[0] VSS VCCIO ETM DATA[0] MIBSPI5 NCS[3] NC NC NC 12 VSS VSS VCCPLL ETME TRACE CTL NC NC NC NC 11 VSS VSS VCC VCC ETM TRACE CLKOUT NC NC MIBSPI3 NCS[0] GIOB[3] 10 VCC VCCIO VCCIO VCCIO AD1IN [07] 9 N2HET1 [27] NC EMIF_ ADDR[11] NC ETM DATA[08] VCC VSS VSS VSS VSS VSS VCCIO ETM TRACE CLKIN NC NC MIBSPI3 CLK MIBSPI3 9 NENA 8 NC NC EMIF_ ADDR[10] NC ETM DATA[09] VCCP VSS VSS VCC VSS VSS VCCIO ETM DATA[31] NC NC MIBSPI3 SOMI MIBSPI3 8 SIMO 7 LINRX LINTX EMIF_ ADDR[9] NC ETM DATA[10] VCCIO VCCIO ETM DATA[30] NC NC N2HET1 [09] nPORRST 7 6 GIOA[4] MIBSPI5 NCS[1] EMIF_ ADDR[8] NC ETM DATA[11] VCCIO VCCIO ETM DATA[29] NC NC N2HET1 [05] MIBSPI5 6 NCS[2] 5 GIOA[0] GIOA[5] EMIF_ ADDR[7] EMIF_ ADDR[1] ETM ETM ETM ETM ETM ETM DATA[23] DATA[24] DATA[25] DATA[26] DATA[27] DATA[28] NC NC MIBSPI3 NCS[1] N2HET1 [02] 5 4 N2HET1 [16] N2HET1 [12] EMIF_ ADDR[6] EMIF_ ADDR[0] NC NC 3 N2HET1 [29] N2HET1 [22] MIBSPI3 NCS[3] SPI2 NENA N2HET1 [11] 2 VSS MIBSPI3 NCS[2] GIOA[1] SPI2 SOMI 1 VSS VSS GIOA[2] A B C VCCIO VCCIO VCCIO FLTP2 FLTP1 NC N2HET1 [21] N2HET1 [23] NC] NC NC NC NC EMIF_ nCAS NC NC NC NC 4 MIBSPI1 NCS[1] MIBSPI1 NCS[2] GIOA[6] MIBSPI1 NCS[3] EMIF_ CLK EMIF_ CKE NH2ET1 [25] SPI2 NCS[0] EMIF_ nWAIT EMIF_ nRAS NC NC NC N2HET1 [06] 3 SPI2 CLK GIOB[2] GIOB[5] CAN2TX GIOB[6] GIOB[1] KELVIN_ GND GIOB[0] N2HET1 [13] N2HET1 [20] MIBSPI1 NCS[0] NC TEST N2HET1 [01] VSS 2 SPI2 SIMO GIOA[3] GIOB[7] GIOB[4] CAN2RX N2HET1 [18] OSCIN OSCOUT GIOA[7] N2HET1 [15] N2HET1 [24] NC N2HET1 [07] N2HET1 [03] VSS VSS 1 D E F G H J K L M N P R T U V W ETM ETM ETM DATA[20] DATA[21] DATA[22] VCC VCC VCCIO VCCIO Figure 2-4. ZWT Package Pinout. Top View Note: Balls can have multiplexed functions. Only the default function is depicted in above diagram, except for the EMIF signals that are multiplexed with ETM signals. Copyright © 2011, Texas Instruments Incorporated Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 11 PRODUCT PREVIEW 2.3 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4 www.ti.com Terminal Functions Section 2.4.1 and Section 2.4.2 identify the external signal names, the associated pin/ball numbers along with the mechanical package designator, the pin/ball type (Input, Output, IO, Power or Ground), whether the pin/ball has any internal pullup/pulldown, whether the pin/ball can be configured as a GIO, and a functional pin/ball description. The first signal name listed is the primary function for that terminal. The signal name in Bold is the function being described. Refer to the I/O Multiplexing Module (IOMM) User Guide for information on how to select between different multiplexed functions. NOTE All I/O signals except nRST are configured as inputs while nPORRST is low and immediately after nPORRST goes High. All output-only signals are configured as inputs while nPORRST is low, and are configured as outputs immediately after nPORRST goes High. While nPORRST is low, the input buffers are disabled, and the output buffers are tri-stated. PRODUCT PREVIEW 2.4.1 PGE Package 2.4.1.1 Multi-Buffered Analog-to-Digital Converters (MibADC) Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) Terminal Signal Name 144 PGE Signal Type Default Pull State Pull Type Input - - Description ADREFHI (1) 66 ADREFLO (1) 67 Input ADC low reference supply VCCAD (1) 69 Power Operating supply for ADC (1) VSSAD 68 Ground AD1EVT/MII_RX_ER 86 Input MIBSPI3NCS[0]/AD2EVT 55 I/O AD1IN[0] 60 Input AD1IN[01] 71 AD1IN[02] 73 AD1IN[03] 74 AD1IN[04] 76 AD1IN[05] 78 AD1IN[06] 80 AD1IN[07] 61 (1) 12 ADC high reference supply Pull Down Programmable, 20uA ADC1 event trigger input, or GIO Pull Up Programmable, 20uA ADC2 event trigger input, or GIO - - ADC1 analog input The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores. Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-4. PGE Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) (continued) 144 PGE AD1IN[08] / AD2IN[08] 83 AD1IN[09] / AD2IN[09] 70 AD1IN[10] / AD2IN[10] 72 AD1IN[11] / AD2IN[11] 75 AD1IN[12] / AD2IN[12] 77 AD1IN[13] / AD2IN[13] 79 AD1IN[14] / AD2IN[14] 82 AD1IN[15] / AD2IN[15] 85 AD1IN[16] / AD2IN[0] 58 AD1IN[17] / AD2IN[01] 59 AD1IN[18] / AD2IN[02] 62 AD1IN[19] / AD2IN[03] 63 AD1IN[20] / AD2IN[04] 64 AD1IN[21] / AD2IN[05] 65 AD1IN[22] / AD2IN[06] 81 AD1IN[23] / AD2IN[07] 84 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type Input - - Description ADC1/ADC2 shared analog inputs Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW Terminal Signal Name 13 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4.1.2 www.ti.com Enhanced High-End Timer Modules (N2HET) Table 2-5. PGE Enhanced High-End Timer Modules (N2HET) Terminal Signal Name 144 PGE PRODUCT PREVIEW N2HET1[0]/SPI4CLK 25 N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] 23 N2HET1[02]/SPI4SIMO 30 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] 24 N2HET1[04] 36 N2HET1[05]/SPI4SOMI/N2HET2[12] 31 N2HET1[06]/SCIRX 38 N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/ N2HET2[14] 33 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent 106 N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO 35 N2HET1[10]/MII_TX_CLK/USB1.TXEN /MII_TX_AVCLK4 118 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI I/O Default Pull State Pull Down Pull Type Programmable, 20uA Description N2HET1 time input capture or output compare, or GIO. Each terminal has a suppression filter that ignores input pulses smaller than a programmable duration. 6 N2HET1[12]/MII_CRS 124 N2HET1[13]/SCITX 39 N2HET1[14]/USB1.TXSE0 125 N2HET1[15]/MIBSPI1NCS[4] 41 N2HET1[16] 139 MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND 130 N2HET1[18] 140 MIBSPI1NCS[2]/N2HET1[19]/MDIO 40 N2HET1[20] 141 N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O 15 MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP 96 N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 91 MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 N2HET1[26]/MII_RXD[1] 92 MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4 107 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 N2HET1[30]/MII_RX_DV/USB1.SPEED 127 MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54 14 Signal Type Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-5. PGE Enhanced High-End Timer Modules (N2HET) (continued) Terminal Signal Name 144 PGE GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] 9 GIOA[6]/N2HET2[4] 16 GIOA[7]/N2HET2[6] 22 N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] 23 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] 24 N2HET1[05]/SPI4SOMI/N2HET2[12] 31 N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/ N2HET2[14] 33 N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO 35 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI 6 I/O Default Pull State Pull Down Pull Type Programmable, 20uA Description N2HET2 time input capture or output compare, or GIO Each terminal has a suppression filter that ignores input pulses smaller than a programmable duration. General-Purpose Input / Output (GIO) PRODUCT PREVIEW 2.4.1.3 Signal Type Table 2-6. PGE General-Purpose Input / Output (GIO) Terminal Signal Name 144 PGE GIOA[0] 2 GIOA[1] 5 GIOA[2]/N2HET2[0] 9 GIOA[5]/EXTCLKIN 14 GIOA[6]/N2HET2[4] 16 GIOA[7]/N2HET2[6] 22 GIOB[0] 126 GIOB[1] 133 GIOB[2] 142 GIOB[3] 1 2.4.1.4 Signal Type Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description General-purpose I/O. All GIO terminals are capable of generating interrupts to the CPU on rising / falling / both edges. Controller Area Network Controllers (DCAN) Table 2-7. PGE Controller Area Network Controllers (DCAN) Terminal Signal Name 144 PGE Signal Type Pull Up Pull Type Programmable, 20uA Description CAN1RX 90 CAN1TX 89 CAN2RX 129 CAN2 receive, or GIO CAN2TX 128 CAN2 transmit, or GIO CAN3RX 12 CAN3 receive, or GIO CAN3TX 13 CAN3 transmit, or GIO Copyright © 2011, Texas Instruments Incorporated I/O Default Pull State CAN1 receive, or GIO CAN1 transmit, or GIO Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 15 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4.1.5 www.ti.com Local Interconnect Network Interface Module (LIN) Table 2-8. PGE Local Interconnect Network Interface Module (LIN) Terminal Signal Name 144 PGE LINRX 131 LINTX 132 2.4.1.6 Signal Type I/O Default Pull State Pull Up Pull Type Programmable, 20uA Description LIN receive, or GIO LIN transmit, or GIO Standard Serial Communication Interface (SCI) Table 2-9. PGE Standard Serial Communication Interface (SCI) Terminal Signal Name 144 PGE N2HET1[06]/SCIRX 38 N2HET1[13]/SCITX 39 2.4.1.7 Signal Type Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description SCI receive, or GIO SCI transmit, or GIO Inter-Integrated Circuit Interface Module (I2C) PRODUCT PREVIEW Table 2-10. PGE Inter-Integrated Circuit Interface Module (I2C) Terminal Signal Name 144 PGE MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 2.4.1.8 Signal Type I/O Default Pull State Pull Up Pull Type Programmable, 20uA Description I2C serial data, or GIO I2C serial clock, or GIO Standard Serial Peripheral Interface (SPI) Table 2-11. PGE Standard Serial Peripheral Interface (SPI) Terminal Signal Name 144 PGE Signal Type Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description N2HET1[0]/SPI4CLK 25 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] 24 N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] 23 SPI4 enable, or GIO N2HET1[02]/SPI4SIMO 30 SPI4 slave-input master-output, or GIO N2HET1[05]/SPI4SOMI/N2HET2[12] 31 SPI4 slave-output master-input, or GIO 16 Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 SPI4 clock, or GIO SPI4 chip select, or GIO Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.1.9 Multi-Buffered Serial Peripheral Interface Modules (MibSPI) Table 2-12. PGE Multi-Buffered Serial Peripheral Interface Modules (MibSPI) 144 PGE Signal Type I/O Default Pull State Pull Up Pull Type Description MIBSPI1CLK 95 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV 105 Programmable, 20uA MibSPI1 clock, or GIO MIBSPI1NCS[1]/N2HET1[17]/MII_COL /USB1.SUSPEND 130 MIBSPI1NCS[2]/N2HET1[19]/MDIO 40 N2HET1[15]/MIBSPI1NCS[4] 41 N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 91 Pull Down Programmable, 20uA MibSPI1 chip select, or GIO MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP 96 Pull Up Programmable, 20uA MibSPI1 enable, or GIO MIBSPI1SIMO 93 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent 106 Pull Down Programmable, 20uA MibSPI1 slave-in master-out, or GIO MIBSPI1SOMI 94 Pull Up MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV 105 Programmable, 20uA MibSPI1 slave-out master-in, or GIO MIBSPI3CLK 53 Pull Up 55 Programmable, 20uA MibSPI3 clock, or GIO MIBSPI3NCS[0]/AD2EVT/GIOB[2] MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] 4 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] 3 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI 6 Pull Up Programmable, 20uA MibSPI3 chip select, or GIO MIBSPI3NENA /MIBSPI3NCS[5]/N2HET1[31] 54 Pull Up Programmable, 20uA MibSPI3 chip select, or GIO MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] 54 MibSPI3 enable, or GIO MIBSPI3SIMO 52 MibSPI3 slave-in master-out, or GIO MIBSPI3SOMI 51 MibSPI3 slave-out master-in, or GIO MIBSPI5CLK/MII_TXEN 100 MIBSPI5NCS[0] 32 MIBSPI5NENA/MII_RXD[3]/USB1.VM 97 MibSPI5 enable, or GIO MIBSPI5SIMO[0]/MII_TXD[1] 99 MibSPI5 slave-in master-out, or GIO MIBSPI5SOMI[0]/MII_TXD[0] 98 MibSPI5 slave-out master-in, or GIO MibSPI1 chip select, or GIO MibSPI1 slave-in master-out, or GIO I/O I/O Pull Up Programmable, 20uA PRODUCT PREVIEW Terminal Signal Name MibSPI3 chip select, or GIO MibSPI5 clock, or GIO MibSPI5 chip select, or GIO 2.4.1.10 Ethernet Controller Table 2-13. PGE Ethernet Controller: MDIO Interface Terminal Signal Name 144 PGE Signal Type Default Pull State MIBSPI3NCS[1]/N2HET1[25]/MDCLK 37 Output Pull Up MIBSPI1NCS[2]/N2HET1[19]/MDIO 40 I/O Pull Up Copyright © 2011, Texas Instruments Incorporated Pull Type Fixed, 20uA Description Serial clock output Serial data input/output Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 17 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-14. PGE Ethernet Controller: Media Independent Interface (MII) Terminal Signal Name 144 PGE Signal Type N2HET1[12]/MII_CRS 124 N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4 107 I/O Pull Down N2HET1[30]/MII_RX_DV/USB1.SPEED 127 Input Pull Down AD1EVT/MII_RX_ER 86 N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4 107 I/O Receive clock N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] 92 Input Receive data N2HET1[26]/MII_RXD[1] 92 MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP 96 PRODUCT PREVIEW 97 118 N2HET1[10]/MII_TX_CLK/USB1.TXEN /MII_TX_AVCLK4 118 MIBSPI5SOMI[0]/MII_TXD[0] 98 Pull Down - Description 130 N2HET1[10]/MII_TX_CLK/USB1.TXEN/ MII_TX_AVCLK4 Pull Up Pull Type MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND MIBSPI5NENA/MII_RXD[3]/USB1.VM Input Default Pull State Fixed, 20uA Fixed, 20uA Collision detect Carrier sense and receive valid MII output receive clock Received data valid Receive error Pull Up I/O Pull Down Fixed, 20uA - MII output transmit clock Transmit clock Output Pull Up - MIBSPI5SIMO[0]/MII_TXD[1] 99 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV 105 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent 106 Pull Down - MIBSPI5CLK/MII_TXEN 100 Pull Up - Transmit data Transmit enable 2.4.1.11 USB Host Port Controller Interface Table 2-15. PGE USB Host Port Controller Interface (USB1, USB2) Terminal Signal Name 144 PGE Signal Type Default Pull State Pull Type Description Input Pull Down Fixed, 20uA Overcurrent indication from USB power switch Pull Up Fixed, 20uA Receive data from USB port transceiver N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3] /USB1.OverCurrent 106 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV 105 MIBSPI5NENA/MII_RXD[3]/USB1.VM 97 NRZI encoded D-minus from USB port transceiver MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP 96 NRZI encoded D-plus from USB port transceiver GIOB[1]/USB1.PortPower 133 N2HET1[30]/MII_RX_DV/USB1.SPEED 127 MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND Pull Down - 130 Pull Up - GIOB[0]/USB1.TXDAT 126 Pull Down - N2HET1[10]/MII_TX_CLK/USB1.TXEN /MII_TX_AVCLK4 118 Transmit enable to port transceiver N2HET1[14]/USB1.TXSE0 125 Single-ended zero to port transceiver 18 Output Transmit speed indication Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-15. PGE USB Host Port Controller Interface (USB1, USB2) (continued) 144 PGE Signal Type Default Pull State Pull Type Input Pull Down Fixed, 20uA Pull Down Fixed, 20uA Description N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI 6 GIOB[3]/USB2.RCV/USB_FUNC.RXDI 1 GIOA[1]/USB2.VM/USB_FUNC.RXDMI 5 NRZI encoded D-minus from USB port transceiver GIOA[0]/USB2.VP/USB_FUNC.RXDPI 2 NRZI encoded D-plus from USB port transceiver N2HET1[07]/USB2.PortPower/ USB_FUNC.GZO/N2HET2[14] 33 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] 24 Transmit speed indication N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO 35 Port suspend indication GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] 9 NRZI encoded D-plus to port transceiver N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] 23 Transmit enable to port transceiver N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O 15 Single-ended zero to port transceiver Output Pull Down - Table 2-16. PGE USB Device Port Controller Interface (USB_FUNC) Terminal Signal Type Default Pull State Pull Type Description Output Pull Down - Pull Up enable, allows for software-programmable USB device connect/disconnect Signal Name 144 PGE N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14] 33 N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/ N2HET2[8] 23 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO N/ N2HET2[10] 24 GIOB[3]/USB2.RCV/USB_FUNC.RXDI 1 GIOA[1]/USB2.VM/USB_FUNC.RXDMI 5 USB device logic value of D-minus GIOA[0]/USB2.VP/USB_FUNC.RXDPI 2 USB device logic value of D-plus N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O 15 N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO 35 GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] 9 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI 6 Copyright © 2011, Texas Instruments Incorporated PUENO inverted Input Output Pull Down Pull Down Fixed, 20uA - USB device single-ended data input USB device single-ended zero USB device suspend output USB device transmit data Input Pull Down Fixed, 20uA USB device power connected Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 19 PRODUCT PREVIEW Terminal Signal Name RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.1.12 System Module Interface Table 2-17. PGE System Module Interface Terminal Signal Name 144 PGE Signal Type PRODUCT PREVIEW nPORRST 46 Input nRST 116 I/O nERROR 117 I/O Default Pull State Pull Type Pull Down 100uA Pull Up Description Power-on reset, cold reset External power supply monitor circuitry must drive nPORRST low when any of the supplies to the microcontroller fall out of thespecified range. This terminal has a glitch filter. See Section 4.8. 100uA System reset, warm reset, bidirectional. The internal circuitry indicates any reset condition by driving nRST low. The external circuitry can assert a system reset by driving nRST low. To ensure that an external reset is not arbitrarily generated, TI recommends that an external pull-up resistor is connected to this terminal. This terminal has a glitch filter. See Section 4.8. Pull Down 20uA ESM Error Signal Indicates error of high severity. See Section 4.18. 2.4.1.13 Clock Inputs and Outputs Table 2-18. PGE Clock Inputs and Outputs Terminal Signal Name 144 PGE Signal Type Default Pull State Pull Type - - Description OSCIN 18 Input KELVIN_GND 19 Input OSCOUT 20 Output ECLK 119 I/O Pull Down Programmable, 20uA External prescaled clock output, or GIO. GIOA[5]/EXTCLKIN 14 Input Pull Down 20uA External clock input #1 20 From external crystal/resonator, or external clock input Kelvin ground for oscillator To external crystal/resonator Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.1.14 Test and Debug Modules Interface Table 2-19. PGE Test and Debug Modules Interface Terminal Signal Name 144 PGE Signal Type Default Pull State TEST 34 I/O nTRST 109 Input RTCK 113 Output TCK 112 Input TDI 110 I/O Pull Up TDO 111 I/O Pull Down TMS 108 I/O Pull Up Pull Type Pull Down Fixed, 100uA Description Test enable JTAG test hardware reset - - JTAG return test clock Pull Down Fixed, 100uA JTAG test clock JTAG test data in JTAG test data out JTAG test select 2.4.1.15 Flash Supply and Test Pads Table 2-20. PGE Flash Supply and Test Pads 144 PGE VCCP 134 FLTP1 7 FLTP2 8 Signal Type Default Pull State Pull Type Input - - Description Flash pump supply Flash test pads. These terminals are reserved for TI use only. For proper operation these terminals must connect only to a test pad or not be connected at all [no connect (NC)]. 2.4.1.16 Supply for Core Logic: 1.2V nominal Table 2-21. PGE Supply for Core Logic: 1.2V nominal Terminal Signal Name 144 PGE VCC 17 VCC 29 VCC 45 VCC 48 VCC 49 VCC 57 VCC 87 VCC 101 VCC 114 VCC 123 VCC 137 VCC 143 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type - - - Description Core supply Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 21 PRODUCT PREVIEW Terminal Signal Name RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.1.17 Supply for I/O Cells: 3.3V nominal Table 2-22. PGE Supply for I/O Cells: 3.3V nominal Terminal Signal Name 144 PGE VCCIO 10 VCCIO 26 VCCIO 42 VCCIO 104 VCCIO 120 VCCIO 136 Signal Type Default Pull State Pull Type Input - - Description Operating supply for I/Os 2.4.1.18 Ground Reference for All Supplies Except VCCAD Table 2-23. PGE Ground Reference for All Supplies Except VCCAD Terminal Signal Name 144 PGE PRODUCT PREVIEW VSS 11 VSS 21 VSS 27 VSS 28 VSS 43 VSS 44 VSS 47 VSS 50 VSS 56 VSS 88 VSS 102 VSS 103 VSS 115 VSS 121 VSS 122 VSS 135 VSS 138 22 Signal Type Default Pull State Pull Type Input - - Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Description Ground reference Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2 ZWT Package 2.4.2.1 Multi-Buffered Analog-to-Digital Converters (MibADC) Table 2-24. ZWT Multi-Buffered Analog-to-Digital Converters (MibADC1, MibADC2) Terminal Signal Name ADREFHI (1) 337 ZWT V15 Signal Type Default Pull State Pull Type Input - - Description ADC high reference supply ADREFLO (1) V16 Input ADC low reference supply VCCAD (1) W15 Power Operating supply for ADC V19 Ground - - Pull Down Programmable, 20uA ADC1 event trigger input, or GIO Pull Up Programmable, 20uA ADC2 event trigger input, or GIO VSSAD ADC supply power W16 W18 N19 Input MIBSPI3NCS[0]/AD2EVT/GIOB[2] V10 I/O AD1IN[0] W14 Input - - ADC1 analog input AD1IN[01] V17 AD1IN[02] V18 Input - - ADC1/ADC2 shared analog inputs AD1IN[03] T17 AD1IN[04] U18 AD1IN[05] R17 AD1IN[06] T19 AD1IN[07] V14 AD1IN[08] / AD2IN[08] P18 AD1IN[09] / AD2IN[09] W17 AD1IN[10] / AD2IN[10] U17 AD1IN[11] / AD2IN[11] U19 AD1IN[12] / AD2IN[12] T16 AD1IN[13] / AD2IN[13] T18 AD1IN[14] / AD2IN[14] R18 AD1IN[15] / AD2IN[15] P19 AD1IN[16] / AD2IN[0] V13 AD1IN[17] / AD2IN[01] U13 AD1IN[18] / AD2IN[02] U14 AD1IN[19] / AD2IN[03] U16 AD1IN[20] / AD2IN[04] U15 AD1IN[21] / AD2IN[05] T15 AD1IN[22] / AD2IN[06] R19 AD1IN[23] / AD2IN[07] R16 (1) The ADREFHI, ADREFLO, VCCAD and VSSAD connections are common for both ADC cores. Copyright © 2011, Texas Instruments Incorporated Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 23 PRODUCT PREVIEW W19 AD1EVT/MII_RX_ER RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4.2.2 www.ti.com Enhanced High-End Timer Modules (N2HET) Table 2-25. ZWT Enhanced High-End Timer Modules (N2HET) Terminal Signal Name 337 ZWT N2HET1[0]/SPI4CLK K18 N2HET1[01]/SPI4NENA/N2HET2[8] V2 N2HET1[02]/SPI4SIMO W5 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] U1 N2HET1[04] B12 PRODUCT PREVIEW N2HET1[05]/SPI4SOMI/N2HET2[12] V6 N2HET1[06]/SCIRX W3 N2HET1[07]/USB2.PortPower/ USB_FUNC.GZO/N2HET2[14] T1 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent E18 N2HET1[09]/N2HET2[16]/ USB2.SUSPEND/USB_FUNC.SUSPENDO V7 N2HET1[10]/MII_TX_CLK/ USB1.TXEN/MII_TX_AVCLK4 Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description N2HET1 time capture or compare, or GIO. input output Each terminal has a suppression filter that ignores input pulses smaller than a programmable duration. D19 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI E3 N2HET1[12]/MII_CRS B4 N2HET1[13]/SCITX N2 N2HET1[14]/USB1.TXSE0 A11 N2HET1[15]/MIBSPI1NCS[4] N1 N2HET1[16] A4 N2HET1[17] A13 N2HET1[18] J1 N2HET1[19] B13 N2HET1[20] P2 N2HET1[21] H4 N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O B3 N2HET1[23] J4 N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] P1 N2HET1[25] M3 N2HET1[26]/MII_RXD[1] A14 N2HET1[27] A9 N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4 K19 N2HET1[29] A3 N2HET1[30]/MII_RX_DV/USB1.SPEED B11 N2HET1[31] J17 24 Signal Type Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-25. ZWT Enhanced High-End Timer Modules (N2HET) (continued) 337 ZWT GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] C1 EMIF_ADDR[0]/N2HET2[1] D4 GIOA[3]/N2HET2[2] E1 EMIF_ADDR[1]/N2HET2[3] D5 GIOA[6]/N2HET2[4] H3 EMIF_BA[1]/N2HET2[5] D16 GIOA[7]/N2HET2[6] M1 EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] V2 EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] U1 EMIF_ADDR[6]/RTP_DATA[13]/NHET2[11] C4 N2HET1[05]/SPI4SOMI/N2HET2[12] V6 EMIF_ADDR[7]/RTP_DATA[12]/NHET2[13] C5 N2HET1[07]/USB2.PortPower/ USB_FUNC.GZO/N2HET2[14] T1 EMIF_ADDR[8]/RTP_DATA[11]/N2HET2[15] C6 N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO V7 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI E3 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description N2HET2 time capture or compare, or GIO. input output Each terminal has a suppression filter that ignores input pulses smaller than a programmable duration. Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW Terminal Signal Name 25 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4.2.3 www.ti.com General-Purpose Input / Output (GIO) Table 2-26. ZWT General-Purpose Input / Output (GIO) Terminal Signal Name 337 ZWT GIOA[0]/USB2.VP/USB_FUNC.RXDPI A5 GIOA[1]/USB2.VM/USB_FUNC.RXDMI C2 GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] C1 GIOA[3]/N2HET2[2] E1 GIOA[4] A6 GIOA[5]/EXTCLKIN B5 GIOA[6]/N2HET2[4] H3 GIOA[7]/N2HET2[6] M1 GIOB[0]/USB1.TXDAT M2 GIOB[1]/USB1.PortPower K2 GIOB[2] Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description General-purpose I/O. All GIO terminals are capable of generating interrupts to the CPU on rising / falling / both edges. F2 GIOB[3]/USB2.RCV W10 PRODUCT PREVIEW GIOB[4] G1 GIOB[5] G2 GIOB[6] J2 GIOB[7] F1 26 Signal Type Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.4 Controller Area Network Controllers (DCAN) Table 2-27. ZWT Controller Area Network Controllers (DCAN) Terminal Signal Name 337 ZWT Signal Type Pull Up Pull Type Programmable, 20uA Description CAN1RX B10 CAN1TX A10 CAN2RX H1 CAN2 receive, or GIO CAN2TX H2 CAN2 transmit, or GIO CAN3RX M19 CAN3 receive, or GIO CAN3TX M18 CAN3 transmit, or GIO 2.4.2.5 I/O Default Pull State CAN1 receive, or GIO CAN1 transmit, or GIO Local Interconnect Network Interface Module (LIN) Table 2-28. ZWT Local Interconnect Network Interface Module (LIN) 337 ZWT LINRX A7 LINTX B7 2.4.2.6 Signal Type I/O Default Pull State Pull Up Pull Type Programmable, 20uA Description PRODUCT PREVIEW Terminal Signal Name LIN receive, or GIO LIN transmit, or GIO Standard Serial Communication Interface (SCI) Table 2-29. ZWT Standard Serial Communication Interface (SCI) Terminal Signal Name 337 ZWT N2HET1[06]/SCIRX W3 N2HET1[13]/SCITX N2 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type I/O Pull Down Programmable, 20uA Description SCI receive, or GIO SCI transmit, or GIO Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 27 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 2.4.2.7 www.ti.com Inter-Integrated Circuit Interface Module (I2C) Table 2-30. ZWT Inter-Integrated Circuit Interface Module (I2C) Terminal Signal Name 337 ZWT MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 2.4.2.8 Signal Type I/O Default Pull State Pull Up Pull Type Programmable, 20uA Description I2C serial data, or GIO I2C serial clock, or GIO Standard Serial Peripheral Interface (SPI) Table 2-31. ZWT Standard Serial Peripheral Interface (SPI) Terminal Signal Name 337 ZWT Signal Type PRODUCT PREVIEW SPI2NCS[0] N3 SPI2NENA/SPI2NCS[1] D3 SPI2 chip select, or GIO SPI2NENA/SPI2NCS[1] D3 SPI2 enable, or GIO SPI2SIMO D1 SPI2 slave-input master-output, or GIO SPI2SOMI D2 SPI2 slave-output master-input, or GIO N2HET1[0]/SPI4CLK K18 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] U1 N2HET1[01]/SPI4NENA/USB2.TXEN/ USB_FUNC.PUENO/N2HET2[8] V2 SPI4 enable, or GIO N2HET1[02]/SPI4SIMO W5 SPI4 slave-input master-output, or GIO N2HET1[05]/SPI4SOMI/N2HET2[12] V6 SPI4 slave-output master-input, or GIO Pull Down Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Programmable, 20uA Description E2 I/O Pull Up Pull Type SPI2CLK 28 I/O Default Pull State Programmable, 20uA SPI2 clock, or GIO SPI2 chip select, or GIO SPI4 clock, or GIO SPI4 chip select, or GIO Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.9 Multi-Buffered Serial Peripheral Interface Modules (MibSPI) Table 2-32. ZWT Multi-Buffered Serial Peripheral Interface Modules (MibSPI) 337 ZWT MIBSPI1CLK F18 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV R2 MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND F3 MIBSPI1NCS[2]/N2HET1[19]/MDIO G3 Signal Type I/O Default Pull State Pull Up Pull Type Description Programmable, 20uA MibSPI1 clock, or GIO Pull Down Programmable, 20uA MibSPI1 chip select, or GIO Pull Up Programmable, 20uA MibSPI1 enable, or GIO MibSPI1 chip select, or GIO MIBSPI1NCS[3]/N2HET1[21] J3 N2HET1[15]/MIBSPI1NCS[4] N1 N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] P1 MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP G19 MIBSPI1SIMO F19 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/USB1.OverCurrent E18 Pull Down Programmable, 20uA MibSPI1 slave-in master-out, or GIO MIBSPI1SOMI G18 Pull Up Programmable, 20uA MibSPI1 slave-out master-in, or GIO Pull Up Programmable, 20uA MibSPI3 clock, or GIO MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV MibSPI1 slave-in master-out, or GIO R2 MIBSPI3CLK V9 MIBSPI3NCS[0]/AD2EVT/GIOB[2] V10 MIBSPI3NCS[1]/N2HET1[25]/MDCLK V5 I/O MibSPI3 chip select, or GIO MIBSPI3NCS[2]/I2C_SDA/N2HET1[27] B2 MIBSPI3NCS[3]/I2C_SCL/N2HET1[29] C3 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI E3 Pull Up Programmable, 20uA MibSPI3 chip select, or GIO MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 Pull Up Programmable, 20uA MibSPI3 chip select, or GIO MIBSPI3NENA/MIBSPI3NCS[5]/N2HET1[31] W9 MibSPI3 enable, or GIO MIBSPI3SIMO W8 MibSPI3 slave-in master-out, or GIO MIBSPI3SOMI V8 MibSPI3 slave-out master-in, or GIO MIBSPI5CLK/DMM_DATA[4]/MII_TXEN H19 MIBSPI5NCS[0]/DMM_DATA[5] E19 MIBSPI5NCS[1]/DMM_DATA[6] B6 MIBSPI5NCS[2]/DMM_DATA[2] W6 I/O Pull Up Programmable, 20uA MibSPI5 clock, or GIO MibSPI5 chip select, or GIO MIBSPI5NCS[3]/DMM_DATA[3] T12 MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3]/ USB1.VM H18 MibSPI5 enable, or GIO MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1] J19 MIBSPI5SIMO[1]/DMM_DATA[9] E16 MibSPI5 slave-in master-out, or GIO MIBSPI5SIMO[2]/DMM_DATA[10] H17 MIBSPI5SIMO[3]/DMM_DATA[11] G17 MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0] J18 MIBSPI5SOMI[1]/DMM_DATA[13] E17 MIBSPI5SOMI[2]/DMM_DATA[14] H16 MIBSPI5SOMI[3]/DMM_DATA[15] G16 Copyright © 2011, Texas Instruments Incorporated PRODUCT PREVIEW Terminal Signal Name Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 29 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.10 Ethernet Controller Table 2-33. ZWT Ethernet Controller: MDIO Interface Terminal Signal Name 337 ZWT Signal Type Default Pull State MIBSPI3NCS[1]/N2HET1[25]/MDCLK V5 Output Pull Up MIBSPI1NCS[2]/N2HET1[19]/MDIO G3 I/O Pull Up Pull Type Fixed, 20uA Description Serial clock output Serial data input/output Table 2-34. ZWT Ethernet Controller: Media Independent Interface (MII) Terminal Signal Name 337 ZWT Signal Type PRODUCT PREVIEW N2HET1[12]/MII_CRS B4 N2HET1[28]/MII_RXCLK/MII_RX_AVCLK4 K19 I/O Pull Down N2HET1[30]/MII_RX_DV/USB1.SPEED B11 Input Pull Down AD1EVT/MII_RX_ER N19 N2HET1[28]/MII_RX_CLK/MII_RX_AVCLK4 K19 I/O Receive clock N2HET1[24]/MIBSPI1NCS[5]/MII_RXD[0] P1 Input Receive data A14 G19 MIBSPI5NENA/MII_RXD[3]/USB1.VM H18 N2HET1[10]/MII_TX_CLK/USB1.TXEN/ MII_TX_AVCLK4 D19 N2HET1[10]/MII_TX_CLK/USB1.TXEN /MII_TX_AVCLK4 D19 MIBSPI5SOMI[0]/MII_TXD[0] J18 MIBSPI5SIMO[0]/MII_TXD[1] J19 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV R2 N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent MIBSPI5CLK/MII_TXEN 30 Pull Down - Description F3 MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP Pull Up Pull Type MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND N2HET1[26]/MII_RXD[1] Input Default Pull State Fixed, 20uA Fixed, 20uA Collision detect Carrier sense and receive valid MII output receive clock Received data valid Receive error Pull Up I/O Pull Down Fixed, 20uA - MII output transmit clock Transmit clock Output Pull Up - E18 Pull Down - H19 Pull Up - Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Transmit data Transmit enable Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.11 USB Host Port Controller Interface Table 2-35. ZWT USB Host Port Controller Interface (USB1, USB2) 337 ZWT Signal Type Default Pull State Pull Type Description Input Pull Down Fixed, 20uA Overcurrent indication from USB power switch Pull Up Fixed, 20uA Receive data from USB port transceiver N2HET1[08]/MIBSPI1SIMO[1]/MII_TXD[3]/ USB1.OverCurrent E18 MIBSPI1NCS[0]/MIBSPI1SOMI[1]/MII_TXD[2]/ USB1.RCV R2 MIBSPI5NENA/MII_RXD[3]/USB1.VM H18 NRZI encoded D-minus from USB port transceiver MIBSPI1NENA/N2HET1[23]/MII_RXD[2]/ USB1.VP G19 NRZI encoded D-plus from USB port transceiver GIOB[1]/USB1.PortPower K2 N2HET1[30]/MII_RX_DV/USB1.SPEED B11 Output Pull Down - MIBSPI1NCS[1]/N2HET1[17]/MII_COL/ USB1.SUSPEND F3 Pull Up - GIOB[0]/USB1.TXDAT M2 Pull Down - N2HET1[10]/MII_TX_CLK/USB1.TXEN/ MII_TX_AVCLK4 D19 Transmit enable to port transceiver N2HET1[14]/USB1.TXSE0 A11 Single-ended zero to port transceiver N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI E3 Transmit speed indication Input Pull Down Fixed, 20uA Pull Down Fixed, 20uA GIOB[3]/USB2.RCV/USB_FUNC.RXDI W10 GIOA[1]/USB2.VM/USB_FUNC.RXDMI C2 NRZI encoded D-minus from USB port transceiver GIOA[0]/USB2.VP/USB_FUNC.RXDPI A5 NRZI encoded D-plus from USB port transceiver N2HET1[07]/USB2.PortPower/ USB_FUNC.GZO/N2HET2[14] T1 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/ USB_FUNC.PUENON/N2HET2[10] U1 Transmit speed indication N2HET1[09]/N2HET2[16]/USB2.SUSPEND/ USB_FUNC.SUSPENDO V7 Port suspend indication GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] C1 NRZI encoded D-plus to port transceiver N2HET1[01]/SPI4NENA/USB2.TXEN\ USB_FUNC.PUENO/N2HET2[8] V2 Transmit enable to port transceiver N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O B3 Single-ended zero to port transceiver Output Pull Down - Table 2-36. ZWT USB Device Port Controller Interface (USB_FUNC) Terminal Signal Name 337 ZWT N2HET1[07]/USB2.PortPower/USB_FUNC.GZO/N2HET2[14] T1 N2HET1[01]/SPI4NENA/USB2.TXEN/USB_FUNC.PUENO/ N2HET2[8] V2 N2HET1[03]/SPI4NCS[0]/USB2.SPEED/USB_FUNC.PUENO N/ N2HET2[10] U1 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type Description Output Pull Down - Pull Up enable, allows for software-programmable USB device connect/disconnect PUENO inverted Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 31 PRODUCT PREVIEW Terminal Signal Name RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-36. ZWT USB Device Port Controller Interface (USB_FUNC) (continued) Terminal Signal Name 337 ZWT Signal Type Default Pull State Input Pull Down Pull Type GIOB[3]/USB2.RCV/USB_FUNC.RXDI W10 GIOA[1]/USB2.VM/USB_FUNC.RXDMI C2 USB device logic value of D-minus GIOA[0]/USB2.VP/USB_FUNC.RXDPI A5 USB device logic value of D-plus N2HET1[22]/USB2.TXSE0/USB_FUNC.SE0O B3 N2HET1[09]/N2HET2[16]/USB2.SUSPEND/USB_FUNC.SUS PENDO V7 GIOA[2]/USB2.TXDAT/USB_FUNC.TXDO/N2HET2[0] C1 N2HET1[11]/MIBSPI3NCS[4]/N2HET2[18]/ USB2.OverCurrent/USB_FUNC.VBUSI E3 Output Pull Down Fixed, 20uA Description - USB device single-ended data input USB device single-ended zero USB device suspend output USB device transmit data Input Pull Down Fixed, 20uA USB device power connected PRODUCT PREVIEW 32 Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.12 External Memory Interface (EMIF) Table 2-37. External Memory Interface (EMIF) 337 ZWT Signal Type Default Pull State Pull Type Pull Down - Description EMIF_CKE L3 Output EMIF_CLK K3 I/O EMIF_nWE/EMIF_RNW D17 Output ETMDATA[13]/EMIF_nOE E12 EMIF_nWAIT P3 I/O Pull Up EMIF_nWE/EMIF_RNW D17 Output Pull Up EMIF_nCAS R4 Output EMIF column address strobe EMIF_nRAS R3 Output EMIF row address strobe EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 Output EMIF chip select, synchronous EMIF_nCS[2] L17 Output EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 Output EMIF_nCS[4]/RTP_DATA[07] M17 Output EMIF chip selects, asynchronous This applies to chip selects 2, 3 and 4 Copyright © 2011, Texas Instruments Incorporated EMIF Clock Enablen EMIF clock. This is an output signal in functional mode. It is gated off by default, so that the signal is tri-stated. PINMUX29[8] must be cleared to enable this output. Pull Up - EMIF Read-Not-Write Pull Down - EMIF Read Enable Fixed, 20uA - EMIF Extended Wait Signal EMIF Write Enable. Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 33 PRODUCT PREVIEW Terminal Signal Name RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-37. External Memory Interface (EMIF) (continued) Terminal Signal Name 337 ZWT Signal Type Default Pull State Pull Type Description Pull Down - EMIF Data Mask or Write Strobe. Data mask for SDRAM devices, write strobe for connected asynchronous devices. PRODUCT PREVIEW ETMDATA[15]/EMIF_nDQM[0] E10 Output ETMDATA[14]/EMIF_nDQM[1] E11 Output ETMDATA[12]/EMIF_BA[0] E13 Output EMIF bank address or address line EMIF_BA[1]/N2HET2[5] D16 Output EMIF bank address or address line EMIF_ADDR[0]/N2HET2[1] D4 Output EMIF address EMIF_ADDR[1]/N2HET2[3] D5 Output ETMDATA[11]/EMIF_ADDR[2] E6 Output ETMDATA[10]/EMIF_ADDR[3] E7 Output ETMDATA[09]/EMIF_ADDR[4 E8 Output ETMDATA[08]/EMIF_ADDR[5] E9 Output EMIF_ADDR[6]/RTP_DATA[13] C4 Output EMIF_ADDR[7]/RTP_DATA[12] C5 Output EMIF_ADDR[8]/RTP_DATA[11] C6 Output EMIF_ADDR[9]/RTP_DATA[10] C7 Output EMIF_ADDR[10]/RTP_DATA[09] C8 Output EMIF_ADDR[11]/RTP_DATA[08] C9 Output EMIF_ADDR[12]/RTP_DATA[06] C10 Output EMIF_ADDR[13]/RTP_DATA[05] C11 Output EMIF_ADDR[14]/RTP_DATA[04] C12 Output EMIF_ADDR[15]/RTP_DATA[03] C13 Output EMIF_ADDR[16]/RTP_DATA[02] D14 Output EMIF_ADDR[17]/RTP_DATA[01] C14 Output EMIF_ADDR[18]/RTP_DATA[0] D15 Output EMIF_ADDR[19]/RTP_nENA C15 Output EMIF_ADDR[20]/RTP_nSYNC C16 Output EMIF_ADDR[21]/RTP_CLK C17 Output ETMDATA[16]/EMIF_DATA[0] K15 I/O ETMDATA[17]/EMIF_DATA[1] L15 I/O ETMDATA[18]/EMIF_DATA[2] M15 I/O ETMDATA[19]/EMIF_DATA[3] N15 I/O ETMDATA[20]/EMIF_DATA[4] E5 I/O ETMDATA[21]/EMIF_DATA[5] F5 I/O ETMDATA[22]/EMIF_DATA[6] G5 I/O ETMDATA[23]/EMIF_DATA[7] K5 I/O ETMDATA[24]/EMIF_DATA[8] L5 I/O ETMDATA[25]/EMIF_DATA[9] M5 I/O ETMDATA[26]/EMIF_DATA[10] N5 I/O ETMDATA[27]/EMIF_DATA[11] P5 I/O ETMDATA[28]/EMIF_DATA[12] R5 I/O ETMDATA[29]/EMIF_DATA[13] R6 I/O ETMDATA[30]/EMIF_DATA[14] R7 I/O ETMDATA[31]/EMIF_DATA[15] R8 I/O 34 Pull Down Pull Down Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 - Fixed, 20uA EMIF Data Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.13 Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F) Table 2-38. Embedded Trace Macrocell for Cortex-R4F CPU (ETM-R4F) 337 ZWT Signal Type Default Pull State Pull Type Description ETMTRACECLKIN/EXTCLKIN2 R9 Input Pull Down Fixed, 20uA ETM Trace Clock Input ETMTRACECLKOUT R10 Output Pull Down - ETM Trace Clock Output ETMTRACECTL R11 Output Pull Down - ETM trace control ETMDATA[0] R12 ETMDATA[01] R13 ETMDATA[02] J15 ETMDATA[03] H15 ETMDATA[04] G15 ETMDATA[05] F15 ETMDATA[06] E15 ETMDATA[07] E14 ETMDATA[08]/EMIF_ADDR[5] E9 ETMDATA[09]/EMIF_ADDR[4] E8 ETMDATA[10]/EMIF_ADDR[3] E7 ETMDATA[11]/EMIF_ADDR[2] E6 ETMDATA[12]/EMIF_BA[0] E13 ETMDATA[13]/EMIF_nOE E12 ETMDATA[14]/EMIF_nDQM[1] E11 ETMDATA[15]/EMIF_nDQM[0] E10 ETMDATA[16]/EMIF_DATA[0] K15 ETMDATA[17]/EMIF_DATA[1] L15 ETMDATA[18]/EMIF_DATA[2] M15 ETMDATA[19]/EMIF_DATA[3] N15 ETMDATA[20]/EMIF_DATA[4] E5 ETMDATA[21]/EMIF_DATA[5] F5 ETMDATA[22]/EMIF_DATA[6] G5 ETMDATA[23]/EMIF_DATA[7] K5 ETMDATA[24]/EMIF_DATA[8] L5 ETMDATA[25]/EMIF_DATA[9] M5 ETMDATA[26]/EMIF_DATA[10] N5 ETMDATA[27]/EMIF_DATA[11] P5 ETMDATA[28]/EMIF_DATA[12] R5 ETMDATA[29]/EMIF_DATA[13] R6 ETMDATA[30]/EMIF_DATA[14] R7 ETMDATA[31]/EMIF_DATA[15] R8 Copyright © 2011, Texas Instruments Incorporated ETM data Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW Terminal Signal Name 35 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.14 RAM Trace Port (RTP) Table 2-39. RAM Trace Port (RTP) Terminal Signal Name 337 ZWT Signal Type Default Pull State Pull Type Description Pull Down Programmable, 20uA RTP packet clock, or GIO EMIF_ADDR[21]/RTP_CLK C17 I/O EMIF_ADDR[19]/RTP_nENA C15 I/O EMIF_ADDR[20]/RTP_nSYNC C16 I/O RTP synchronization, or GIO EMIF_ADDR[18]/RTP_DATA[0] D15 I/O RTP packet data, or GIO EMIF_ADDR[17]/RTP_DATA[01] C14 EMIF_ADDR[16]/RTP_DATA[02] D14 EMIF_ADDR[15]/RTP_DATA[03] C13 EMIF_ADDR[14]/RTP_DATA[04] C12 EMIF_ADDR[13]/RTP_DATA[05] C11 EMIF_ADDR[12]/RTP_DATA[06] C10 EMIF_nCS[4]/RTP_DATA[07] M17 PRODUCT PREVIEW EMIF_ADDR[11]/RTP_DATA[08] C9 EMIF_ADDR[10]/RTP_DATA[09] C8 EMIF_ADDR[9]/RTP_DATA[10] C7 EMIF_ADDR[8]/RTP_DATA[11] C6 EMIF_ADDR[7]/RTP_DATA[12] C5 EMIF_ADDR[6]/RTP_DATA[13] C4 EMIF_nCS[0]/RTP_DATA[15]/N2HET2[7] N17 EMIF_nCS[3]/RTP_DATA[14]/N2HET2[9] K17 36 Pull Up Programmable, 20uA Pull Down Programmable, 20uA Pull Up Programmable, 20uA Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RTP packet handshake, or GIO Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.15 Data Modification Module (DMM) Table 2-40. Data Modification Module (DMM) Terminal Signal Name 337 ZWT Signal Type F17 F16 DMM_SYNC J16 DMM synchronization, or GIO DMM_DATA[0] L19 DMM data, or GIO DMM_DATA[1] L18 W6 T12 MIBSPI5CLK/DMM_DATA[4]/MII_TXEN H19 MIBSPI5NCS[0]/DMM_DATA[5] E19 DMM handshake, or GIO B6 MIBSPI5NENA/DMM_DATA[7]/MII_RXD[3]/USB1.VM H18 MIBSPI5SIMO[0]/DMM_DATA[8]/MII_TXD[1] J19 MIBSPI5SIMO[1]/DMM_DATA[9] E16 MIBSPI5SIMO[2]/DMM_DATA[10] H17 MIBSPI5SIMO[3]/DMM_DATA[11] G17 MIBSPI5SOMI[0]/DMM_DATA[12]/MII_TXD[0] J18 MIBSPI5SOMI[1]/DMM_DATA[13] E17 MIBSPI5SOMI[2]/DMM_DATA[14] H16 MIBSPI5SOMI[3]/DMM_DATA[15] G16 Copyright © 2011, Texas Instruments Incorporated DMM clock, or GIO Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW MIBSPI5NCS[1]/DMM_DATA[6] Programmable, 20uA Description DMM_nENA MIBSPI5NCS[3]/DMM_DATA[3] Pull Up Pull Type DMM_CLK MIBSPI5NCS[2]/DMM_DATA[2] I/O Default Pull State 37 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.16 System Module Interface Table 2-41. ZWT System Module Interface Terminal Signal Name 337 ZWT Signal Type PRODUCT PREVIEW nPORRST W7 Input nRST B17 I/O nERROR B14 I/O Default Pull State Pull Type Pull Down 100uA Pull Up Description Power-on reset, cold reset External power supply monitor circuitry must drive nPORRST low when any of the supplies to the microcontroller fall out of thespecified range. This terminal has a glitch filter. See Section 4.8. 100uA System reset, warm reset, bidirectional. The internal circuitry indicates any reset condition by driving nRST low. The external circuitry can assert a system reset by driving nRST low. To ensure that an external reset is not arbitrarily generated, TI recommends that an external pull-up resistor is connected to this terminal. This terminal has a glitch filter. See Section 4.8. Pull Down 20uA ESM Error Signal Indicates error of high severity. See Section 4.18. 2.4.2.17 Clock Inputs and Outputs Table 2-42. ZWT Clock Inputs and Outputs Terminal Signal Name 337 ZWT Signal Type Default Pull State - Pull Type OSCIN K1 Input KELVIN_GND L2 Input OSCOUT L1 Output A12 I/O Pull Down Programmable, 20uA External prescaled clock output, or GIO. GIOA[5]/EXTCLKIN B5 Input Pull Down 20uA External clock input #1 ETMTRACECLKIN/EXTCLKIN2 R9 Input VCCPLL P11 Input ECLK 38 - Description From external crystal/resonator, or external clock input Kelvin ground for oscillator To external crystal/resonator Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 External clock input #2 - Dedicated core supply for PLL's Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.18 Test and Debug Modules Interface Table 2-43. ZWT Test and Debug Modules Interface Terminal Signal Name 337 ZWT Signal Type Default Pull State TEST U2 I/O nTRST D18 Input RTCK A16 Output TCK B18 Input TDI A17 I/O Pull Up TDO C18 I/O Pull Down TMS C19 I/O Pull Up Pull Type Pull Down Fixed, 100uA Description Test enable JTAG test hardware reset - - JTAG return test clock Pull Down Fixed, 100uA JTAG test clock JTAG test data in JTAG test data out JTAG test select 2.4.2.19 Flash Supply and Test Pads Table 2-44. ZWT Flash Supply and Test Pads 337 ZWT VCCP F8 FLTP1 J5 FLTP2 H5 Signal Type Default Pull State Pull Type Input - - Description Flash pump supply Flash test pads. These terminals are reserved for TI use only. For proper operation these terminals must connect only to a test pad or not be connected at all [no connect (NC)]. 2.4.2.20 No Connects Table 2-45. No Connects Terminal Signal Name 337 ZWT Signal Type Default Pull State Pull Type NC A8 - - - NC B8 - - - NC B9 - - - Copyright © 2011, Texas Instruments Incorporated Description Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 39 PRODUCT PREVIEW Terminal Signal Name RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 2-45. No Connects (continued) Terminal Signal Name 337 ZWT Signal Type Default Pull State Pull Type Description No Connects. These balls are not connected to any internal logic and can be connected to the PCB ground without affecting the functionality of the device. Any other ball marked as "NC" may be internally connected to some functionality. It is recommended for such balls to be left unconnected. PRODUCT PREVIEW NC D6 - - - NC D7 - - - NC D8 - - - NC D9 - - - NC D10 - - - NC D11 - - - NC D12 - - - NC E4 - - - NC F4 - - - NC G4 - - - NC K4 - - - NC L4 - - - NC M4 - - - NC N4 - - - NC N18 - - - NC P4 NC P15 - - - NC P16 - - - NC P17 - - - NC R1 - - - NC R14 - - - NC R15 - - - NC T5 - - - NC T6 - - - NC T7 - - - NC T8 - - - NC T13 - - - NC T14 - - - NC V4 - - - NC W4 - - - 40 - Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.21 Supply for Core Logic: 1.2V nominal Table 2-46. ZWT Supply for Core Logic: 1.2V nominal Terminal Signal Name 337 ZWT VCC F9 VCC F10 VCC H10 VCC J14 VCC K6 VCC - VCC K8 VCC K12 VCC K14 L6 VCC M10 VCC P10 Default Pull State Pull Type - - - Description Core supply PRODUCT PREVIEW VCC Signal Type Copyright © 2011, Texas Instruments Incorporated Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 41 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.22 Supply for I/O Cells: 3.3V nominal Table 2-47. ZWT Supply for I/O Cells: 3.3V nominal Terminal Signal Name 337 ZWT VCCIO F6 VCCIO F7 VCCIO F11 VCCIO F12 VCCIO F13 VCCIO F14 VCCIO G6 VCCIO G14 VCCIO H6 VCCIO H14 PRODUCT PREVIEW VCCIO J6 VCCIO L14 VCCIO M6 VCCIO M14 VCCIO N6 VCCIO N14 VCCIO P6 VCCIO P7 VCCIO P8 VCCIO P9 VCCIO P12 VCCIO P13 VCCIO P14 42 Signal Type Default Pull State Pull Type Input - - Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Description Operating supply for I/Os Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 2.4.2.23 Ground Reference for All Supplies Except VCCAD Table 2-48. ZWT Ground Reference for All Supplies Except VCCAD 337 ZWT VSS A1 VSS A2 VSS A18 VSS A19 VSS B1 VSS B19 VSS H8 VSS H9 VSS H11 VSS H12 VSS J8 VSS J9 VSS J10 VSS J11 VSS J12 VSS K9 VSS K10 VSS K11 VSS L8 VSS L9 VSS L10 VSS L11 VSS L12 VSS M8 VSS M9 VSS M11 VSS M12 VSS V1 VSS W1 VSS W2 Copyright © 2011, Texas Instruments Incorporated Signal Type Default Pull State Pull Type Input - - Description Ground reference Device Package and Terminal Functions Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW Terminal Signal Name 43 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 3 Device Operating Conditions 3.1 Absolute Maximum Ratings Over Operating Free-Air Temperature Range, (1) VCC (2) Supply voltage range: VCCIO, VCCP Input voltage range: Input clamp current: -0.3 V to 1.43 V (2) -0.3 V to 4.1 V VCCAD -0.3 V to 5.5 V All input pins -0.3 V to 4.1 V IIK (VI < 0 or VI > VCCIO) All pins, except AD1IN[23:0] and AD2IN[15:0] ±20 mA IIK (VI < 0 or VI > VCCAD) AD1IN[23:0] and AD2IN[15:0] ±10 mA ±40 mA Total Operating free-air temperature range, TA: -40°C to 105°C Operating junction temperature range, TJ: -40°C to 125°C Storage temperature range, Tstg -65°C to 150°C (1) (2) PRODUCT PREVIEW Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to their associated grounds. Device Recommended Operating Conditions (1) 3.2 MIN NOM MAX UNIT VCC Digital logic supply voltage (Core) 1.14 1.2 1.32 V VCCPLL PLL Supply Voltage 1.14 1.2 1.32 V VCCIO Digital logic supply voltage (I/O) 3 3.3 3.6 V VCCAD MibADC supply voltage V VCCP Flash pump supply voltage VSS Digital logic supply ground VSSAD MibADC supply ground VADREFHI 3 3.3 3.6 4.5 5.0 5.25 3 3.3 3.6 0 V V -0.1 0.1 V A-to-D high-voltage reference source VSSAD VCCAD V VADREFLO A-to-D low-voltage reference source VSSAD VCCAD V TA Operating free-air temperature -40 105 °C TJ Operating junction temperature -40 150 °C (1) 44 All voltages are with respect to VSS, except VCCAD, which is with respect to VSSAD Device Operating Conditions Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 3.3 Switching Characteristics over Recommended Operating Conditions for Clock Domains Parameter fHCLK Description Conditions HCLK - System clock frequency Min Max Unit Pipeline mode enabled 200 MHz Pipeline mode disabled 50 MHz fGCLK GCLK - CPU clock frequency fHCLK MHz fVCLK VCLK - Primary peripheral clock frequency 100 MHz fVCLK2 VCLK2 - Secondary peripheral clock frequency 100 MHz fVCLK3 VCLK3 - Secondary peripheral clock frequency 100 MHz fVCLKA1 VCLKA1 - Primary asynchronous peripheral clock frequency 100 MHz fVCLKA3 VCLKA3 - Primary asynchronous peripheral clock frequency 48 fVCLKA4 VCLKA4 - Secondary asynchronous peripheral clock frequency 50 MHz fRTICLK RTICLK - clock frequency fVCLK MHz 3.4 Wait States Required RAM 0 Address Waitstates 200MHz 0MHz Data Waitstates 0 200MHz 0MHz Flash Address Waitstates 1 0 Data Waitstates 0 0MHz 200MHz 120MHz 0MHz 1 50MHz 3 2 100MHz 150MHz 200MHz Figure 3-1. Wait States Scheme As shown in the figure above, the TCM RAM can support program and data fetches at full CPU speed without any address or data wait states required. The TCM flash can support zero address and data wait states up to a CPU speed of 50MHz in non-pipelined mode. The flash supports a maximum CPU clock speed of 200MHz in pipelined mode with one address wait state and three data wait states. The flash wrapper defaults to non-pipelined mode with zero address wait state and one random-read data wait state. Device Operating Conditions Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 45 PRODUCT PREVIEW Table 3-1. Clock Domain Timing Specifications RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 3.5 www.ti.com Power Consumption Over Recommended Operating Conditions PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fHCLK = 200MHz VCC digital supply current (operating mode) ICC VCC Digital supply current (LBIST mode) VCC Digital supply current (PBIST mode) Peak RMS mA fVCLK = 100MHz, Flash in pipelined mode, VCCmax LBIST clock rate = 100MHz mA PBIST ROM clock frequency = 100MHz TBD mA ICCPLL VCCPLL digital supply current (operating mode) VCCPLL = VCCPLLmax 10 mA ICCIO VCCIO Digital supply current (operating mode. No DC load, VCCmax 15 mA Single ADC operational, VCCADmax 15 Both ADCs operational, VCCADmax 30 Single ADC operational, ADREFHImax 5 Both ADCs operational, ADREFHImax 10 read operation VCCPmax 34 program, VCCPmax 37 read from 1 bank and program another bank, VCCPmax 55 erase, VCCPmax 27 ICCAD VCCAD supply current (operating mode) PRODUCT PREVIEW ICCREFHI ICCP 46 ADREFHI supply current (operating mode) VCCP pump supply current Device Operating Conditions mA mA mA Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Input/Output Electrical Characteristics Over Recommended Operating Conditions (1) PARAMETER Vhys TEST CONDITIONS Input hysteresis MIN All inputs TYP (2) VIL Low-level input voltage All inputs VIH High-level input voltage All inputs (2) -0.3 0.8 V 2 VCCIO + 0.3 V 0.2 VCCIO IOL = 50 µA, standard output mode Low-level output voltage 0.2 V IOL = 50 µA, low-EMI output mode (see Section 3.10) VOH IIC II High-level output voltage Input current (I/O pins) 0.2 VCCIO IOH = IOHmax 0.8 VCCIO IOH = 50 µA, standard output mode VCCIO -0.2 IOH = 50 µA, low-EMI output mode (see Section 3.10) 0.8 VCCIO V VI < VSSIO - 0.3 or VI > VCCIO + 0.3 Input clamp current (I/O pins) UNIT mV IOL = IOLmax VOL MAX 180 -2 2 IIH Pulldown 20µA VI = VCCIO 5 40 IIH Pulldown 100µA VI = VCCIO 40 195 IIL Pullup 20µA VI = VSS -40 -5 IIL Pullup 100µA VI = VSS -195 -40 All other pins No pullup or pulldown -1 1 mA µA CI Input capacitance 2 pF CO Output capacitance 3 pF (1) (2) 3.7 Source currents (out of the device) are negative while sink currents (into the device) are positive. This does not apply to the nPORRST pin. Output Buffer Drive Strengths Table 3-2. Output Buffer Drive Strengths Low-level Output Current, IOL for VI=VOLmax or High-level Output Current, IOH for VI=VOHmin Signals MIBSPI5CLK, MIBSPI5SOMI[0], MIBSPI5SOMI[1], MIBSPI5SOMI[2], MIBSPI5SOMI[3], MIBSPI5SIMO[0], MIBSPI5SIMO[1], MIBSPI5SIMO[2], MIBSPI5SIMO[3], TMS, TDI, TDO, RTCK, 8mA SPI4CLK, SPI4SIMO, SPI4SOMI, nERROR, N2HET2[1], N2HET2[3], All EMIF Outputs and I/Os, All ETM Outputs TEST, 4mA MIBSPI3SOMI, MIBSPI3SIMO, MIBSPI3CLK, MIBSPI1SIMO, MIBSPI1SOMI, MIBSPI1CLK, nRST Device Operating Conditions Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 47 PRODUCT PREVIEW 3.6 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 3-2. Output Buffer Drive Strengths (continued) Low-level Output Current, IOL for VI=VOLmax or High-level Output Current, IOH for VI=VOHmin Signals AD1EVT, CAN1RX, CAN1TX, CAN2RX, CAN2TX, CAN3RX, CAN3TX, DMM_CLK, DMM_DATA[0], DMM_DATA[1], DMM_nENA, DMM_SYNC, GIOA[0-7], GIOB[0-7], LINRX, LINTX, 2mA zero-dominant MIBSPI1NCS[0], MIBSPI1NCS[1-3], MIBSPI1NENA, MIBSPI3NCS[0-3], MIBSPI3NENA, MIBSPI5NCS[0-3], MIBSPI5NENA, N2HET1[0-31], N2HET2[0], N2HET2[2], N2HET2[4], N2HET2[5], N2HET2[6], N2HET2[7], N2HET2[8], N2HET2[9], N2HET2[10], N2HET2[11], N2HET2[12], N2HET2[13], N2HET2[14], N2HET2[15], N2HET2[16], N2HET2[18], SPI2NCS[0], SPI2NENA, SPI4NCS[0], SPI4NENA ECLK, PRODUCT PREVIEW selectable 8mA / 2mA SPI2CLK, SPI2SIMO, SPI2SOMI The default output buffer drive strength is 8mA for these signals. 3.8 Input Timings t pw Input V IH VCCIO VIH VIL V IL 0 Figure 3-2. TTL-Level Inputs Table 3-3. Timing Requirements for Inputs (1) Parameter tpw (1) (2) 3.9 MIN MAX Unit tc(VCLK) + 10 (2) Input minimum pulse width ns tc(VCLK) = peripheral VBUS clock cycle time = 1 / f(VCLK) The timing shown above is only valid for pin used in GIO mode. Output Timings Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL) Parameter Rise time, tr 8mA low EMI pins (see Table 3-2) Fall time, tf 48 MIN CL = 15 pF MAX Unit 2.5 ns CL = 50 pF 4 CL = 100 pF 7.2 CL = 150 pF 12.5 CL = 15 pF 2.5 CL = 50 pF 4 CL = 100 pF 7.2 CL = 150 pF 12.5 Device Operating Conditions ns Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 3-4. Switching Characteristics for Output Timings versus Load Capacitance (CL) (continued) MIN 4mA low EMI pins (see Table 3-2) Fall time, tf Rise time, tr 2mA-z low EMI pins (see Table 3-2) Fall time, tf Rise time, tr Selectable 8mA / 2mA-z pins (see Table 3-2) 8mA mode Fall time, tf Rise time, tr 2mA-z mode Fall time, tf MAX Unit CL = 15 pF 5.6 ns CL = 50 pF 10.4 CL = 100 pF 16.8 CL = 150 pF 23.2 CL = 15 pF 5.6 CL= 50 pF 10.4 CL = 100 pF 16.8 CL = 150 pF 23.2 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 CL = 15 pF 2 CL = 50 pF 4 CL = 100 pF 8 CL = 150 pF 11 CL = 15 pF 2 CL = 50 pF 4 CL = 100 pF 8 CL = 150 pF 11 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 CL = 15 pF 8 CL = 50 pF 15 CL = 100 pF 23 CL = 150 pF 33 tr VOL ns ns ns ns ns ns tf V OH Output ns PRODUCT PREVIEW Parameter Rise time, tr VCCIO VOH VOL 0 Figure 3-3. CMOS-Level Outputs Table 3-5. Timing Requirements for Outputs (1) Parameter td(parallel_out) (1) MIN Delay between low to high, or high to low transition of general-purpose output signals that can be configured by an application in parallel, e.g. all signals in a GIOA port, or all N2HET1 signals, etc. MAX UNIT 5 ns This specification does not account for any output buffer drive strength differences or any external capacitive loading differences. Check Table 3-2 for output buffer drive strength information on each signal. Device Operating Conditions Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 49 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 3.10 Low-EMI Output Buffers The low-EMI output buffer has been designed explicitly to address the issue of decoupling sources of emissions from the pins which they drive. This is accomplished by adaptively controlling the impedance of the output buffer, and is particularly effective with capacitive loads. This is not the default mode of operation of the low-EMI output buffers and must be enabled by setting the system module GPCR1 register for the desired module or signal, as shown in Table 3-6. The adaptive impedance control circuit monitors the DC bias point of the output signal. The buffer internally generates two reference levels, VREFLOW and VREFHIGH, which are set to approximately 10% and 90% of VCCIO, respectively. Once the output buffer has driven the output to a low level, if the output voltage is below VREFLOW, then the output buffer’s impedance will increase to hi-Z. A high degree of decoupling between the internal ground bus and the output pin will occur with capacitive loads, or any load in which no current is flowing, e.g. the buffer is driving low on a resistive path to ground. Current loads on the buffer which attempt to pull the output voltage above VREFLOW will be opposed by the buffer’s output impedance so as to maintain the output voltage at or below VREFLOW. PRODUCT PREVIEW Conversely, once the output buffer has driven the output to a high level, if the output voltage is above VREFHIGH then the output buffer’s impedance will again increase to hi-Z. A high degree of decoupling between internal power bus ad output pin will occur with capacitive loads or any loads in which no current is flowing, e.g. buffer is driving high on a resistive path to VCCIO. Current loads on the buffer which attempt to pull the output voltage below VREFHIGH will be opposed by the buffer’s output impedance so as to maintain the output voltage at or above VREFHIGH. The bandwidth of the control circuitry is relatively low, so that the output buffer in adaptive impedance control mode cannot respond to high-frequency noise coupling into the buffer’s power buses. In this manner, internal bus noise approaching 20% peak-to-peak of VCCIO can be rejected. Unlike standard output buffers which clamp to the rails, an output buffer in impedance control mode will allow a positive current load to pull the output voltage up to VCCIO + 0.6V without opposition. Also, a negative current load will pull the output voltage down to VSSIO – 0.6V without opposition. This is not an issue since the actual clamp current capability is always greater than the IOH / IOL specifications. The low-EMI output buffers are automatically configured to be in the standard buffer mode when the device enters a low-power mode. Table 3-6. Low-EMI Output Buffer Hookup Module or Signal Name Control Register to Enable Low-EMI Mode Module: MibSPI1 GPREG1.0 Module: SPI2 GPREG1.1 Module: MibSPI3 GPREG1.2 Reserved GPREG1.3 Signal: TMS GPREG1.8 Signal: TDI GPREG1.9 Signal: TDO GPREG1.10 Signal: RTCK GPREG1.11 Signal: TEST GPREG1.12 Signal: nERROR GPREG1.13 Reserved GPREG1.14 50 Device Operating Conditions Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4 System Information and Electrical Specifications 4.1 Device Power Domains The device core logic is split up into multiple power domains in order to optimize the power for a given application use case. There are 8 core power domains in total: PD1, PD2, PD3, PD4, PD5, RAM_PD1, RAM_PD2 and RAM_PD3. The actual contents of these power domains are indicated in . PD1 is an "always-ON" power domain, which cannot be turned off. Each of the other core power domains can be turned ON/OFF one time during device initialization as per the application requirement. Refer to the Power Management Module (PMM) chapter of the device technical reference manual for more details. NOTE The clocks to a module must be turned off before powering down the core domain that contains the module. NOTE Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW The logic in the modules that are powered down loses its power completely. Any access to modules that are powered down results in an abort being generated. When power is restored, the modules power-up to their default states (after normal power-up). No register or memory contents are preserved in the core domains that are turned off. 51 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.2 www.ti.com Voltage Monitor Characteristics A voltage monitor is implemented on this device. The purpose of this voltage monitor is to eliminate the requirement for a specific sequence when powering up the core and I/O voltage supplies. 4.2.1 Important Considerations • • 4.2.2 The voltage monitor does not eliminate the need of a voltage supervisor circuit to guarantee that the device is held in reset when the voltage supplies are out of range. The voltage monitor only monitors the core supply (VCC) and the I/O supply (VCCIO). The other supplies are not monitored by the VMON. For example, if the VCCAD or VCCP are supplied from a source different from that for VCCIO, then there is no internal voltage monitor for the VCCAD and VCCP supplies. Voltage Monitor Operation The voltage monitor generates the Power Good MCU signal (PGMCU) as well as the I/Os Power Good IO signal (PGIO) on the device. During power-up or power-down, the PGMCU and PGIO are driven low when the core or I/O supplies are lower than the specified minimum monitoring thresholds. The PGIO and PGMCU being low isolates the core logic as well as the I/O controls during the power-up or power-down of the supplies. This allows the core and I/O supplies to be powered up or down in any order. PRODUCT PREVIEW When the voltage monitor detects a low voltage on the I/O supply, it will assert a power-on reset. When the voltage monitor detects an out-of-range voltage on the core supply, it asynchronously makes all output pins high impedance, and asserts a power-on reset. The voltage monitor is disabled when the device enters a low power mode. The VMON also incorporates a glitch filter for the nPORRST input. Refer to Section 4.3.3.1 for the timing information on this glitch filter. Table 4-1. Voltage Monitoring Specifications PARAMETER VMON 4.2.3 Voltage monitoring thresholds MIN TYP MAX UNIT VCC low - VCC level below this threshold is detected as too low. 0.8 0.9 1.0 V VCC high - VCC level above this threshold is detected as too high. 1.40 1.7 2.1 VCCIO low - VCCIO level below this threshold is detected as too low. 1.9 2.4 2.9 Supply Filtering The VMON has the capability to filter glitches on the VCC and VCCIO supplies. The following table shows the characteristics of the supply filtering. Glitches in the supply larger than the maximum specification cannot be filtered. Table 4-2. VMON Supply Glitch Filtering Capability Parameter MIN MAX Width of glitch on VCC that can be filtered 250ns 1us Width of glitch on VCCIO that can be filtered 250ns 1us 52 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.3 4.3.1 Power Sequencing and Power On Reset Power-Up Sequence There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage. The power-up sequence starts with the I/O voltage rising above the minimum I/O supply threshold, (see Table 4-4 for more details), core voltage rising above the minimum core supply threshold and the release of power-on reset. The high frequency oscillator will start up first and its amplitude will grow to an acceptable level. The oscillator start up time is dependent on the type of oscillator and is provided by the oscillator vendor. The different supplies to the device can be powered up in any order. The device goes through the following sequential phases during power up. Oscillator start-up and validity check 1032 oscillator cycles eFuse autoload 1180 oscillator cycles Flash pump power-up 688 oscillator cycles Flash bank power-up 617 oscillator cycles Total 3517 oscillator cycles The CPU reset is released at the end of the above sequence and fetches the first instruction from address 0x00000000. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 53 PRODUCT PREVIEW Table 4-3. Power-Up Phases RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.3.2 www.ti.com Power-Down Sequence The different supplies to the device can be powered down in any order. 4.3.3 Power-On Reset: nPORRST This is the power-on reset. This reset must be asserted by an external circuitry whenever the I/O or core supplies are outside the specified recommended range. This signal has a glitch filter on it. It also has an internal pulldown. 4.3.3.1 nPORRST Electrical and Timing Requirements Table 4-4. Electrical Requirements for nPORRST NO Parameter MIN MAX Unit 0.5 V PRODUCT PREVIEW VCCPORL VCC low supply level when nPORRST must be active during power-up VCCPORH VCC high supply level when nPORRST must remain active during power-up and become active during power down VCCIOPORL VCCIO / VCCP low supply level when nPORRST must be active during power-up VCCIOPORH VCCIO / VCCP high supply level when nPORRST must remain active during power-up and become active during power down VIL(PORRST) Low-level input voltage of nPORRST VCCIO > 2.5V 0.2 * VCCIO V Low-level input voltage of nPORRST VCCIO < 2.5V 0.5 V 1.14 V 1.1 V 3.0 V 3 tsu(PORRST) Setup time, nPORRST active before VCCIO and VCCP > VCCIOPORL during power-up 0 ms 6 th(PORRST) Hold time, nPORRST active after VCC > VCCPORH 1 ms 7 tsu(PORRST) Setup time, nPORRST active before VCC < VCCPORH during power down 2 µs 8 th(PORRST) Hold time, nPORRST active after VCCIO and VCCP > VCCIOPORH 1 ms 9 th(PORRST) Hold time, nPORRST active after VCC < VCCPORL 0 ms tf(nPORRST) 500 Filter time nPORRST pin; 2000 ns pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset. 3.3 V 1.2 V VCCIOPORH VCCPORH 6 VCCIOPORL VCC (1.2 V) VCCIO / VCCP(3.3 V) nPORRST VCCIOPORH VCCIO / VCCP 8 VCCPORH VCC 7 6 7 VCCPORL VCCPORL 3 VIL(PORRST) VCCIOPORL 9 VIL VIL VIL VIL(PORRST) NOTE: There is no timing dependency between the ramp of the VCCIO and the VCC supply voltage; this is just an exemplary drawing. Figure 4-1. nPORRST Timing Diagram 54 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.4 Warm Reset (nRST) This is a bidirectional reset signal. The internal circuitry drives the signal low on detecting any device reset condition. An external circuit can assert a device reset by forcing the signal low. On this terminal, the output buffer is implemented as an open drain (drives low only). To ensure an external reset is not arbitrarily generated, TI recommends that an external pullup resistor is connected to this terminal. This terminal has a glitch filter. It also has an internal pullup 4.4.1 Causes of Warm Reset Table 4-5. Causes of Warm Reset DEVICE EVENT SYSTEM STATUS FLAG Power-Up Reset Exception Status Register, bit 15 Oscillator fail Global Status Register, bit 0 Global Status Register, bits 8 and 9 Watchdog exception / Debugger reset Exception Status Register, bit 13 CPU Reset (driven by the CPU STC) Exception Status Register, bit 5 Software Reset Exception Status Register, bit 4 External Reset Exception Status Register, bit 3 4.4.2 nRST Timing Requirements Table 4-6. nRST Timing Requirements (1) PARAMETER tv(RST) MIN Valid time, nRST active after nPORRST inactive Valid time, nRST active (all other System reset conditions) tf(nRST) UNIT ns 8tc(VCLK) 500 Filter time nRST pin; MAX 1180 tc(OSC) + 1048tc(OSC) 2000 ns pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset (1) Specified values do NOT include rise/fall times. For rise and fall timings, see the switching characteristics for output timings versus load capacitance table. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 55 PRODUCT PREVIEW PLL slip RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.5 4.5.1 www.ti.com ARM© Cortex-R4F™ CPU Information Summary of ARM Cortex-R4F™ CPU Features For more information on the ARM Cortex-R4F™ CPU please see www.arm.com. 4.5.2 ARM Cortex-R4F™ CPU Features Enabled by Software The following CPU features are disabled on reset and must be enabled by the application if required. • ECC On Tightly-Coupled Memory (TCM) Accesses • Harware Vectored Interrupt (VIC) Port • Floating Point Coprocessor • Memory Protection Unit (MPU) 4.5.3 Dual Core Implementation The device has two Cortex-R4F cores, where the output signals of both CPUs are compared in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed by 2 clock cycles as shown in Figure 4-3. The CPUs have a diverse CPU placement given by following requirements: • different orientation; e.g. CPU1 = "north" orientation, CPU2 = "flip west" orientation • dedicated guard ring for each CPU North F Flip West F PRODUCT PREVIEW The features of the ARM Cortex-R4F™ CPU include: • An integer unit with integral EmbeddedICE-RT logic. • High-speed Advanced Microprocessor Bus Architecture (AMBA) Advanced eXtensible Interfaces (AXI) for Level two (L2) master and slave interfaces. • Floating Point Coprocessor • Dynamic branch prediction with a global history buffer, and a 4-entry return stack • Low interrupt latency. • Non-maskable interrupt. • A Harvard Level one (L1) memory system with: – Tightly-Coupled Memory (TCM) interfaces with support for error correction or parity checking memories – ARMv7-R architecture Memory Protection Unit (MPU) with 12 regions • Dual core logic for fault detection in safety-critical applications. • An L2 memory interface: – Single 64-bit master AXI interface – 64-bit slave AXI interface to TCM RAM blocks • A debug interface to a CoreSight Debug Access Port (DAP). • A trace interface to a CoreSight ETM-R4. • A Performance Monitoring Unit (PMU). • A Vectored Interrupt Controller (VIC) port. Figure 4-2. Dual - CPU Orientation 56 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.5.4 Duplicate clock tree after GCLK The CPU clock domain is split into two clock trees, one for each CPU, with the clock of the 2nd CPU running at the same frequency and in phase to the clock of CPU1. See Figure 4-3. 4.5.5 ARM Cortex-R4F™ CPU Compare Module (CCM) for Safety This device has two ARM Cortex-R4F™ CPU cores, where the output signals of both CPUs are compared in the CCM-R4 unit. To avoid common mode impacts the signals of the CPUs to be compared are delayed in a different way as shown in the figure below. Output + Control CCM-R4 2 cycle delay CPU 1 compare error PRODUCT PREVIEW CCM-R4 compare CPU1CLK CPU 2 2 cycle delay CPU2CLK Input + Control Figure 4-3. Dual Core Implementation To avoid an erroneous CCM-R4 compare error, the application software must initialize the registers of both CPUs before the registers are used, including function calls where the register values are pushed onto the stack. 4.5.6 CPU Self-Test The CPU STC (Self-Test Controller) is used to test the two Cortex-R4F CPU Cores using the Deterministic Logic BIST Controller as the test engine. The main features of the self-test controller are: • Ability to divide the complete test run into independent test intervals • Capable of running the complete test as well as running few intervals at a time • Ability to continue from the last executed interval (test set) as well as ability to restart from the beginning (First test set) • Complete isolation of the self-tested CPU core from rest of the system during the self-test run • Ability to capture the Failure interval number • Timeout counter for the CPU self-test run as a fail-safe feature Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 57 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.5.6.1 1. 2. 3. 4. 5. 6. 7. www.ti.com Application Sequence for CPU Self-Test Configure clock domain frequencies. Select number of test intervals to be run. Configure the timeout period for the self-test run. Enable self-test. Wait for CPU reset. In the reset handler, read CPU self-test status to identify any failures. Retrieve CPU state if required. For more information see the RM48x Technical Reference Manual (SPNU481). 4.5.6.2 CPU Self-Test Clock Configuration The maximum clock rate for the self-test is 100MHz. The STCCLK is divided down from the CPU clock. This divider is configured by the STCCLKDIV register at address 0xFFFFE108. For more information see the RM48x Technical Reference Manual (SPNU481). 4.5.6.3 CPU Self-Test Coverage PRODUCT PREVIEW Table 4-7 shows CPU test coverage achieved for each self-test interval. It also lists the cumulative test cycles. The test time can be calculated by multiplying the number of test cycles with the STC clock period. Table 4-7. CPU Self-Test Coverage INTERVALS 58 TEST COVERAGE, % TEST CYCLES 0 0 0 1 62.13 1365 2 70.09 2730 3 74.49 4095 4 77.28 5460 5 79.28 6825 6 80.90 8190 7 82.02 9555 8 83.10 10920 9 84.08 12285 10 84.87 13650 11 85.59 15015 12 86.11 16380 13 86.67 17745 14 87.16 19110 15 87.61 20475 16 87.98 21840 17 88.38 23205 18 88.69 24570 19 88.98 25935 20 89.28 27300 21 89.50 28665 22 89.76 30030 23 90.01 31395 24 90.21 32760 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.6 Clocks 4.6.1 Clock Sources The table below lists the available clock sources on the device. Each of the clock sources can be enabled or disabled using the CSDISx registers in the system module. The clock source number in the table corresponds to the control bit in the CSDISx register for that clock source. The table also shows the default state of each clock source. Table 4-8. Available Clock Sources Clock Source # Name 0 OSCIN Main Oscillator Enabled 1 PLL1 Output From PLL1 Disabled Default State 2 Reserved Reserved Disabled 3 EXTCLKIN1 External Clock Input #1 Disabled 4 CLK80K Low Frequency Output of Internal Reference Oscillator Enabled CLK10M High Frequency Output of Internal Reference Oscillator Enabled 5 6 PLL2 Output From PLL2 Disabled 7 EXTCLKIN2 External Clock Input #2 Disabled 4.6.1.1 Main Oscillator The oscillator is enabled by connecting the appropriate fundamental resonator/crystal and load capacitors across the external OSCIN and OSCOUT pins as shown in Figure 4-4. The oscillator is a single stage inverter held in bias by an integrated bias resistor. This resistor is disabled during leakage test measurement and low power modes. TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature/voltage extremes. An external oscillator source can be used by connecting a 3.3V clock signal to the OSCIN pin and leaving the OSCOUT pin unconnected (open) as shown in the figure below. OSCIN (see Note B) Kelvin_GND C1 OSCOUT OSCIN OSCOUT C2 (see Note A) External Clock Signal (toggling 0-3.3V) Crystal (a) (b) Note A: The values of C1 and C2 should be provided by the resonator/crystal vendor. Note B: Kelvin_GND should not be connected to any other GND. Figure 4-4. Recommended Crystal/Clock Connection Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 59 PRODUCT PREVIEW Description RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.6.1.1.1 Timing Requirements for Main Oscillator Table 4-9. Timing Requirements for Main Oscillator MAX Unit tc(OSC) Cycle time, OSCIN (when using a sine-wave input) Parameter MIN 50 Type 200 ns tc(OSC_SQR) Cycle time, OSCIN, (when input to the OSCIN is a square wave ) 12.5 200 ns tw(OSCIL) Pulse duration, OSCIN low (when input to the OSCIN is a square wave) 6 ns tw(OSCIH) Pulse duration, OSCIN high (when input to the OSCIN is a square wave) 6 ns PRODUCT PREVIEW 60 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.6.1.2 Low Power Oscillator The Low Power Oscillator (LPO) is comprised of two oscillators — HF LPO and LF LPO, in a single macro. 4.6.1.2.1 Features The main features of the LPO are: • Supplies a clock at extremely low power for power-saving modes. This is connected as clock source # 4 of the Global Clock Module. • Supplies a high-frequency clock for non-timing-critical systems. This is connected as clock source # 5 of the Global Clock Module. • Provides a comparison clock for the crystal oscillator failure detection circuit. BIAS_EN LF_TRIM Low Power Oscillator HFEN CLK10M HF_TRIM CLK10M_VALID nPORRST Figure 4-5. LPO Block Diagram Figure 4-5 shows a block diagram of the internal reference oscillator. This is a low power oscillator (LPO) and provides two clock sources: one nominally 80KHz and one nominally 10MHz. 4.6.1.2.2 LPO Electrical and Timing Specifications Table 4-10. LPO Specifications Parameter LPO - HF oscillator LPO - LF oscillator untrimmed frequency MIN Type MAX Unit 5.5 9.6 19.5 MHz startup time from STANDBY (LPO BIAS_EN High for at least 900µs) 10 µs cold startup time 900 µs untrimmed frequency 180 kHz startup time from STANDBY (LPO BIAS_EN High for at least 900µs) 100 µs cold startup time 2000 µs Copyright © 2011, Texas Instruments Incorporated 36 85 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 61 PRODUCT PREVIEW CLK80K LFEN RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.6.1.3 www.ti.com Phase Locked Loop (PLL) Clock Modules The PLL is used to multiply the input frequency to some higher frequency. The main features of the PLL are: • Frequency modulation can be optionally superimposed on the synthesized frequency of PLL1. The frequency modulation capability of PLL2 is permanently disabled. • Configurable frequency multipliers and dividers. • Built-in PLL Slip monitoring circuit. • Option to reset the device on a PLL slip detection. 4.6.1.3.1 Block Diagram Figure 4-6 shows a high-level block diagram of the two PLL macros on this microcontroller. PLLCTL1 and PLLCTL2 are used to configure the multiplier and dividers for the PLL1. PLLCTL3 is used to configure the multiplier and dividers for PLL2. OSCIN /NR INTCLK VCOCLK PLL /1 to /64 /OD post_ODCLK /1 to /8 /R PLLCLK /1 to /32 PRODUCT PREVIEW fPLLCLK = (fOSCIN / NR) * NF / (OD * R) /NF /1 to /256 OSCIN /NR2 VCOCLK2 INTCLK2 /1 to /64 PLL#2 /OD2 post_ODCLK2 /1 to /8 /R2 PLL2CLK /1 to /32 f PLL2CLK = (fOSCIN / NR2) * NF2 / (OD2 * R2) /NF2 /1 to /256 Figure 4-6. ZWT PLLx Block Diagram 4.6.1.3.2 PLL Timing Specifications Table 4-11. PLL Timing Specifications PARAMETER fINTCLK MHz 400 MHz fVCOCLK VCOCLK – PLL1 Output Divider (OD) input clock frequency 550 MHz fINTCLK2 PLL2 Reference Clock frequency fVCOCLK2 62 UNIT f(OSC_SQR) fpost_ODCLK2 1 MAX Post-ODCLK – PLL1 Post-divider input clock frequency fpost_ODCLK PLL1 Reference Clock frequency MIN f(OSC_SQR) MHz Post-ODCLK – PLL2 Post-divider input clock frequency 1 400 MHz VCOCLK – PLL2 Output Divider (OD) input clock frequency 550 MHz System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.6.1.4 External Clock Inputs The device supports up to two external clock inputs. This clock input must be a square wave input. The electrical and timing requirements for these clock inputs are specified below. Table 4-12. External Clock Timing and Electrical Specifications Parameter Description Min Max Unit 80 MHz fEXTCLKx External clock input frequency tw(EXTCLKIN)H EXTCLK high-pulse duration 6 ns tw(EXTCLKIN)L EXTCLK low-pulse duration 6 ns viL(EXTCLKIN) Low-level input voltage -0.3 0.8 V viH(EXTCLKIN) High-level input voltage 2 VCCIO + 0.3 V 4.6.2 Clock Domains 4.6.2.1 Clock Domain Descriptions Table 4-13. Clock Domain Descriptions Clock Domain Name Default Clock Source Clock Source Selection Register HCLK OSCIN GHVSRC • • Is disabled via the CDDISx registers bit 1 Used for all system modules including DMA, ESM GCLK OSCIN GHVSRC • • • • Always the same frequency as HCLK In phase with HCLK Is disabled separately from HCLK via the CDDISx registers bit 0 Can be divided by 1up to 8 when running CPU self-test (LBIST) using the CLKDIV field of the STCCLKDIV register at address 0xFFFFE108 GCLK2 OSCIN GHVSRC • • • • Always the same frequency as GCLK 2 cycles delayed from GCLK Is disabled along with GCLK Gets divided by the same divider setting as that for GCLK when running CPU self-test (LBIST) VCLK OSCIN GHVSRC • • • Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Is disabled separately from HCLK via the CDDISx registers bit 2 VCLK2 OSCIN GHVSRC • • • • Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Frequency must be an integer multiple of VCLK frequency Is disabled separately from HCLK via the CDDISx registers bit 3 VCLK3 OSCIN GHVSRC • • • Divided down from HCLK Can be HCLK/1, HCLK/2, ... or HCLK/16 Is disabled separately from HCLK via the CDDISx registers bit 8 VCLKA1 VCLK VCLKASRC • • Defaults to VCLK as the source Is disabled via the CDDISx registers bit 4 VCLKA2 VCLK VCLKASRC • • Defaults to VCLK as the source Is disabled via the CDDISx registers bit 5 VCLKA3_S VCLK VCLKACON • • • Defaults to VCLK as the source Frequency can be as fast as HCLK frequency. Is disabled via the CDDISx registers bit 10 Copyright © 2011, Texas Instruments Incorporated Description System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 63 PRODUCT PREVIEW The table below lists the device clock domains and their default clock sources. The table also shows the system module control register that is used to select an available clock source for each clock domain. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-13. Clock Domain Descriptions (continued) Clock Domain Name Default Clock Source Clock Source Selection Register VCLKA3_DIVR VCLK VCLKACON1 Description • • • • Divided down from the AVCLK3_S using the VCLKA3R field of the VCLKACON1 register at address 0xFFFFE140 Frequency can be VCLKA3_S/1, VCLKA3_S/2, ..., or VCLKA3_S/8 Default frequency is VCLKA3_S/2 Is disabled separately via the VCLKACON1 register VCLKA3_DIV_CDDIS bit only if the VCLKA3_S clock is not disabled VCLKA4 VCLK VCLKACON1 • • Defaults to VCLK as the source Is disabled via the CDDISx registers bit 11 RTICLK VCLK RCLKSRC • • Defaults to VCLK as the source If a clock source other than VCLK is selected for RTICLK, then the RTICLK frequency must be less than or equal to VCLK/3 – Application can ensure this by programming the RTI1DIV field of the RCLKSRC register, if necessary Is disabled via the CDDISx registers bit 6 • PRODUCT PREVIEW 64 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.6.2.2 Mapping of Clock Domains to Device Modules Each clock domain has a dedicated functionality as shown in the figures below. GCM 0 OSCIN PLL #1 X1..256 /1..64 /1..32 /1..8 Low Power Oscillator GCLK, GCLK2 (to CPU) (FMzPLL) 1 * 80kHz 4 10MHz 5 /1..16 HCLK (to SYSTEM) VCLK _peri (VCLK to peripherals on PCR1) VCLK_sys (VCLK to system modules) /1..16 VCLK2 (to NHETx and HTUx) /1..16 VCLK3 (to Ethernet, USB) PLL # 2 (FMzPLL) X1..256 /1..32 /1..8 * the frequency at this node must not exceed the maximum HCLK specifiation. 6 * EXTCLKIN 1 7 EXTCLKIN2 0 1 3 4 5 6 7 VCLK VCLKA3_DIVR VCLK3 VCLKA3_S VCLKA4 Ethernet 0 1 3 4 5 6 7 VCLK 3 VCLKA3 (to USB) /DIVR USB Host 0 1 3 4 5 6 7 VCLK VCLKA3_S 0 1 3 4 5 6 7 EMIF USB Device VCLKA1 VCLKA1 (to to DCANx) PRODUCT PREVIEW /1..64 VCLKA3_DIVR (to USB Host / 12 MHz) VCLKA4 (to Ethernet, as alternate for MIITXCLK and/or MIIRXCLK) /1, 2, 4, or 8 RTICLK (to RTI, DWWD) VCLK VCLK VCLK2 VCLK2 /1,2,..1024 Prop_seg /1,2,..256 /2,3..224 /1,2..32 /1,2..65536 NHETx TU Phase_seg2 SPI Baud Rate LIN / SCI Baud Rate ADCLK ECLK I2C baud rate LIN, SCI MibADCx External Clock I2C Phase_seg1 SPIx,MibSPIx EXTCLKIN1 CAN Baud Rate DCANx HRP /1..64 /1,2..256 PLL#2 output Reserved Reserved NTU[3] NTU[2] NTU[1] RTI LRP /20 ..2 5 Loop High Resolution Clock NHETx NTU[0] Figure 4-7. Device Clock Domains Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 65 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.6.3 www.ti.com Clock Test Mode The RM4x platform architecture defines a special mode that allows various clock signals to be brought out on to the ECLK pin and N2HET1[12] device outputs. This mode is called the Clock Test mode. It is very useful for debugging purposes and can be configured via the CLKTEST register in the system module. Table 4-14. Clock Test Mode Options SEL_ECP_PIN = CLKTEST[3-0] PRODUCT PREVIEW 66 SIGNAL ON ECLK SEL_GIO_PIN = CLKTEST[11-8] SIGNAL ON N2HET1[12] 0000 Oscillator 0000 Oscillator Valid Status 0001 Main PLL free-running clock output 0001 Main PLL Valid status 0010 Reserved 0010 Reserved 0011 EXTCLKIN1 0011 Reserved 0100 CLK80K 0100 Reserved 0101 CLK10M 0101 CLK10M Valid status 0110 Secondary PLL free-running clock output 0110 Secondary PLL Valid Status 0111 EXTCLKIN2 0111 Reserved 1000 GCLK 1000 CLK80K 1001 RTI Base 1001 Reserved 1010 Reserved 1010 Reserved 1011 VCLKA1 1011 Reserved 1100 Reserved 1100 Reserved 1101 VCLKA3 1101 Reserved 1110 VCLKA4 1110 Reserved 1111 Reserved 1111 Reserved System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.7 Clock Monitoring The LPO Clock Detect (LPOCLKDET) module consists of a clock monitor (CLKDET) and an internal low power oscillator (LPO). The LPO provides two different clock sources – a low frequency (CLK80K) and a high frequency (CLK10M). The CLKDET is a supervisor circuit for an externally supplied clock signal (OSCIN). In case the OSCIN frequency falls out of a frequency window, the CLKDET flags this condition in the global status register (GLBSTAT bit 0: OSC FAIL) and switches all clock domains sourced by OSCIN to the CLK10M clock (limp mode clock). The valid OSCIN frequency range is defined as: fCLK10M / 4 < fOSCIN < fCLK10M * 4. 4.7.1 Clock Monitor Timings Parameter Clock Detection LPO - HF oscillator MIN Type MAX Unit oscillator fail frequency - lower threshold, using untrimmed LPO output 1.375 2.4 4.875 MHz oscillator fail frequency - higher threshold, using untrimmed LPO output 22 38.4 78 MHz untrimmed frequency 5.5 9.6 19.5 MHz startup time from STANDBY (LPO BIAS_EN High for at least 900ms) 10 µs cold startup time 900 µs 150 µA 180 kHz startup time from STANDBY (LPO BIAS_EN High for at least 900ms) 100 µs cold startup time ICC, CLK10M and CLK80K active LPO - LF oscillator LPO untrimmed frequency 36 85 2000 µs ICC, only CLK80K active 27 µA total ICC STANDBY current 20 µA guaranteed fail lower threshold 1.375 upper guaranteed fail threshold guaranteed pass 4.875 PRODUCT PREVIEW Table 4-15. LPO and Clock Detection 22 78 f[MHz] Figure 4-8. LPO and Clock Detection, Untrimmed CLK10M 4.7.2 External Clock (ECLK) Output Functionality The ECLK pin can be configured to output a pre-scaled clock signal indicative of an internal device clock. This output can be externally monitored as a safety diagnostic. 4.7.3 Dual Clock Comparators The Dual Clock Comparator (DCC) module determines the accuracy of selectable clock sources by counting the pulses of two independent clock sources (counter 0 and counter 1). If one clock is out of spec, an error signal is generated. For example, the DCC1 can be configured to use CLK10M as the reference clock (for counter 0) and VCLK as the "clock under test" (for counter 1). This configuration allows the DCC1 to monitor the PLL output clock when VCLK is using the PLL output as its source. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 67 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com An additional use of this module is to measure the frequency of a selectable clock source, using the input clock as a reference, by counting the pulses of two independent clock sources. Counter 0 generates a fixed-width counting window after a preprogrammed number of pulses. Counter 1 generates a fixed-width pulse (1 cycle) after a pre-programmed number of pulses. This pulse sets as an error signal if counter 1 does not reach 0 within the counting window generated by counter 0. 4.7.3.1 • • • • 4.7.3.2 Features Takes two different clock sources as input to two independent counter blocks. One of the clock sources is the known-good, or reference clock; the second clock source is the "clock under test." Each counter block is programmable with initial, or seed values. The counter blocks start counting down from their seed values at the same time; a mismatch from the expected frequency for the clock under test generates an error signal which is used to interrupt the CPU. Mapping of DCC Clock Source Inputs Table 4-16. DCC1 Counter 0 Clock Sources CLOCK SOURCE [3:0] CLOCK NAME PRODUCT PREVIEW others oscillator (OSCIN) 0x5 high frequency LPO 0xA test clock (TCK) Table 4-17. DCC1 Counter 1 Clock Sources KEY [3:0] CLOCK SOURCE [3:0] CLOCK NAME others - N2HET1[31] 0x0 Main PLL free-running clock output 0xA 0x1 reserved 0x2 low frequency LPO 0x3 high frequency LPO 0x4 flash HD pump oscillator 0x5 EXTCLKIN1 0x6 EXTCLKIN2 0x7 ring oscillator 0x8 - 0xF VCLK Table 4-18. DCC2 Counter 0 Clock Sources CLOCK SOURCE [3:0] CLOCK NAME others oscillator (OSCIN) 0xA test clock (TCK) Table 4-19. DCC2 Counter 1 Clock Sources KEY [3:0] 68 CLOCK SOURCE [3:0] CLOCK NAME others - N2HET2[0] 0xA 00x0 - 0x7 Reserved 0x8 - 0xF VCLK System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.8 Glitch Filters A glitch filter is present on the following signals. Table 4-20. Glitch Filter Timing Specifications Pin nPORRST Parameter tf(nPORRST) Filter time nPORRST pin; MIN MAX Unit 500 2000 ns 500 2000 ns 500 2000 ns pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset (1) nRST tf(nRST) Filter time nRST pin; pulses less than MIN will be filtered out, pulses greater than MAX will generate a reset TEST tf(TEST) Filter time TEST pin; pulses less than MIN will be filtered out, pulses greater than MAX will pass through The glitch filter design on the nPORRST signal is designed such that no size pulse will reset any part of the microcontroller (flash pump, I/O pins, etc.) without also generating a valid reset signal to the CPU. PRODUCT PREVIEW (1) Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 69 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.9 4.9.1 www.ti.com Device Memory Map Memory Map Diagram The figure below shows the device memory map. 0xFFFFFFFF SYSTEM Modules 0xFFF80000 Peripherals - Frame 1 0xFF000000 0xFE000000 CRC RESERVED 0xFCFFFFFF 0xFC000000 Peripherals - Frame 2 RESERVED 0xF07FFFFF Flash Module Bus2 Interface (Flash ECC, OTP and EEPROM accesses) PRODUCT PREVIEW 0xF0000000 RESERVED 0x87FFFFFF 0x80000000 0x6FFFFFFF 0x60000000 EMIF (128MB) SDRAM RESERVED CS0 reserved0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (16MB * 3) Async RAM POM (8MB) 0x607FFFFF 0x60000000 RESERVED 0x202FFFFF 0x20000000 Flash (3MB) (Mirrored Image) RESERVED 0x0843FFFF 0x08400000 RAM - ECC RESERVED 0x0803FFFF 0x08000000 0x002FFFFF 0x00000000 RAM (256KB) RESERVED Flash (3MB) Figure 4-9. Memory Map The Flash memory is mirrored to support ECC logic testing. The base address of the mirrored Flash image is 0x2000 0000. 70 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.9.2 Memory Map Table Please refer to and for a block diagrams showing the devices interconnect. Table 4-21. Device Memory Map MODULE NAME FRAME ADDRESS RANGE FRAME CHIP SELECT START END FRAME ACTUA SIZE L SIZE RESPNSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME Memories tightly coupled to the ARM Cortex-R4F CPU TCM Flash CS0 0x0000_0000 0x00FF_FFFF 16MB 2MB/ 3MB TCM RAM + RAM ECC CSRAM0 0x0800_0000 0x0BFF_FFFF 64MB 256KB Mirrored Flash Flash mirror frame 0x2000_0000 0x20FF_FFFF 16MB 3MB Abort External Memory Accesses EMIF select 2 0x6000_0000 0x63FF_FFFF 64MB 16MB EMIF Chip Select 3 (asynchronous) EMIF select 3 0x6400_0000 0x67FF_FFFF 64MB 16MB EMIF Chip Select 4 (asynchronous) EMIF select 4 0x6800_0000 0x6BFF_FFFF 64MB 16MB EMIF Chip Select 0 (synchronous) EMIF select 0 0x8000_0000 0x87FF_FFFF 128MB 128MB Access to "Reserved" space will generate Abort PRODUCT PREVIEW EMIF Chip Select 2 (asynchronous) Flash Module Bus2 Interface Customer OTP, TCM Flash Banks 0xF000_0000 0xF000_FFFF 64KB 16KB Customer OTP, EEPROM Bank 0xF000_E000 0xF000_FFFF 8KB 4KB Customer OTP–ECC, TCM Flash Banks 0xF004_0000 0xF004_1FFF 8KB 2KB Customer OTP–ECC, EEPROM Bank 0xF004_1C00 0xF004_1FFF 1KB 1KB TI OTP, TCM Flash Banks 0xF008_0000 0xF008_FFFF 64KB 16KB TI OTP, EEPROM Bank 0xF008_E000 0xF008_FFFF 8KB 4KB TI OTP–ECC, TCM Flash Banks 0xF00C_0000 0xF00C_1FFF 8KB 2KB TI OTP–ECC, EEPROM Bank 0xF00C_1C00 0xF00C_1FFF 1KB 1KB EEPROM Bank–ECC 0xF010_0000 0xF013_FFFF 256KB 8KB EEPROM Bank 0xF020_0000 0xF03F_FFFF 2MB 64KB Flash Data Space ECC 0xF040_0000 0xF04F_FFFF 1MB 384KB Abort Ethernet and EMIF slave interfaces CPPI Memory Slave (Ethernet RAM) 0xFC52_0000 0xFC52_1FFF 8KB 8KB Abort CPGMAC Slave (Ethernet Slave) 0xFCF7_8000 0xFCF7_87FF 2KB 2KB No error CPGMACSS Wrapper (Ethernet Wrapper) 0xFCF7_8800 0xFCF7_88FF 256B 256B No error Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 71 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-21. Device Memory Map (continued) MODULE NAME FRAME CHIP SELECT FRAME ADDRESS RANGE FRAME ACTUA SIZE L SIZE RESPNSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME START END W2FC (USB device controller registers) 0xFCF7_8A00 0xFCF7_8A7F 128B 128B Abort OHCI (USB Host controller registers) 0xFCF7_8B00 0xFCF7_8BFF 256B 256B Abort 0xFCFF_E800 0xFCFF_E8FF 256B 256B Abort EMIF Registers Cyclic Redundancy Checker (CRC) Module Registers CRC CRC frame 0xFE00_0000 0xFEFF_FFFF 16MB 512B Accesses above 0x200 generate abort. Peripheral Memories PRODUCT PREVIEW MIBSPI5 RAM PCS[5] 0xFF0A_0000 0xFF0B_FFFF 128KB 2KB Abort for accesses above 2KB MIBSPI3 RAM PCS[6] 0xFF0C_0000 0xFF0D_FFFF 128KB 2KB Abort for accesses above 2KB MIBSPI1 RAM PCS[7] 0xFF0E_0000 0xFF0F_FFFF 128KB 2KB Abort for accesses above 2KB DCAN3 RAM PCS[13] 0xFF1A_0000 0xFF1B_FFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. DCAN2 RAM PCS[14] 0xFF1C_0000 0xFF1D_FFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. DCAN1 RAM PCS[15] 0xFF1E_0000 0xFF1F_FFFF 128KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. MIBADC2 RAM PCS[29] 0xFF3A_0000 0xFF3B_FFFF 128KB 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. MIBADC1 RAM PCS[31] 0xFF3E_0000 0xFF3F_FFFF 128KB 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. N2HET2 RAM PCS[34] 0xFF44_0000 0xFF45_FFFF 128KB 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. N2HET1 RAM PCS[35] 0xFF46_0000 0xFF47_FFFF 128KB 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. N2HET2 TU2 RAM PCS[38] 0xFF4C_0000 0xFF4D_FFFF 128KB 1KB Abort N2HET1 TU1 RAM PCS[39] 0xFF4E_0000 0xFF4F_FFFF 128KB 1KB Abort Debug Components CoreSight Debug ROM CSCS0 0xFFA0_0000 0xFFA0_0FFF 4KB 4KB Reads return zeros, writes have no effect Cortex-R4F Debug CSCS1 0xFFA0_1000 0xFFA0_1FFF 4KB 4KB Reads return zeros, writes have no effect ETM-R4 CSCS2 0xFFA0_2000 0xFFA0_2FFF 4KB 4KB Reads return zeros, writes have no effect CoreSight TPIU CSCS3 0xFFA0_3000 0xFFA0_3FFF 4KB 4KB Reads return zeros, writes have no effect POM CSCS4 0xFFA0_4000 0xFFA0_4FFF 4KB 4KB Abort Peripheral Control Registers 72 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-21. Device Memory Map (continued) FRAME CHIP SELECT HTU1 FRAME ADDRESS RANGE FRAME ACTUA SIZE L SIZE RESPNSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME START END PS[22] 0xFFF7_A400 0xFFF7_A4FF 256B 256B Reads return zeros, writes have no effect HTU2 PS[22] 0xFFF7_A500 0xFFF7_A5FF 256B 256B Reads return zeros, writes have no effect N2HET1 PS[17] 0xFFF7_B800 0xFFF7_B8FF 256B 256B Reads return zeros, writes have no effect N2HET2 PS[17] 0xFFF7_B900 0xFFF7_B9FF 256B 256B Reads return zeros, writes have no effect GIO PS[16] 0xFFF7_BC00 0xFFF7_BCFF 256B 256B Reads return zeros, writes have no effect MIBADC1 PS[15] 0xFFF7_C000 0xFFF7_C1FF 512B 512B Reads return zeros, writes have no effect MIBADC2 PS[15] 0xFFF7_C200 0xFFF7_C3FF 512B 512B Reads return zeros, writes have no effect I2C PS[10] 0xFFF7_D400 0xFFF7_D4FF 256B 256B Reads return zeros, writes have no effect DCAN1 PS[8] 0xFFF7_DC00 0xFFF7_DDFF 512B 512B Reads return zeros, writes have no effect DCAN2 PS[8] 0xFFF7_DE00 0xFFF7_DFFF 512B 512B Reads return zeros, writes have no effect DCAN3 PS[7] 0xFFF7_E000 0xFFF7_E1FF 512B 512B Reads return zeros, writes have no effect LIN PS[6] 0xFFF7_E400 0xFFF7_E4FF 256B 256B Reads return zeros, writes have no effect SCI PS[6] 0xFFF7_E500 0xFFF7_E5FF 256B 256B Reads return zeros, writes have no effect MibSPI1 PS[2] 0xFFF7_F400 0xFFF7_F5FF 512B 512B Reads return zeros, writes have no effect SPI2 PS[2] 0xFFF7_F600 0xFFF7_F7FF 512B 512B Reads return zeros, writes have no effect MibSPI3 PS[1] 0xFFF7_F800 0xFFF7_F9FF 512B 512B Reads return zeros, writes have no effect SPI4 PS[1] 0xFFF7_FA00 0xFFF7_FBFF 512B 512B Reads return zeros, writes have no effect MibSPI5 PS[0] 0xFFF7_FC00 0xFFF7_FDFF 512B 512B Reads return zeros, writes have no effect DMA RAM PPCS0 0xFFF8_0000 PRODUCT PREVIEW MODULE NAME System Modules Control Registers and Memories 0xFFF8_0FFF 4KB 4KB Abort VIM RAM PPCS2 0xFFF8_2000 0xFFF8_2FFF 4KB 1KB Wrap around for accesses to unimplemented address offsets lower than 0x3FF. Abort generated for accesses beyond 0x3FF. RTP RAM PPCS3 0xFFF8_3000 0xFFF8_3FFF 4KB 4KB Abort Flash Module PPCS7 0xFFF8_7000 0xFFF8_7FFF 4KB 4KB Abort eFuse Controller PPCS12 0xFFF8_C000 0xFFF8_CFFF 4KB 4KB Abort Power Management Module (PMM) PPSE0 0xFFFF_0000 0xFFFF_01FF 512B 512B Abort Test Controller (FMTM) PPSE1 0xFFFF_0400 0xFFFF_07FF 1KB 1KB Reads return zeros, writes have no effect PCR registers PPS0 0xFFFF_E000 0xFFFF_E0FF 256B 256B Reads return zeros, writes have no effect Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 73 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-21. Device Memory Map (continued) MODULE NAME FRAME CHIP SELECT System Module Frame 2 (see device TRM) FRAME ADDRESS RANGE FRAME ACTUA SIZE L SIZE RESPNSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME PRODUCT PREVIEW START END PPS0 0xFFFF_E100 0xFFFF_E1FF 256B 256B Reads return zeros, writes have no effect PBIST PPS1 0xFFFF_E400 0xFFFF_E5FF 512B 512B Reads return zeros, writes have no effect STC PPS1 0xFFFF_E600 0xFFFF_E6FF 256B 256B Generates address error interrupt, if enabled IOMM Multiplexing Control Module PPS2 0xFFFF_EA00 0xFFFF_EBFF 512B 512B Reads return zeros, writes have no effect DCC1 PPS3 0xFFFF_EC00 0xFFFF_ECFF 256B 256B Reads return zeros, writes have no effect DMA PPS4 0xFFFF_F000 0xFFFF_F3FF 1KB 1KB Reads return zeros, writes have no effect DCC2 PPS5 0xFFFF_F400 0xFFFF_F4FF 256B 256B Reads return zeros, writes have no effect ESM PPS5 0xFFFF_F500 0xFFFF_F5FF 256B 256B Reads return zeros, writes have no effect CCMR4 PPS5 0xFFFF_F600 0xFFFF_F6FF 256B 256B Reads return zeros, writes have no effect DMM PPS5 0xFFFF_F700 0xFFFF_F7FF 256B 256B Reads return zeros, writes have no effect RAM ECC even PPS6 0xFFFF_F800 0xFFFF_F8FF 256B 256B Reads return zeros, writes have no effect RAM ECC odd PPS6 0xFFFF_F900 0xFFFF_F9FF 256B 256B Reads return zeros, writes have no effect RTP PPS6 0xFFFF_FA00 0xFFFF_FAFF 256B 256B Reads return zeros, writes have no effect RTI + DWWD PPS7 0xFFFF_FC00 0xFFFF_FCFF 256B 256B Reads return zeros, writes have no effect VIM Parity PPS7 0xFFFF_FD00 0xFFFF_FDFF 256B 256B Reads return zeros, writes have no effect VIM PPS7 0xFFFF_FE00 0xFFFF_FEFF 256B 256B Reads return zeros, writes have no effect System Module Frame 1 (see device TRM) PPS7 0xFFFF_FF00 0xFFFF_FFFF 256B 256B Reads return zeros, writes have no effect 74 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.9.3 Master/Slave Access Privileges The table below lists the access permissions for each bus master on the device. A bus master is a module that can initiate a read or a write transaction on the device. Each slave module on the main interconnect is listed in the table. A "Yes" indicates that the module listed in the "MASTERS" column can access that slave module. Table 4-22. Master / Slave Access Matrix ACCESS MODE SLAVES ON MAIN SCR Flash Module Bus2 Interface: OTP, ECC, EEPROM Bank Non-CPU Accesses to Program Flash and CPU Data RAM CRC EMIF, Ethernet, USB Slave Interfaces Peripheral Control Registers, All Peripheral Memories, And All System Module Control Registers And Memories CPU READ User/Privilege Yes Yes Yes Yes Yes CPU WRITE User/Privilege No Yes Yes Yes Yes DMA User Yes Yes Yes Yes Yes POM User Yes Yes Yes Yes Yes DMM User Yes Yes Yes Yes Yes DAP Privilege Yes Yes Yes Yes Yes HTU1 Privilege No Yes Yes Yes Yes HTU2 Privilege No Yes Yes Yes Yes EMAC User No Yes No Yes No OHCI User No Yes No Yes No 4.9.3.1 Special Notes on Accesses to Certain Slaves Write accesses to the Power Domain Management Module (PMM) control registers are limited to the CPU (master id = 1). The other masters can only read from these registers. A debugger can also write to the PMM registers. The master-id check is disabled in debug mode. The device contains dedicated logic to generate a bus error response on any access to a module that is in a power domain that has been turned OFF. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 75 PRODUCT PREVIEW MASTERS RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 4.9.4 POM Overlay Considerations • • • • PRODUCT PREVIEW 76 www.ti.com The POM overlay can map onto up to 8MB of the internal or external memory space. The starting address and the size of the memory overlay are configurable via the POM module control registers. Care must be taken to ensure that the overlay is mapped on to available memory. ECC must be disabled by software via CP15 in case POM overlay is enabled; otherwise ECC errors will be generated. POM overlay must not be enabled when the flash and internal RAM memories are swapped via the MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1). When POM is used to overlay the flash on to internal or external RAM, there is a bus contention possibility when another master accesses the TCM flash. This results in a system hang. – The POM module implements a timeout feature to detect this exact scenario. The timeout needs to be enabled whenever POM overlay is enabled. – The timeout can be enabled by writing 1010 to the Enable TimeOut (ETO) field of the POM Global Control register (POMGLBCTRL, address = 0xFFA04000). – In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO) flag is set in the POM Flag register (POMFLG, address = 0xFFA0400C). Also, an abort is generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a data fetch. – The prefetch- and data-abort handlers must be modified to check if the TO flag in the POM module is set. If so, then the application can assume that the timeout is caused by a bus contention between the POM transaction and another master accessing the same memory region. The abort handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been caused due to a timeout from the POM. System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.10 Flash Memory 4.10.1 Flash Memory Configuration Flash Bank: A separate block of logic consisting of 1 to 16 sectors. Each flash bank normally has a customer-OTP and a TI-OTP area. These flash sectors share input/output buffers, data paths, sense amplifiers, and control logic. Flash Sector: A contiguous region of flash memory which must be erased simultaneously due to physical construction constraints. Flash Pump: A charge pump which generates all the voltages required for reading, programming, or erasing the flash banks. Flash Module: Interface circuitry required between the host CPU and the flash banks and pump module. Table 4-23. Flash Memory Banks and Sectors BANK0 (1.5MBytes) BANK1 (1.5MBytes) BANK7 (64kBytes) for EEPROM emulation (1) (2) (3) (2) (3) Sector No. Segment Low Address High Address 0 32K Bytes 0x0000_0000 0x0000_7FFF 1 32K Bytes 0x0000_8000 0x0000_FFFF 2 32K Bytes 0x0001_0000 0x0001_7FFF 3 32K Bytes 0x0001_8000 0x0001_FFFF 4 128K Bytes 0x0002_0000 0x0003_FFFF 5 128K Bytes 0x0004_0000 0x0005_FFFF 6 128K Bytes 0x0006_0000 0x0007_FFFF 7 128K Bytes 0x0008_0000 0x0009_FFFF 8 128K Bytes 0x000A_0000 0x000B_FFFF 9 128K Bytes 0x000C_0000 0x000D_FFFF 10 128K Bytes 0x000E_0000 0x000F_FFFF 11 128K Bytes 0x0010_0000 0x0011_FFFF 12 128K Bytes 0x0012_0000 0x0013_FFFF 13 128K Bytes 0x0014_0000 0x0015_FFFF 14 128K Bytes 0x0016_0000 0x0017_FFFF 0 128K Bytes 0x0018_0000 0x0019_FFFF 1 128K Bytes 0x001A_0000 0x001B_FFFF 2 128K Bytes 0x001C_0000 0x001D_FFFF 3 128K Bytes 0x001E_0000 0x001F_FFFF 4 128K Bytes 0x0020_0000 0x0021_FFFF 5 128K Bytes 0x0022_0000 0x0023_FFFF 6 128K Bytes 0x0024_0000 0x0025_FFFF 7 128K Bytes 0x0026_0000 0x0027_FFFF 8 128K Bytes 0x0028_0000 0x0029_FFFF 9 128K Bytes 0x002A_0000 0x002B_FFFF 10 128K Bytes 0x002C_0000 0x002D_FFFF 11 128K Bytes 0x002E_0000 0x002F_FFFF 0 16K Bytes 0xF020_0000 0xF020_3FFF 1 16K Bytes 0xF020_4000 0xF020_7FFF 2 16K Bytes 0xF020_8000 0xF020_BFFF 3 16K Bytes 0xF020_C000 0xF020_FFFF PRODUCT PREVIEW Memory Arrays (or Banks) (1) The Flash banks are 144-bit wide bank with ECC support. The flash bank7 can be programmed while executing code from flash bank0 or bank1. Code execution is not allowed from flash bank7. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 77 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.10.2 Main Features of Flash Module • • • • • • • Support for multiple flash banks for program and/or data storage Simultaneous read access on a bank while performing program or erase operation on any other bank Integrated state machines to automate flash erase and program operations Software interface for flash program and erase operations Pipelined mode operation to improve instruction access interface bandwidth Support for Single Error Correction Double Error Detection (SECDED) block inside Cortex-R4F CPU – Error address is captured for host system debugging Support for a rich set of diagnostic features 4.10.3 ECC Protection for Flash Accesses PRODUCT PREVIEW All accesses to the program flash memory are protected by Single Error Correction Double Error Detection (SECDED) logic embedded inside the CPU. The flash module provides 8 bits of ECC code for 64 bits of instructions or data fetched from the flash memory. The CPU calculates the expected ECC code based on the 64 bits received and compares it with the ECC code returned by the flash module. A signle-bit error is corrected and flagged by the CPU, while a multi-bit error is only flagged. The CPU signals an ECC error via its Event bus. This signaling mechanism is not enabled by default and must be enabled by setting the "X" bit of the Performance Monitor Control Register, c9. MRC ORR MCR MRC p15,#0,r1,c9,c12,#0 r1, r1, #0x00000010 p15,#0,r1,c9,c12,#0 p15,#0,r1,c9,c12,#0 ;Enabling Event monitor states ;Set 4th bit (‘X’) of PMNC register The application must also explicitly enable the CPU's ECC checking for accesses on the CPU's ATCM and BTCM interfaces. These are connected to the program flash and data RAM respectively. ECC checking for these interfaces can be done by setting the B1TCMPCEN, B0TCMPCEN and ATCMPCEN bits of the System Control coprocessor's Auxiliary Control Register, c1. MRC p15, #0, r1, c1, c0, #1 ORR r1, r1, #0x0e000000 DMB MCR p15, #0, r1, c1, c0, #1 ;Enable ECC checking for ATCM and BTCMs 4.10.4 Flash Access Speeds For information on flash memory access speeds and the relevant wait states required, refer to Section 3.4. 78 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.10.5 Flash Program and Erase Timings Parameter tprog (144bit) Wide Word (144bit) programming time tprog (Total) 3MByte programming time (1) MIN terase (sector) MAX Unit 40 tbd µs tbd s tbd s tbd ms tbd ms -40°C to 125°C 0°C to 60°C, for first 25 cycles tprog (Total) NOM EEPROM Emulation 64kByte programming time (1) -40°C to 12°5C Sector erase time -40°C to 125°C 0°C to 60°C, for first 25 cycles 8 165 tbd ms 0°C to 60°C, for first 25 cycles 30 tbd ms terase (bank) Bank erase time (2) Flash Bank 0 300 tbd ms terase (bank) Bank erase time (2) Flash Bank 1 240 tbd ms terase (bank) EEPROM Emulation Bank erase time (2) Flash Bank 7 80 tbd ms twec Write/erase cycles Flash Bank 0 Flash Bank 1 1000 cycles twec Write/erase cycles Flash Bank 7 100000 cycles (1) (2) This programming time includes overhead of state machine, but does not include data transfer time. Nominal conditions for the above specifications mean the first 25 program / erase cycles at an ambient temperature between 0c to 60c Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 79 PRODUCT PREVIEW Table 4-24. Timing Specifications for Flash RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.11 Tightly-Coupled RAM Interface Module Figure 4-10 illustrates the connection of the Tightly Coupled RAM (TCRAM) to the Cortex-R4F™ CPU. VBUSP I/F PMT I/F Upper 32 bits data & 4 ECC bits Cortex R4F™ B0 TCM EVEN Address TCM BUS TCRAM Interface 1 64 Bit data bus Lower 32 bits data & 4 ECC bits A TCM B1 TCM Upper 32 bits data & 4 ECC bits ODD Address TCM BUS 64 Bit data bus TCRAM Interface 2 Lower 32 bits data & 4 ECC bits PRODUCT PREVIEW VBUSP I/F 36 Bit Bit 3636 Bit wide wide wideRAM RAM RAM 36 Bit Bit 3636 Bit wide wide wide RAM RAM RAM 36 Bit Bit wide 3636 Bit wide wideRAM RAM RAM 36 Bit Bit 3636 Bit wide wide wideRAM RAM RAM PMT I/F Figure 4-10. TCRAM Block Diagram 4.11.1 Features The features of the Tightly Coupled RAM (TCRAM) Module are: • Acts as slave to the Cortex-R4F CPU's BTCM interface • Supports CPU's internal ECC scheme by providing 64-bit data and 8-bit ECC code • Monitors CPU Event Bus and generates single or multi-bit error interrupts • Stores addresses for single and multi-bit errors • Supports RAM trace module • Provides CPU address bus integrity checking by supporting parity checking on the address bus • Performs redundant address decoding for the RAM bank chip select and ECC select generation logic • Provides enhanced safety for the RAM addressing by implementing two 36-bit wide byte-interleaved RAM banks and generating independent RAM access control signals to the two banks • Supports auto-initialization of the RAM banks along with the ECC bits 4.11.2 TCRAMW ECC Support The TCRAMW passes on the ECC code for each data read by the Cortex-R4F CPU from the RAM. It also stores the CPU's ECC port contents in the ECC RAM when the CPU does a write to the RAM. The TCRAMW monitors the CPU's event bus and provides registers for indicating single/multi-bit errors and also for identifying the address that caused the single or multi-bit error. The event signaling and the ECC checking for the RAM accesses must be enabled inside the CPU. For more information see the RM48x Technical Reference Manual (SPNU481). 4.12 Parity Protection for Accesses to peripheral RAMs Accesses to all peripheral RAMs are protected by odd/even parity checking. During a read access the parity is calculated based on the data read from the peripheral RAM and compared with the good parity value stored in the parity RAM for that peripheral. If any word fails the parity check, the module generates a parity error signal that is mapped to the Error Signaling Module. The module also captures the peripheral RAM address that caused the parity error. 80 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com The parity protection for peripheral RAMs is not enabled by default and must be enabled by the application. Each individual peripheral contains control registers to enable the parity protection for accesses to its RAM. NOTE PRODUCT PREVIEW The CPU read access gets the actual data from the peripheral. The application can choose to generate an interrupt whenever a peripheral RAM parity error is detected. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 81 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.13 On-Chip SRAM Initialization and Testing 4.13.1 On-Chip SRAM Self-Test Using PBIST 4.13.1.1 Features • • • Extensive instruction set to support various memory test algorithms ROM-based algorithms allow application to run TI production-level memory tests Independent testing of all on-chip SRAM 4.13.1.2 PBIST RAM Groups Table 4-25. PBIST RAM Grouping Test Pattern (Algorithm) Memory RAM Group Test Clock MEM Type triple read slow read triple read fast read March 13N (1) two port (cycles) March 13N (1) single port (cycles) ALGO MASK 0x1 ALGO MASK 0x2 ALGO MASK 0x4 ALGO MASK 0x8 1 ROM CLK ROM X X STC_ROM 2 ROM CLK ROM X X DCAN1 3 VCLK Dual Port 25200 DCAN2 4 VCLK Dual Port 25200 DCAN3 5 VCLK Dual Port 25200 ESRAM1 6 HCLK Single Port MIBSPI1 7 VCLK Dual Port 33440 MIBSPI3 8 VCLK Dual Port 33440 MIBSPI5 9 VCLK Dual Port 33440 VIM 10 VCLK Dual Port 12560 MIBADC1 11 VCLK Dual Port 4200 DMA 12 HCLK Dual Port 18960 N2HET1 13 VCLK Dual Port 31680 HET TU1 14 VCLK Dual Port 6480 RTP 15 HCLK Dual Port 37800 MIBADC2 18 VCLK Dual Port 4200 PRODUCT PREVIEW PBIST_ROM N2HET2 19 VCLK Dual Port 31680 HET TU2 20 VCLK Dual Port 6480 ESRAM5 21 HCLK Single Port 266280 ESRAM6 22 HCLK Single Port 266280 23 ETHERNET 24 VCLK3 25 USB ESRAM8 (1) 266280 26 27 28 Dual Port 8700 6360 Single Port VCLK3 HCLK Dual Port 133160 4240 Single Port 66600 Single Port 266280 There are several memory testing algorithms stored in the PBIST ROM. However, TI recommends the March13N algorithm for application testing. The PBIST ROM clock frequency is limited to 100MHz, if 100MHz < HCLK <= HCLKmax, or HCLK, if HCLK <= 100MHz. The PBIST ROM clock is divided down from HCLK. The divider is selected by programming the ROM_DIV field of the Memory Self-Test Global Control Register (MSTGCR) at address 0xFFFFFF58. 82 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.13.2 On-Chip SRAM Auto Initialization This microcontroller allows some of the on-chip memories to be initialized via the Memory Hardware Initialization mechanism in the System module. This hardware mechanism allows an application to program the memory arrays with error detection capability to a known state based on their error detection scheme (odd/even parity or ECC). The MINITGCR register enables the memory initialization sequence, and the MSINENA register selects the memories that are to be initialized. For more information on these registers see the RM48x Technical Reference Manual (SPNU481). The mapping of the different on-chip memories to the specific bits of the MSINENA registers is shown in Table 4-26. Table 4-26. Memory Initialization ADDRESS RANGE ENDING ADDRESS RAM (PD#1) 0x08000000 0x0800FFFF 0 (1) RAM (RAM_PD#1) 0x08010000 0x0801FFFF 0 (1) RAM (RAM_PD#2) 0x08020000 0x0802FFFF 0 (1) RAM (RAM_PD#3) 0x08030000 0x0803FFFF 0 (1) MIBSPI5 RAM 0xFF0A0000 0xFF0BFFFF 12 (2) MIBSPI3 RAM 0xFF0C0000 0xFF0DFFFF 11 (2) MIBSPI1 RAM 0xFF0E0000 0xFF0FFFFF 7 (2) DCAN3 RAM 0xFF1A0000 0xFF1BFFFF 10 DCAN2 RAM 0xFF1C0000 0xFF1DFFFF 6 DCAN1 RAM 0xFF1E0000 0xFF1FFFFF 5 MIBADC2 RAM 0xFF3A0000 0xFF3BFFFF 14 MIBADC1 RAM 0xFF3E0000 0xFF3FFFFF 8 N2HET2 RAM 0xFF440000 0xFF57FFFF 15 N2HET1 RAM 0xFF460000 0xFF47FFFF 3 HET TU2 RAM 0xFF4C0000 0xFF4DFFFF 16 HET TU1 RAM 0xFF4E0000 0xFF4FFFFF 4 DMA RAM 0xFFF80000 0xFFF80FFF 1 VIM RAM 0xFFF82000 0xFFF82FFF USB Device RAM Ethernet RAM (CPPI Memory Slave) (1) (2) MSINENA REGISTER BIT # BASE ADDRESS RAM is not CPU-Addressable 0xFC520000 0xFC521FFF PRODUCT PREVIEW CONNECTING MODULE 2 n/a n/a The TCM RAM wrapper has separate control bits to select the RAM power domain that is to be auto-initialized. The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multi-buffered mode is enabled. This is independent of whether the application chooses to initialize the MibSPIx RAMs using the system module auto-initialization method. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 83 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.14 External Memory Interface (EMIF) 4.14.1 Features The EMIF includes many features to enhance the ease and flexibility of connecting to external asynchronous memories or SDRAM devices. The EMIF features includes support for: • 3 addressable chip select for asynchronous memories of up to 16MB each • 1 addressable chip select space for SDRAMs up to 128MB • 8 or 16-bit data bus width • Programmable cycle timings such as setup, strobe, and hold times as well as turnaround time • Select strobe mode • Extended Wait mode • Data bus parking 4.14.2 Electrical and Timing Specifications 4.14.2.1 Read Timing (Asynchronous RAM) 3 PRODUCT PREVIEW 1 EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_nDQM[1:0] 4 8 5 9 6 29 7 30 10 EMIF_nOE 13 12 EMIF_DATA[15:0] EMIF_nWE Figure 4-11. Asynchronous Memory Read Timing 84 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com EMIF_nCS[3:2] SETUP Extended Due to EMIF_WAIT STROBE STROBE HOLD EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_DATA[15:0] 14 11 EMIF_nOE 2 EMIF_WAIT 2 Asserted Deasserted Figure 4-12. EMIFnWAIT Read Timing Requirements PRODUCT PREVIEW 4.14.2.2 Write Timing (Asynchronous RAM) 15 1 EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_nDQM[1:0] 16 17 18 19 20 22 24 21 23 EMIF_nWE 27 26 EMIF_DATA[15:0] EMIF_nOE Figure 4-13. Asynchronous Memory Write Timing Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 85 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com SETUP Extended Due to EMIF_WAIT STROBE STROBE HOLD EMIF_nCS[3:2] EMIF_BA[1:0] EMIF_ADDR[21:0] EMIF_DATA[15:0] 28 25 EMIF_nWE 2 EMIF_WAIT Asserted 2 Deasserted Figure 4-14. EMIFnWAIT Write Timing Requirements PRODUCT PREVIEW 4.14.2.3 Read Timing (Synchronous RAM) BASIC SDRAM READ OPERATION 1 2 2 EMIF_CLK 4 3 EMIF_nCS[0] 6 5 EMIF_nDQM[1:0] 7 8 7 8 EMIF_BA[1:0] EMIF_ADDR[21:0] 19 2 EM_CLK Delay 17 20 18 EMIF_DATA[15:0] 11 12 EMIF_nRAS 13 14 EMIF_nCAS EMIF_nWE Figure 4-15. Basic SDRAM Read Operation 86 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.14.2.4 Write Timing (Synchronous RAM) 1 BASIC SDRAM WRITE OPERATION 2 2 EMIF_CLK 4 3 EMIF_CS[0] 6 5 EMIF_DQM[1:0] 7 8 7 8 EMIF_BA[1:0] EMIF_ADDR[21:0] 9 10 11 PRODUCT PREVIEW EMIF_DATA[15:0] 12 EMIF_nRAS 13 EMIF_nCAS 15 16 EMIF_nWE Figure 4-16. Basic SDRAM Write Operation 4.14.2.5 EMIF Asynchronous Memory Timing Table 4-27. EMIF Asynchronous Memory Timing Requirements NO. Value MIN NOM Unit MAX Reads and Writes 2 tw(EM_WAIT) Pulse duration, EMIFnWAIT assertion and deassertion 2E ns 12 tsu(EMDV-EMOEH) Setup time, EMIFDATA[15:0] valid before EMIFnOE high 3 ns 13 th(EMOEH-EMDIV) Hold time, EMIFDATA[15:0] valid after EMIFnOE high 0.5 ns 14 tsu(EMOEL-EMWAIT) Setup Time, EMIFnWAIT asserted before end of Strobe Phase (1) 4E+3 ns 28 tsu(EMWEL-EMWAIT) Setup Time, EMIFnWAIT asserted before end of Strobe Phase (1) 4E+3 ns Reads Writes (1) Setup before end of STROBE phase (if no extended wait states are inserted) by which EMIFnWAIT must be asserted to add extended wait states. Figure Figure 4-12 and Figure Figure 4-14 describe EMIF transactions that include extended wait states inserted during the STROBE phase. However, cycles inserted as part of this extended wait period should not be counted; the 4E requirement is to the start of where the HOLD phase would begin if there were no extended wait cycles. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 87 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-28. EMIF Asynchronous Memory Switching Characteristics (1) (2) (3) NO Parameter Value MIN Unit NOM MAX (TA)*E (TA)*E + 3 Reads and Writes 1 td(TURNAROUND) Turn around time (TA)*E -3 ns 3 tc(EMRCYCLE) EMIF read cycle time (EW = 0) (RS+RST+RH)* (RS+RST+RH)* (RS+RST+RH)* E -3 E E+3 ns EMIF read cycle time (EW = 1) (RS+RST+RH+( (RS+RST+RH+( (RS+RST+RH+( EWC*16))*E -3 EWC*16))*E EWC*16))*E + 3 ns Reads 4 tsu(EMCEL-EMOEL) 5 th(EMOEH-EMCEH) PRODUCT PREVIEW Output setup time, EMIFnCS[4:2] low to EMIFnOE low (SS = 0) (RS)*E-3 (RS)*E (RS)*E+3 ns Output setup time, EMIFnCS[4:2] low to EMIFnOE low (SS = 1) -3 0 +3 ns Output hold time, EMIFnOE high to EMIFnCS[4:2] high (SS = 0) (RH)*E -3 (RH)*E (RH)*E + 3 ns Output hold time, EMIFnOE high to EMIFnCS[4:2] high (SS = 1) -3 0 +3 ns 6 tsu(EMBAV-EMOEL) Output setup time, EMIFBA[1:0] valid to EMIFnOE low (RS)*E-3 (RS)*E (RS)*E+3 ns 7 th(EMOEH-EMBAIV) Output hold time, EMIFnOE high to EMIFBA[1:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 8 tsu(EMBAV-EMOEL) Output setup time, EMIFADDR[21:0] valid to EMIFnOE low (RS)*E-3 (RS)*E (RS)*E+3 ns 9 th(EMOEH-EMAIV) Output hold time, EMIFnOE high to EMIFADDR[21:0] invalid (RH)*E-3 (RH)*E (RH)*E+3 ns 10 tw(EMOEL) EMIFnOE active low width (EW = 0) (RST)*E-3 (RST)*E (RST)*E+3 ns EMIFnOE active low width (EW = 1) 11 td(EMWAITH-EMOEH) Delay time from EMIFnWAIT deasserted to EMIFnOE high 15 tc(EMWCYCLE) (RST+(EWC*16 (RST+(EWC*16 (RST+(EWC*16 )) *E-3 ))*E )) *E+3 ns 3E-3 4E 4E+3 ns EMIF write cycle time (EW = 0) (WS+WST+WH )* E-3 (WS+WST+WH )*E (WS+WST+WH )* E+3 ns EMIF write cycle time (EW = 1) (WS+WST+WH +( EWC*16))*E -3 (WS+WST+WH +(E WC*16))*E (WS+WST+WH +( EWC*16))*E +3 ns Output setup time, EMIFnCS[4:2] low to EMIFnWE low (SS = 0) (WS)*E -3 (WS)*E (WS)*E + 3 ns Output setup time, EMIFnCS[4:2] low to EMIFnWE low (SS = 1) -3 0 +3 ns Output hold time, EMIFnWE high to EMIFnCS[4:2] high (SS = 0) (WH)*E-3 (WH)*E (WH)*E+3 ns Writes 16 17 (1) (2) (3) 88 tsu(EMCEL-EMWEL) th(EMWEH-EMCEH) TA = Turn around, RS = Read setup, RST = Read strobe, RH = Read hold, WS = Write setup, WST = Write strobe, WH = Write hold, MEWC = Maximum external wait cycles. These parameters are programmed via the Asynchronous Bank and Asynchronous Wait Cycle Configuration Registers. These support the following ranges of values: TA[4–1], RS[16–1], RST[64–1], RH[8–1], WS[16–1], WST[64–1], WH[8–1], and MEWC[1–256]. See the EMIF User’s guide for more information. E = EMIF_CLK period in ns. EWC = external wait cycles determined by EMIFnWAIT input signal. EWC supports the following range of values. EWC[256–1]. Note that the maximum wait time before timeout is specified by bit field MEWC in the Asynchronous Wait Cycle Configuration Register. See the EMIF User’s Guide for more information. System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-28. EMIF Asynchronous Memory Switching Characteristics(1)(2)(3) (continued) Parameter Value Unit MIN NOM MAX Output hold time, EMIFnWE high to EMIFCS[4:2] high (SS = 1) -3 0 +3 ns 18 tsu(EMDQMV-EMWEL) Output setup time, EMIFBA[1:0] valid to EMIFnWE low (WS)*E-3 (WS)*E (WS)*E+3 ns 19 th(EMWEH-EMDQMIV) Output hold time, EMIFnWE high to EMIFBA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 20 tsu(EMBAV-EMWEL) Output setup time, EMIFBA[1:0] valid to EMIFnWE low (WS)*E-3 (WS)*E (WS)*E+3 ns 21 th(EMWEH-EMBAIV) Output hold time, EMIFnWE high to EMIFBA[1:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 22 tsu(EMAV-EMWEL) Output setup time, EMIFADDR[21:0] valid to EMIFnWE low (WS)*E-3 (WS)*E (WS)*E+3 ns 23 th(EMWEH-EMAIV) Output hold time, EMIFnWE high to EMIFADDR[21:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns 24 tw(EMWEL) EMIFnWE active low width (EW = 0) (WST)*E-3 (WST)*E (WST)*E+3 ns EMIFnWE active low width (EW = 1) (WST+(EWC*1 6)) *E-3 (WST+(EWC*1 6))*E (WST+(EWC*1 6)) *E+3 ns 3E-3 4E 4E+3 ns 25 td(EMWAITH-EMWEH) Delay time from EMIFnWAIT deasserted to EMIFnWE high 26 tsu(EMDV-EMWEL) Output setup time, EMIFDATA[15:0] valid to EMIFnWE low (WS)*E-3 (WS)*E (WS)*E+3 ns 27 th(EMWEH-EMDIV) Output hold time, EMIFnWE high to EMIFDATA[15:0] invalid (WH)*E-3 (WH)*E (WH)*E+3 ns PRODUCT PREVIEW NO Table 4-29. EMIF Synchronous Memory Timing Requirements NO. Parameter MIN 19 tsu(EMIFDV-EM_CLKH) Input setup time, read data valid on EMIFDATA[15:0] before EMIF_CLK rising 20 th(CLKH-DIV) Input hold time, read data valid on EMIFDATA[15:0] after EMIF_CLK rising MAX Unit 1 ns 1.5 ns Table 4-30. EMIF Synchronous Memory Switching Characteristics NO. Parameter MIN MAX Unit 1 tc(CLK) Cycle time, EMIF clock EMIF_CLK 15 ns 2 tw(CLK) Pulse width, EMIF clock EMIF_CLK high or low 5 ns 3 td(CLKH-CSV) Delay time, EMIF_CLK rising to EMIFnCS[0] valid 4 toh(CLKH-CSIV) Output hold time, EMIF_CLK rising to EMIFnCS[0] invalid 5 td(CLKH-DQMV) Delay time, EMIF_CLK rising to EMIFnDQM[1:0] valid 6 toh(CLKH-DQMIV) Output hold time, EMIF_CLK rising to EMIFnDQM[1:0] invalid 7 td(CLKH-AV) Delay time, EMIF_CLK rising to EMIFADDR[21:0] and EMIFBA[1:0] valid Copyright © 2011, Texas Instruments Incorporated 7 1 ns ns 7 1 ns ns 7 ns System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 89 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-30. EMIF Synchronous Memory Switching Characteristics (continued) PRODUCT PREVIEW 90 NO. Parameter 8 toh(CLKH-AIV) Output hold time, EMIF_CLK rising to EMIFADDR[21:0] and EMIFBA[1:0] invalid MIN 9 td(CLKH-DV) Delay time, EMIF_CLK rising to EMIFDATA[15:0] valid 10 toh(CLKH-DIV) Output hold time, EMIF_CLK rising to EMIFDATA[15:0] invalid 11 td(CLKH-RASV) Delay time, EMIF_CLK rising to EMIFnRAS valid 12 toh(CLKH-RASIV) Output hold time, EMIF_CLK rising to EMIFnRAS invalid 13 td(CLKH-CASV) Delay time, EMIF_CLK rising to EMIFnCAS valid 14 toh(CLKH-CASIV) Output hold time, EMIF_CLK rising to EMIFnCAS invalid 15 td(CLKH-WEV) Delay time, EMIF_CLK rising to EMIFnWE valid 16 toh(CLKH-WEIV) Output hold time, EMIF_CLK rising to EMIFnWE invalid 17 tdis(CLKH-DHZ) Delay time, EMIF_CLK rising to EMIFDATA[15:0] tri-stated 18 tena(CLKH-DLZ) Output hold time, EMIF_CLK rising to EMIFDATA[15:0] driving MAX 1 ns 7 1 1 ns ns 7 1 ns ns 7 1 ns ns 7 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 ns ns 7 1 Unit ns ns Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.15 Vectored Interrupt Manager The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the many interrupt sources present on this device. Interrupts are caused by events outside of the normal flow of program execution. Normally, these events require a timely response from the central processing unit (CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to an interrupt service routine (ISR). 4.15.1 VIM Features The VIM module has the following features: • Supports 96 interrupt channels. – Provides programmable priority and enable for interrupt request lines. • Provides a direct hardware dispatch mechanism for fastest IRQ dispatch. • Provides two software dispatch mechanisms when the CPU VIC port is not used. – Index interrupt – Register vectored interrupt • Parity protected vector interrupt table against soft errors. PRODUCT PREVIEW 4.15.2 Interrupt Request Assignments Table 4-31. Interrupt Request Assignments Modules Interrupt Sources Default VIM Interrupt Channel ESM ESM High level interrupt (NMI) 0 Reserved Reserved 1 RTI RTI compare interrupt 0 2 RTI RTI compare interrupt 1 3 RTI RTI compare interrupt 2 4 RTI RTI compare interrupt 3 5 RTI RTI overflow interrupt 0 6 RTI RTI overflow interrupt 1 7 RTI RTI timebase interrupt 8 GIO GIO interrupt A 9 N2HET1 N2HET1 level 0 interrupt 10 HET TU1 HET TU1 level 0 interrupt 11 MIBSPI1 MIBSPI1 level 0 interrupt 12 LIN LIN level 0 interrupt 13 MIBADC1 MIBADC1 event group interrupt 14 MIBADC1 MIBADC1 sw group 1 interrupt 15 DCAN1 DCAN1 level 0 interrupt 16 SPI2 SPI2 level 0 interrupt 17 Reserved Reserved 18 CRC CRC Interrupt 19 ESM ESM Low level interrupt 20 SYSTEM Software interrupt (SSI) 21 CPU PMU Interrupt 22 GIO GIO interrupt B 23 N2HET1 N2HET1 level 1 interrupt 24 HET TU HET TU level 1 interrupt 25 MIBSPI MIBSPI level 1 interrupt 26 Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 91 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-31. Interrupt Request Assignments (continued) Modules PRODUCT PREVIEW 92 Interrupt Sources Default VIM Interrupt Channel LIN LIN level 1 interrupt 27 MIBADC MIBADC sw group 2 interrupt 28 DCAN1 DCAN1 level 1 interrupt 29 SPI2 SPI2 level 1 interrupt 30 MIBADC1 MIBADC1 magnitude compare interrupt 31 Reserved Reserved 32 DMA FTCA interrupt 33 DMA LFSA interrupt 34 DCAN2 DCAN2 level 0 interrupt 35 DMM DMM level 0 interrupt 36 MIBSPI3 MIBSPI3 level 0 interrupt 37 MIBSPI3 MIBSPI3 level 1 interrupt 38 DMA HBCA interrupt 39 DMA BTCA interrupt 40 EMIF AEMIFINT3 41 DCAN2 DCAN2 level 1 interrupt 42 DMM DMM level 1 interrupt 43 DCAN1 DCAN1 IF3 interrupt 44 DCAN3 DCAN3 level 0 interrupt 45 DCAN2 DCAN2 IF3 interrupt 46 FPU FPU interrupt 47 Reserved Reserved 48 SPI4 SPI4 level 0 interrupt 49 MIBADC2 MibADC2 event group interrupt 50 MIBADC2 MibADC2 sw group1 interrupt 51 Reserved Reserved 52 MIBSPI5 MIBSPI5 level 0 interrupt 53 SPI4 SPI4 level 1 interrupt 54 DCAN3 DCAN3 level 1 interrupt 55 MIBSPI5 MIBSPI5 level 1 interrupt 56 MIBADC2 MibADC2 sw group2 interrupt 57 Reserved Reserved 58 MIBADC2 MibADC2 magnitude compare interrupt 59 DCAN3 DCAN3 IF3 interrupt 60 FMC FSM_DONE interrupt 61 Reserved Reserved 62 N2HET2 N2HET2 level 0 interrupt 63 SCI SCI level 0 interrupt 64 HET TU2 HET TU2 level 0 interrupt 65 I2C I2C level 0 interrupt 66 USB Host OHCI_INT 67 USB Device USB_FUNC.IRQISOON 68 USB Device USB_FUNC.IRQGENION 69 USB Device USB_FUNC.IRQNONISOON 70 USB Device not (USB_FUNC.DSWAKEREQON) 71 USB Device USB_FUNC.USBRESETO 72 N2HET2 N2HET2 level 1 interrupt 73 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Modules Interrupt Sources Default VIM Interrupt Channel SCI SCI level 1 interrupt 74 HET TU2 HET TU2 level 1 interrupt 75 Ethernet C0_MISC_PULSE 76 Ethernet C0_TX_PULSE 77 Ethernet C0_THRESH_PULSE 78 Ethernet C0_RX_PULSE 79 HWAG1 HWA_INT_REQ_H 80 HWAG2 HWA_INT_REQ_H 81 DCC1 DCC done interrupt 82 DCC2 DCC2 done interrupt 83 Reserved Reserved 84-87 HWAG1 HWA_INT_REQ_L 88 HWAG2 HWA_INT_REQ_L 89 Reserved Reserved 90-95 PRODUCT PREVIEW Table 4-31. Interrupt Request Assignments (continued) NOTE Address location 0x00000000 in the VIM RAM is reserved for the phantom interrupt ISR entry; therefore only request channels 0..94 can be used and are offset by 1 address in the VIM RAM. NOTE The lower-order interrupt channels are higher priority channels than the higher-order interrupt channels. NOTE The application can change the mapping of interrupt sources to the interrupt channels via the interrupt channel control registers (CHANCTRLx) inside the VIM module. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 93 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.16 DMA Controller The DMA controller is used to transfer data between two locations in the memory map in the background of CPU operations. Typically, the DMA is used to: • Transfer blocks of data between external and internal data memories • Restructure portions of internal data memory • Continually service a peripheral 4.16.1 DMA Features PRODUCT PREVIEW • • • • • • • • • • • • • 94 CPU independent data transfer One master port - PortB (64 bits wide) that interfaces to the RM4x Memory System. FIFO buffer(4 entries deep and each 64bit wide) Channel control information is stored in RAM protected by parity 16 channels with individual enable Channel chaining capability 32 peripheral DMA requests Hardware and Software DMA requests 8, 16, 32 or 64-bit transactions supported Multiple addressing modes for source/destination (fixed, increment, offset) Auto-initiation Power-management mode Memory Protection with four configurable memory regions System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.16.2 Default DMA Request Map The DMA module on this microcontroller has 16 channels and up to 32 hardware DMA requests. The module contains DREQASIx registers which are used to map the DMA requests to the DMA channels. By default, channel 0 is mapped to request 0, channel 1 to request 1, and so on. Some DMA requests have multiple sources, as shown in Table 4-32. The application must ensure that only one of these DMA request sources is enabled at any time. Table 4-32. DMA Request Line Connection (1) (2) DMA Request Sources DMA Request MIBSPI1 MIBSPI1[1] (1) DMAREQ[0] MIBSPI1 MIBSPI1[0] (2) DMAREQ[1] SPI2 SPI2 receive DMAREQ[2] SPI2 SPI2 transmit DMAREQ[3] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3 DMAREQ[4] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2 DMAREQ[5] DCAN1 / MIBSPI5 DCAN1 IF2 / MIBSPI5[2] DMAREQ[6] MIBADC1 / MIBSPI5 MIBADC1 event / MIBSPI5[3] DMAREQ[7] MIBSPI1 / MIBSPI3 / DCAN1 MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1 DMAREQ[8] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1 DMAREQ[9] MIBADC1 / I2C / MIBSPI5 MIBADC1 G1 / I2C receive / MIBSPI5[4] DMAREQ[10] MIBADC1 / I2C / MIBSPI5 MIBADC1 G2 / I2C transmit / MIBSPI5[5] DMAREQ[11] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6] DMAREQ[12] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7] DMAREQ[13] (1) MIBSPI3 / USB Device / MibADC2 / MIBSPI5 MIBSPI3[1] / USB_FUNC.DMATXREQ_ON[0] / MibADC2 event / MIBSPI5[6] DMAREQ[14] MIBSPI3 / USB Device / MIBSPI5 MIBSPI3[0] (2) / USB_FUNC.DMARXREQ_ON[0] / MIBSPI5[7] DMAREQ[15] MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2 MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1 DMAREQ[16] MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2 MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2 DMAREQ[17] RTI / USB Device / MIBSPI5 RTI DMAREQ2 / USB_FUNC.DMATXREQ_ON[1] / MIBSPI5[8] DMAREQ[18] RTI / USB Device / MIBSPI5 RTI DMAREQ3 / USB_FUNC.DMARXREQ_ON[1] / MIBSPI5[9] DMAREQ[19] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3 IF2 DMAREQ[20] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3 IF3 DMAREQ[21] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10] DMAREQ[22] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11] DMAREQ[23] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4 receive / MIBSPI5[12] DMAREQ[24] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4 transmit / MIBSPI5[13] DMAREQ[25] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12] DMAREQ[26] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13] DMAREQ[27] LIN / USB Device / MIBSPI5 LIN receive / USB_FUNC.DMATXREQ_ON[2] / MIBSPI5[14] DMAREQ[28] LIN / USB Device / MIBSPI5 LIN transmit / USB_FUNC.DMARXREQ_ON[2] / MIBSPI5[15] DMAREQ[29] MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[14] / MIBSPI3[14] / SCI receive / MIBSPI5[1] (1) DMAREQ[30] PRODUCT PREVIEW Modules SPI1, SPI3, SPI5 receive in compatibility mode SPI1, SPI3, SPI5 transmit in compatibility mode Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 95 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-32. DMA Request Line Connection (continued) Modules DMA Request Sources DMA Request MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[15] / MIBSPI3[15] / SCI transmit / MIBSPI5[0] (2) DMAREQ[31] PRODUCT PREVIEW 96 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.17 Real Time Interrupt Module The real-time interrupt (RTI) module provides timer functionality for operating systems and for benchmarking code. The RTI module can incorporate several counters that define the timebases needed for scheduling an operating system. The timers also allow you to benchmark certain areas of code by reading the values of the counters at the beginning and the end of the desired code range and calculating the difference between the values. 4.17.1 Features The RTI module has the following features: • Two independent 64 bit counter blocks • Four configurable compares for generating operating system ticks or DMA requests. Each event can be driven by either counter block 0 or counter block 1. • Fast enabling/disabling of events • Two time-stamp (capture) functions for system or peripheral interrupts, one for each counter block Figure 4-17 shows a high-level block diagram for one of the two 64-bit counter blocks inside the RTI module. Both the counter blocks are identical except the Network Time Unit (NTUx) inputs are only available as time base inputs for the counter block 0. 31 0 Compare up counter RTICLK NTU0 NTU1 NTU2 NTU3 0 Up counter RTIUCx RTICPUCx OVLINTx = 31 31 0 Free running counter RTIFRCx 31 0 31 0 Capture up counter Capture free running counter RTICAUCx RTICAFRCx CAP event source 0 CAP event source 1 To Compare Unit External control Figure 4-17. Counter Block Diagram Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 97 PRODUCT PREVIEW 4.17.2 Block Diagrams RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 31 0 Update compare RTIUDCPy + 31 0 Compare DMAREQy RTICOMPy From counter block 0 = INTy From counter block 1 Compare control Figure 4-18. Compare Block Diagram 4.17.3 Clock Source Options The RTI module uses the RTI1CLK clock domain for generating the RTI time bases. PRODUCT PREVIEW The application can select the clock source for the RTI1CLK by configuring the RCLKSRC register in the System module at address 0xFFFFFF50. The default source for RTI1CLK is VCLK. For more information on clock sources refer to Table 4-8 and Table 4-13. 4.17.4 Network Time Synchronization Inputs The RTI module supports 4 Network Time Unit (NTU) inputs that signal internal system events, and which can be used to synchronize the time base used by the RTI module. On this device, these NTU inputs are connected as shown below. Table 4-33. Network Time Synchronization Inputs 98 NTU Input Source 0 Reserved 1 Reserved 2 PLL2 Clock output 3 EXTCLKIN1 clock input System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.18 Error Signaling Module The Error Signaling Module (ESM) manages the various error conditions on the RM4x microcontroller. The error condition is handled based on a fixed severity level assigned to it. Any severe error condition can be configured to drive a low level on a dedicated device terminal called nERROR. This can be used as an indicator to an external monitor circuit to put the system into a safe state. 4.18.1 Features The features of the Error Signaling Module are: • 128 interrupt/error channels are supported, divided into 3 different groups – 64 channels with maskable interrupt and configurable error pin behavior – 32 error channels with non-maskable interrupt and predefined error pin behavior – 32 channels with predefined error pin behavior only • Error pin to signal severe device failure • Configurable timebase for error signal • Error forcing capability The Error Signaling Module (ESM) integrates all the device error conditions and groups them in the order of severity. Group1 is used for errors of the lowest severity while Group3 is used for errors of the highest severity. The device response to each error is determined by the severity group it is connected to. Table 4-35 shows the channel assignment for each group. Table 4-34. ESM Groups ERROR GROUP INTERRUPT CHARACTERISTICS INFLUENCE ON ERROR PIN Group1 maskable, low or high priority configurable Group2 non-maskable, high priority fixed Group3 no interrupt generated fixed Table 4-35. ESM Channel Assignments ERROR SOURCES GROUP CHANNELS Reserved Group1 0 MibADC2 - parity Group1 1 DMA - MPU Group1 2 DMA - parity Group1 3 Reserved Group1 4 DMA/DMM - imprecise read error Group1 5 FMC - correctable error: bus1 and bus2 interfaces (does not include accesses to EEPROM bank) Group1 6 N2HET1/N2HET2 - parity Group1 7 HET TU1/HET TU2 - parity Group1 8 HET TU1/HET TU2 - MPU Group1 9 PLL - Slip Group1 10 Clock Monitor - interrupt Group1 11 Reserved Group1 12 DMA/DMM - imprecise write error Group1 13 Reserved Group1 14 VIM RAM - parity Group1 15 Reserved Group1 16 MibSPI1 - parity Group1 17 Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 99 PRODUCT PREVIEW 4.18.2 ESM Channel Assignments RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-35. ESM Channel Assignments (continued) ERROR SOURCES GROUP CHANNELS MibSPI3 - parity Group1 18 MibADC1 - parity Group1 19 Reserved Group1 20 DCAN1 - parity Group1 21 DCAN3 - parity Group1 22 DCAN2 - parity Group1 23 MibSPI5 - parity Group1 24 Reserved Group1 25 RAM even bank (B0TCM) - correctable error Group1 26 CPU - selftest Group1 27 RAM odd bank (B1TCM) - correctable error Group1 28 PRODUCT PREVIEW Reserved Group1 29 DCC1 - error Group1 30 CCM-R4 - selftest Group1 31 Reserved Group1 32 Reserved Group1 33 Reserved Group1 34 FMC - correctable error (EEPROM bank access) Group1 35 FMC - uncorrectable error (EEPROM bank access) Group1 36 IOMM - Mux configuration error Group1 37 Power domain controller compare error Group1 38 Power domain controller self-test error Group1 39 eFuse Controller Error – this error signal is generated when any bit in the eFuse controller error status register is set. The application can choose to generate an interrupt whenever this bit is set to service any eFuse controller error conditions. Group1 40 eFuse Controller - Self Test Error. This error signal is generated only when a self test on the eFuse controller generates an error condition. When this error signal is set, group 1 channel 40 error signal will also be set. Group1 41 100 PLL2 - Slip Group1 42 Ethernet Controller master interface Group1 43 USB Host Controller master interface Group1 44 Reserved Group1 45 Reserved Group1 46 Reserved Group1 47 Reserved Group1 48 Reserved Group1 49 Reserved Group1 50 Reserved Group1 51 Reserved Group1 52 Reserved Group1 53 Reserved Group1 54 Reserved Group1 55 Reserved Group1 56 Reserved Group1 57 Reserved Group1 58 Reserved Group1 59 Reserved Group1 60 Reserved Group1 61 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com ERROR SOURCES GROUP CHANNELS DCC2 - error Group1 62 Reserved Group1 63 Reserved Group2 0 Reserved Group2 1 CCMR4 - compare Group2 2 Reserved Group2 3 FMC - uncorrectable error (address parity on bus1 accesses) Group2 4 Reserved Group2 5 RAM even bank (B0TCM) - uncorrectable error Group2 6 Reserved Group2 7 RAM odd bank (B1TCM) - uncorrectable error Group2 8 Reserved Group2 9 RAM even bank (B0TCM) - address bus parity error Group2 10 Reserved Group2 11 RAM odd bank (B1TCM) - address bus parity error Group2 12 Reserved Group2 13 Reserved Group2 14 Reserved Group2 15 Flash (ATCM) - ECC live lock detect Group2 16 Reserved Group2 17 Reserved Group2 18 Reserved Group2 19 Reserved Group2 20 Reserved Group2 21 Reserved Group2 22 Reserved Group2 23 RTI_WWD_NMI Group2 24 Reserved Group2 25 Reserved Group2 26 Reserved Group2 27 Reserved Group2 28 Reserved Group2 29 Reserved Group2 30 Reserved Group2 31 Reserved Group3 0 eFuse Controller - autoload error Group3 1 Reserved Group3 2 RAM even bank (B0TCM) - ECC uncorrectable error Group3 3 Reserved Group3 4 RAM odd bank (B1TCM) - ECC uncorrectable error Group3 5 Reserved Group3 6 FMC - uncorrectable error: bus1 and bus2 interfaces (does not include address parity error and errors on accesses to EEPROM bank) Group3 7 Reserved Group3 8 Reserved Group3 9 Reserved Group3 10 Reserved Group3 11 Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 PRODUCT PREVIEW Table 4-35. ESM Channel Assignments (continued) 101 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-35. ESM Channel Assignments (continued) PRODUCT PREVIEW 102 ERROR SOURCES GROUP CHANNELS Reserved Group3 12 Reserved Group3 13 Reserved Group3 14 Reserved Group3 15 Reserved Group3 16 Reserved Group3 17 Reserved Group3 18 Reserved Group3 19 Reserved Group3 20 Reserved Group3 21 Reserved Group3 22 Reserved Group3 23 Reserved Group3 24 Reserved Group3 25 Reserved Group3 26 Reserved Group3 27 Reserved Group3 28 Reserved Group3 29 Reserved Group3 30 Reserved Group3 31 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.19 Reset / Abort / Error Sources Table 4-36. Reset/Abort/Error Sources ERROR SOURCE SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel CPU TRANSACTIONS Precise write error (NCNB/Strongly Ordered) User/Privilege Precise Abort (CPU) n/a Precise read error (NCB/Device or Normal) User/Privilege Precise Abort (CPU) n/a Imprecise write error (NCB/Device or Normal) User/Privilege Imprecise Abort (CPU) n/a User/Privilege Undefined Instruction Trap (CPU) (1) n/a User/Privilege Abort (CPU) n/a User/Privilege ESM 1.26 B0 TCM (even) ECC double error (non-correctable) User/Privilege Abort (CPU), ESM => nERROR 3.3 B0 TCM (even) uncorrectable error (i.e. redundant address decode) User/Privilege ESM => NMI 2.6 B0 TCM (even) address bus parity error User/Privilege ESM => NMI 2.10 B1 TCM (odd) ECC single error (correctable) User/Privilege ESM 1.28 B1 TCM (odd) ECC double error (non-correctable) User/Privilege Abort (CPU), ESM => nERROR 3.5 B1 TCM (odd) uncorrectable error (i.e. redundant address decode) User/Privilege ESM => NMI 2.8 B1 TCM (odd) address bus parity error User/Privilege ESM => NMI 2.12 Illegal instruction MPU access violation B0 TCM (even) ECC single error (correctable) PRODUCT PREVIEW SRAM FLASH FMC correctable error - Bus1 and Bus2 interfaces (does not include accesses to EEPROM bank) User/Privilege ESM 1.6 FMC uncorrectable error - Bus1 accesses (does not include address parity error) User/Privilege Abort (CPU), ESM => nERROR 3.7 FMC uncorrectable error - Bus2 accesses (does not include address parity error and EEPROM bank accesses) User/Privilege ESM => nERROR 3.7 FMC uncorrectable error - address parity error on Bus1 accesses User/Privilege ESM => NMI 2.4 FMC correctable error - Accesses to EEPROM bank User/Privilege ESM 1.35 User/Privilege ESM 1.36 FMC uncorrectable error - Accesses to EEPROM bank DMA TRANSACTIONS External imprecise error on read (Illegal transaction with ok response) User/Privilege ESM 1.5 External imprecise error on write (Illegal transaction with ok response) User/Privilege ESM 1.13 Memory access permission violation User/Privilege ESM 1.2 User/Privilege ESM 1.3 Memory parity error DMM TRANSACTIONS External imprecise error on read (Illegal transaction with ok response) User/Privilege ESM 1.5 External imprecise error on write (Illegal transaction with ok response) User/Privilege ESM 1.13 HET TU1 (HTU1) NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt => VIM n/a External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt => VIM n/a Memory access permission violation User/Privilege ESM 1.9 (1) The Undefined Instruction TRAP is NOT detectable outside the CPU. The trap is taken only if the instruction reaches the execute stage of the CPU. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 103 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-36. Reset/Abort/Error Sources (continued) ERROR SOURCE Memory parity error SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel User/Privilege ESM 1.8 HET TU2 (HTU2) NCNB (Strongly Ordered) transaction with slave error response User/Privilege Interrupt => VIM n/a External imprecise error (Illegal transaction with ok response) User/Privilege Interrupt => VIM n/a Memory access permission violation User/Privilege ESM 1.9 Memory parity error User/Privilege ESM 1.8 ESM 1.7 ESM 1.7 ESM 1.43 ESM 1.44 N2HET1 Memory parity error User/Privilege N2HET2 Memory parity error User/Privilege ETHERNET MASTER INTERFACE Any error reported by slave being accessed User/Privilege USB HOST CONTROLLER (OHCI) MASTER INTERFACE Any error reported by slave being accessed User/Privilege MIBSPI PRODUCT PREVIEW MibSPI1 memory parity error User/Privilege ESM 1.17 MibSPI3 memory parity error User/Privilege ESM 1.18 MibSPI5 memory parity error User/Privilege ESM 1.24 User/Privilege ESM 1.19 User/Privilege ESM 1.1 MIBADC MibADC1 Memory parity error MibADC2 Memory parity error DCAN DCAN1 memory parity error User/Privilege ESM 1.21 DCAN2 memory parity error User/Privilege ESM 1.23 DCAN3 memory parity error User/Privilege ESM 1.22 PLL PLL slip error User/Privilege ESM 1.10 PLL #2 slip error User/Privilege ESM 1.42 ESM 1.11 CLOCK MONITOR Clock monitor interrupt User/Privilege DCC DCC1 error User/Privilege ESM 1.30 DCC2 error User/Privilege ESM 1.62 CCM-R4 Self test failure User/Privilege ESM 1.31 Compare failure User/Privilege ESM => NMI 2.2 ESM 1.15 Reset n/a ESM 1.27 ESM 1.37 VIM Memory parity error User/Privilege VOLTAGE MONITOR VMON out of voltage range n/a CPU SELFTEST (LBIST) CPU Selftest (LBIST) error User/Privilege PIN MULTIPLEXING CONTROL Mux configuration error User/Privilege POWER DOMAIN CONTROL PSCON compare error User/Privilege ESM 1.38 PSCON self-test error User/Privilege ESM 1.39 104 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-36. Reset/Abort/Error Sources (continued) ERROR SOURCE SYSTEM MODE ERROR RESPONSE ESM HOOKUP group.channel eFuse Controller eFuse Controller error User/Privilege ESM 3.1 eFuse Controller - Any bit set in the error status register User/Privilege ESM 1.40 User/Privilege ESM 1.41 ESM 2.24 eFuse Controller self-test error WINDOWED WATCHDOG WWD Non-Maskable Interrupt exception n/a ERRORS REFLECTED IN THE SYSESR REGISTER Power-Up Reset n/a Reset n/a Oscillator fail / PLL slip (2) n/a Reset n/a Watchdog exception n/a Reset n/a CPU Reset (driven by the CPU STC) n/a Reset n/a Software Reset n/a Reset n/a External Reset n/a Reset n/a Oscillator fail/PLL slip can be configured in the system register (SYS.PLLCTL1) to generate a reset. 4.20 Digital Windowed Watchdog This device includes a digital windowed watchdog (DWWD) module that protects against runaway code execution. The DWWD module allows the application to configure the time window within which the DWWD module expects the application to service the watchdog. A watchdog violation occurs if the application services the watchdog outside of this window, or fails to service the watchdog at all. The application can choose to generate a system reset or a non-maskable interrupt to the CPU in case of a watchdog violation. The watchdog is disabled by default and must be enabled by the application. Once enabled, the watchdog can only be disabled upon a system reset. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 105 PRODUCT PREVIEW (2) RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21 Debug Subsystem 4.21.1 Block Diagram The device contains an ICEPICK module to allow JTAG access to the scan chains. Boundary Scan I/F TRST TMS TCK RTCK TDI TDO Boundary Scan BSR/BSDL Debug ROM1 Debug APB Secondary Tap 0 DAP APB Mux AHB-AP APB slave POM PRODUCT PREVIEW ICEPICK_C to SCR1 via A2A Cortex R4F from PCR1/Bridge ETM TPIU RTP TAP 0 Secondary Tap 1 DMM TAP 1 Secondary Tap 2 AJSM Figure 4-19. ZWT Debug Subsystem Block Diagram 4.21.2 Debug Components Memory Map Table 4-37. Debug Components Memory Map MODULE NAME FRAME CHIP SELECT CoreSight Debug ROM FRAME ADDRESS RANGE FRAME ACTUA SIZE L SIZE RESPNSE FOR ACCESS TO UNIMPLEMENTED LOCATIONS IN FRAME START END CSCS0 0xFFA0_0000 0xFFA0_0FFF 4KB 4KB Reads return zeros, writes have no effect Cortex-R4F Debug CSCS1 0xFFA0_1000 0xFFA0_1FFF 4KB 4KB Reads return zeros, writes have no effect ETM-R4 CSCS2 0xFFA0_2000 0xFFA0_2FFF 4KB 4KB Reads return zeros, writes have no effect CoreSight TPIU CSCS3 0xFFA0_3000 0xFFA0_3FFF 4KB 4KB Reads return zeros, writes have no effect 106 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.3 JTAG Identification Code The JTAG ID code for this device is 0x0D8A002F. This is the same as the device ICEPick Identification Code. 4.21.4 Debug ROM The Debug ROM stores the location of the components on the Debug APB bus: Table 4-38. Debug ROM table DESCRIPTION VALUE 0x000 pointer to Cortex-R4F 0x0000 1003 0x001 ETM-R4 0x0000 2003 0x002 TPIU 0x0000 3003 0x003 POM 0x0000 4003 0x004 end of table 0x0000 0000 PRODUCT PREVIEW ADDRESS Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 107 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.5 JTAG Scan Interface Timings Table 4-39. JTAG Scan Interface Timing (1) No. Parameter fTCK fRTCK 1 td(TCK -RTCK) 2 tsu(TDI/TMS - RTCKr) 3 th(RTCKr -TDI/TMS) 4 th(RTCKr -TDO) 5 td(TCKf -TDO) (1) Min TCK frequency (at HCLKmax) RTCK frequency (at TCKmax and HCLKmax) MAX Unit 12 MHz 10 Delay time, TCK to RTCK MHz 24 ns Setup time, TDI, TMS before RTCK rise (RTCKr) 15 ns Hold time, TDI, TMS after RTCKr 0 ns Hold time, TDO after RTCKf 0 Delay time, TDO valid after RTCK fall (RTCKf) ns 10 ns Timings for TDO are specified for a maximum of 50pF load on TDO TCK RTCK PRODUCT PREVIEW 1 1 TMS TDI 2 3 TDO 4 5 Figure 4-20. JTAG Timing 108 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.6 Advanced JTAG Security Module This device includes a an Advanced JTAG Security Module (AJSM). which provides maximum security to the device’s memory content by allowing users to secure the device after programming. Flash Module Output H L H ... ... L Unlock By Scan Register Internal Tie-Offs (example only) L L H H L H H L H H L L UNLOCK 128-bit comparator Internal Tie-Offs (example only) H L L H H L L H Figure 4-21. AJSM Unlock The device is unsecure by default by virtue of a 128-bit visible unlock code programmed in the OTP address 0xF0000000.The OTP contents are XOR-ed with the "Unlock By Scan" register contents. The outputs of these XOR gates are again combined with a set of secret internal tie-offs. The output of this combinational logic is compared against a secret hard-wired 128-bit value. A match results in the UNLOCK signal being asserted, so that the device is now unsecure. A user can secure the device by changing at least one bit in the visible unlock code from 1 to 0. Changing a 0 to 1 is not possible since the visible unlock code is stored in the One Time Programmable (OTP) flash region. Also, changing all the 128 bits to zeros is not a valid condition and will permanently secure the device. Once secured, a user can unsecure the device by scanning an appropriate value into the "Unlock By Scan" register of the AJSM module. The value to be scanned is such that the XOR of the OTP contents and the Unlock-By-Scan register contents results in the original visible unlock code. The Unlock-By-Scan register is reset only upon asserting power-on reset (nPORRST). A secure device only permits JTAG accesses to the AJSM scan chain via the Secondary Tap # 2 of the ICEPick module. All other secondary taps, test taps and the boundary scan interface are not accessible in this state. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 109 PRODUCT PREVIEW OTP Contents (example) RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.7 Embedded Trace Macrocell (ETM-R4) The device contains a ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected to a TPIU with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data, 3-bit control) external interface for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification; for more details see ARM CoreSight ETM-R4 TRM specification. 4.21.7.1 ETM TRACECLKIN Selection The ETM clock source can be selected as either VCLK or the external ETMTRACECLKIN pin. The selection is done by the EXTCTRLOUT[1:0] control bits of the TPIU; the default is '00'. The address of this register is TPIU base address + 0x404. Before you begin accessing TPIU registers, TPIU should be unlocked via coresight key and 1 or 2 should be written to this register. Table 4-40. TPIU / TRACECLKIN Selection EXTCTRLOUT[1:0] TPIU/TRACECLKIN 00 tied-zero PRODUCT PREVIEW 01 VCLK 10 ETMTRACECLKIN 11 tied-zero 4.21.7.2 Timing Specifications tl(ETM) tr(ETM) th(ETM) tf(ETM) tcyc(ETM) Figure 4-22. ETMTRACECLKOUT Timing Table 4-41. ETMTRACECLK Timing Parameter tcyc(ETM) MIN t(HCLK) * 4 Description Clock period tl(ETM) 20ns Low pulse width th(ETM) 20ns High pulse width tr(ETM) 3ns Clock and data rise time tf(ETM) 3ns Clock and data fall time 110 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com ETMTRACECLK ETMDATA tsu(ETM) th(ETM) tsu(ETM) th(ETM) Figure 4-23. ETMDATA Timing Table 4-42. ETMDATA Timing Parameter MIN Description tsu(ETM) 2.5ns Data setup time th(ETM) 1.5ns Data hold time NOTE PRODUCT PREVIEW The ETMTRACECLK and ETMDATA timing is based on a 15pF load and for ambient temperature lower than 85°C. Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 111 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.8 RAM Trace Port (RTP) The RTP provides the ability to datalog the RAM contents of the RM4x devices or accesses to peripherals without program intrusion. It can trace all data write or read accesses to internal RAM. In addition, it provides the capability to directly transfer data to a FIFO to support a CPU-controlled transmission of the data. The trace data is transmitted over a dedicated external interface. 4.21.8.1 Features PRODUCT PREVIEW The RTP offers the following features: • Two modes of operation - Trace Mode and Direct Data Mode – Trace Mode • Non-intrusive data trace on write or read operation • Visibility of RAM content at any time on external capture hardware • Trace of peripheral accesses • 2 configurable trace regions for each RAM module to limit amount of data to be traced • FIFO to store data and address of data of multiple read/write operations • Trace of CPU and/or DMA accesses with indication of the master in the transmitted data packet – Direct Data Mode • Directly write data with the CPU or trace read operations to a FIFO, without transmitting header and address information • Dedicated synchronous interface to transmit data to external devices • Free-running clock generation or clock stop mode between transmissions • Up to 100 Mbit per sec/pin transfer rate for transmitting data • Pins not used in functional mode can be used as GIOs 4.21.8.2 Timing Specifications tl(RTP) tr th(RTP) tf tcyc(RTP) Figure 4-24. RTPCLK Timing Table 4-43. RTPCLK Timing Parameter tcyc(RTP) MIN Description tc(HCLK) * 2 Clock period, prescaled from HCLK; must not be faster than HCLK / 2 th(RTP) ((tcyc(RTP))/2) - ((tr+tf)/2) High pulse width tl(RTP) ((tcyc(RTP))/2) - ((tr+tf)/2) Low pulse width 112 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com tssu(RTP) tsh(RTP) RTPSYNC RTPCLK RTPDATA tdsu(RTP) tdh(RTP) Figure 4-25. RTPDATA Timing Table 4-44. RTPDATA Timing MIN Description 3ns Data setup time tdh(RTP) 2ns Data hold time tssu(RTP) 3ns SYNC setup time tsh(RTP) 2ns SYNC hold time tena(RTP) tdis(RTP) 1 2 3 4 d1 d2 d3 PRODUCT PREVIEW Parameter tdsu(RTP) 5 6 7 8 9 10 11 12 13 14 15 16 HCLK HCLK RTPCLK RTPCLK RTPnENA RTPENA RTPSYNC RTPSYNC RTPDATA RTPDATA d4 d5 d6 d7 d8 Divide by 1 Figure 4-26. RTPnENA timing Table 4-45. RTPnENA timing Parameter MIN tdis(RTP) 3tc(HCLK) + tr(RTPSYNC) + 12ns tena(RTP) 4tc(HCLK) + tr(RTPSYNC) Copyright © 2011, Texas Instruments Incorporated MAX Description time RTPnENA must go high before what would be the next RTPSYNC, to guarantee delaying the next packet 5tc(HCLK) + tr(RTPSYNC) + 12ns time after RTPnENA goes low before a packet that has been halted, resumes System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 113 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.9 Data Modification Module (DMM) The Data Modification Module (DMM) provides the capability to modify data in the entire 4 GB address space of the RM4x devices from an external peripheral, with minimal interruption of the application. 4.21.9.1 Features The DMM module has the following features: • Acts as a bus master, thus enabling direct writes to the 4GB address space without CPU intervention • Writes to memory locations specified in the received packet (leverages packets defined by trace mode of the RAM trace port (RTP) module • Writes received data to consecutive addresses, which are specified by the DMM module (leverages packets defined by direct data mode of RTP module) • Configurable port width (1, 2, 4, 8, 16 pins) • Up to 100 Mbit/s pin data rate • Unused pins configurable as GIO pins 4.21.9.2 Timing Specifications PRODUCT PREVIEW tl(DMM) tr th(DMM) tf tcyc(DMM) Figure 4-27. DMMCLK Timing Table 4-46. DMMCLK Timing Parameter tcyc(DMM) MIN Description tc(HCLK) * 2 Clock period th(DMM) ((tcyc(DMM))/2) - ((tr+tf)/2) High pulse width tl(DMM) ((tcyc(DMM))/2) - ((tr+tf)/2) Low pulse width tssu(DMM) tsh(DMM) DMMSYNC DMMCLK DMMDATA tdsu(DMM) tdh(DMM) Figure 4-28. DMMDATA Timing 114 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 4-47. DMMDATA Timing Parameter MIN Description tssu(DMM) 2ns SYNC active to clk falling edge setup time tsh(DMM) 3ns clk falling edge to SYNC deactive hold time tdsu(DMM) 2ns DATA to clk falling edge setup time tdh(DMM) 3ns clk falling edge to DATA hold time HCLK DMMCLK DMMSYNC DMMDATA D00 D01 D10 D11 D20 D21 D30 D31 D40 D41 D50 DMMnENA Figure 4-29 shows a case with 1 DMM packet per 2 DMMCLK cycles (Mode = Direct Data Mode, data width = 8, portwidth = 4) where none of the packets received by the DMM are sent out, leading to filling up of the internal buffers. The DMMnENA signal is shown asserted, after the first two packets have been received and synchronised to the HCLK domain. Here, the DMM has the capacity to accept packets D4x, D5x, D6x, D7x. Packet D8 would result in an overflow. Once DMMnENA is asserted, the DMM expects to stop receiving packets after 4 HCLK cycles; once DMMnENA is de-asserted, the DMM can handle packets immediately (after 0 HCLK cycles). Copyright © 2011, Texas Instruments Incorporated System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 115 PRODUCT PREVIEW Figure 4-29. DMMnENA Timing RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 4.21.10 Boundary Scan Chain The device supports BSDL-compliant boundary scan for testing pin-to-pin compatibility. The boundary scan chain is connected to the Boundary Scan Interface of the ICEPICK module. Device Pins (conceptual) RTCK TDI TDO IC E P ICK TRST TMS TCK Boundary Scan Interface Boundary Scan TDI TDO BSDL Figure 4-30. Boundary Scan Implementation (Conceptual Diagram) PRODUCT PREVIEW Data is serially shifted into all boundary-scan buffers via TDI, and out via TDO. 116 System Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5 Peripheral Information and Electrical Specifications 5.1 Peripheral Legend 5.2 Abbreviation Full Name MibADC Analog To Digital Converter CCM-R4F CPU Compare Module - CortexR4F CRC Cyclic Redundancy Check DCAN Controller Area Network DCC Dual Clock Comparator DMA Direct Memory Access DMM Data Modification Module EMIF External Memory Interface ESM Error Signaling Module ETM-R4F Embedded Trace Macrocell - CortexR4F GIO General-Purpose Input/Output HTU High End Timer Transfer Unit I2C Inter-Integrated Circuit LIN Local Interconnect Network MIBSPI Multibuffer Serial Peripheral Interface N2HET Platform High-End Timer POM Parameter Overlay Module RTI Real-Time Interrupt Module RTP RAM Trace Port SCI Serial Communications Interface SPI Serial Peripheral Interface USB Universal Serial Bus VIM Vectored Interrupt Manager PRODUCT PREVIEW Table 5-1. Peripheral Legend Multi-Buffered 12bit Analog-to-Digital Converter The multibuffered A-to-D converter (MibADC) has a separate power bus for its analog circuitry that enhances the A-to-D performance by preventing digital switching noise on the logic circuitry which could be present on VSS and VCC from coupling into the A-to-D analog stage. All A-to-D specifications are given with respect to ADREFLO unless otherwise noted. Table 5-2. MibADC Overview 5.2.1 Description Value Resolution 12 bits Monotonic Assured Output conversion code 00h to FFFh [00 for VAI ≤ ADREFLO; FFF for VAI ≥ ADREFHI] Features • • • • • • 10-/12-bit resolution ADREFHI and ADREFLO pins (high and low reference voltages) Total Sample/Hold/Convert time: 600ns Typical Minimum at 30MHz ADCLK One memory region per conversion group is available (event, group 1, group 2) Allocation of channels to conversion groups is completely programmable Memory regions are serviced either by interrupt or by DMA Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 117 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 • • • • • • • • 5.2.2 www.ti.com Programmable interrupt threshold counter is available for each group Programmable magnitude threshold interrupt for each group for any one channel Option to read either 8-bit, 10-bit or 12-bit values from memory regions Single or continuous conversion modes Embedded self-test Embedded calibration logic Enhanced power-down mode – Optional feature to automatically power down ADC core when no conversion is in progress External event pin (ADEVT) programmable as general-purpose I/O Event Trigger Options The ADC module supports 3 conversion groups: Event Group, Group1 and Group2. Each of these 3 groups can be configured to be hardware event-triggered. In that case, the application can select from among 8 event sources to be the trigger for a group's conversions. 5.2.2.1 Default MIBADC Event Trigger Hookup Table 5-3. MIBADC Event Trigger Hookup PRODUCT PREVIEW Event # Source Select Bits For G1, G2 Or Event (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) Trigger 1 000 ADEVT 2 001 HET[8] 3 010 HET[10] 4 011 RTI compare 0 interrupt 5 100 HET[12] 6 101 HET[14] 7 110 GIOB[0] 8 111 GIOB[1] NOTE For ADEVT, HET and GIOB trigger sources, the connection to the MibADC1 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring the function as output onto the pad, or by driving the function from an external trigger source as input. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. 5.2.2.2 Alternate MIBADC2 Event Trigger Hookup Table 5-4. Alternate MIBADC2 Event Trigger Hookup 118 Event # Source Select Bits for G1, G2 or Event (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) 1 000 AD2EVT 2 001 N2HET2[5] 3 010 N2HET1[27] 4 011 RTI compare 0 5 100 N2HET1[17] Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Trigger Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-4. Alternate MIBADC2 Event Trigger Hookup (continued) Event # Source Select Bits for G1, G2 or Event (G1SRC[2:0], G2SRC[2:0] or EVSRC[2:0]) Trigger 6 101 N2HET1[19] 7 110 N2HET1[11] 8 111 N2HET2[13] The selection between the default MIBADC2 event trigger hook-up versus the alternate event trigger hook-up is done by multiplexing control module register 30 bits 0 and 1. If 30[0] = 1, then the default MibADC2 event trigger hook-up is used. If 30[0] = 0 and 30[1] = 1, then the alternate MibADC2 event trigger hook-up is used. NOTE PRODUCT PREVIEW For AD2EVT trigger source, the connection to the MibADC2 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by configuring AD2EVT as an output function on to the pad (via the mux control), or by driving the AD2EVT signal from an external trigger source as input. If the mux control module is used to select different functionality instead of the AD2EVT signal, then care must be taken to disable AD2EVT from triggering conversions; there is no multiplexing on the input connections. NOTE For N2HETx trigger sources, the connection to the MibADC2 module trigger input is made from the input side of the output buffer (at the N2HETx module boundary). This way, a trigger condition can be generated even if the N2HETx signal is not selected to be output on the pad. NOTE For the RTI compare 0 interrupt source, the connection is made directly from the output of the RTI module. That is, the interrupt condition can be used as a trigger source even if the actual interrupt is not signaled to the CPU. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 119 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.2.3 www.ti.com ADC Electrical and Timing Specifications Table 5-5. MibADC Recommended Operating Conditions Parameter MIN MAX Unit ADREFHI A-to-D high-voltage reference source ADREFLO VCCAD V ADREFLO A-to-D low-voltage reference source VSSAD ADREFHI V VAI Analog input voltage ADREFLO ADREFHI V IAIC Analog input clamp current (VAI < VSSAD – 0.3 or VAI > VCCAD + 0.3) -2 2 mA Table 5-6. MibADC Electrical Characteristics Over Full Ranges of Recommended Operating Conditions (1) Parameter PRODUCT PREVIEW MAX Unit Rmux Analog input mux on-resistance See Figure 5-1 250 Ω Rsamp ADC sample switch on-resistance See Figure 5-1 250 Ω Cmux Input mux capacitance See Figure 5-1 16 pF Csamp ADC sample capacitance See Figure 5-1 13 pF IAIL Analog off-state input leakage current, for VCCAD = 3.6V maximum Off-state input leakage per ADC input pin VSSAD < VIN < VSSAD + 100mV 300 nA VSSAD + 100mV < VIN < VCCAD - 200mV 200 nA VCCAD - 200mV < VIN < VCCAD 500 nA VIN > VSSAD, VIN < VSSAD + 300mV 1 µA VIN > VSSAD + 300mV, VIN < VCCAD - 300mV 250 nA VIN > VCCAD - 300mV, VIN < VCCAD 1 µA IAIL Description/Conditions Analog off-state input leakage current, for VCCAD = 5.5V maximum Off-state input leakage per ADC input pin MIN Type IADREFHI ADREFHI input current ADREFHI = VCCAD, ADREFLO = VSSAD 3 mA ICCAD Static supply current Normal operating mode 15 mA ADC core in power down mode 5 µA (1) 120 1 LSB = (ADREFHI – ADREFLO)/ 212 for the MibADC Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Rext Pin VS1 Smux Rmux Smux Rmux 39*IAIL Cext On-State Leakage Rext Pin VS2 IAIL Cext IAIL IAIL Off-State Leakages Rext Pin Smux Rmux Ssamp Rsamp VS24 IAIL Csamp Cmux Cext IAIL IAIL PRODUCT PREVIEW Figure 5-1. MibADC Input Equivalent Circuit Table 5-7. MibADC Timing Specifications Parameter MIN NOM MAX Unit tc(ADCLK) (1) Cycle time, MibADC clock td(SH) (2) Delay time, sample and hold time td©) Delay time, conversion time 0.4 µs td(SHC) (3) Delay time, total sample/hold and conversion time 0.6 µs td©) Delay time, conversion time 0.33 µs td(SHC) (4) Delay time, total sample/hold and conversion time 0.53 µs 0.033 µs 0.2 µs 12-bit mode 10-bit mode (1) (2) (3) (4) The MibADC clock is the ADCLK, generated by dividing down the VCLK by a prescale factor defined by the ADCLOCKCR register bits 4:0. The sample and hold time for the ADC conversions is defined by the ADCLK frequency and the AD<GP>SAMP register for each conversion group. The sample time needs to be determined by accounting for the external impedance connected to the input channel as well as the ADC’s internal impedance. This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the prescale settings. This is the minimum sample/hold and conversion time that can be achieved. These parameters are dependent on many factors, e.g the prescale settings. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 121 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-8. MibADC Operating Characteristics Over Full Ranges of Recommended Operating Conditions Parameter Description/Conditions CR Conversion range over ADREFHI - ADREFLO which specified accuracy is maintained ZSET Zero Scale Offset FSET EDNL EINL PRODUCT PREVIEW ETOT 122 Full Scale Offset Differential nonlinearity error Integral nonlinearity error Total unadjusted error (after calibration) MIN 3 Type MAX Unit 5.5 V Difference between the first ideal transition (from code 000h to 001h) and the actual transition 10-bit mode 1 LSB 12-bit mode 2 LSB Difference between the range of the measured code transitions (from first to last) and the range of the ideal code transitions 10-bit mode 2 LSB 12-bit mode 3 LSB Difference between the actual step width and the ideal value. (See Figure 76) 10-bit mode ± 1.5 LSB 12-bit mode ±2 LSB Maximum deviation from the best straight line 10-bit through the MibADC. MibADC transfer mode characteristics, excluding the quantization 12-bit error. mode ±2 LSB ±2 LSB Maximum value of the difference between an analog value and the ideal midstep value. 10-bit mode ±2 LSB 12-bit mode ±4 LSB Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.2.4 Performance (Accuracy) Specifications 5.2.4.1 MibADC Nonlinearity Errors The differential nonlinearity error shown in Figure Figure 5-2 (sometimes referred to as differential linearity) is the difference between an actual step width and the ideal value of 1 LSB. 0 ... 110 0 ... 100 0 ... 011 PRODUCT PREVIEW Digital Output Code 0 ... 101 Differential Linearity Error (–½ LSB) 1 LSB 0 ... 010 Differential Linearity Error (–½ LSB) 0 ... 001 1 LSB 0 ... 000 0 1 3 4 2 Analog Input Value (LSB) 5 12 NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 Figure 5-2. Differential Nonlinearity (DNL) Error Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 123 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com The integral nonlinearity error shown in Figure Figure 5-3 (sometimes referred to as linearity error) is the deviation of the values on the actual transfer function from a straight line. 0 ... 111 0 ... 110 Ideal Transition Digital Output Code 0 ... 101 Actual Transition 0 ... 100 At Transition 011/100 (–½ LSB) 0 ... 011 PRODUCT PREVIEW 0 ... 010 End-Point Lin. Error 0 ... 001 At Transition 001/010 (–1/4 LSB) 0 ... 000 0 1 2 3 4 5 6 7 Analog Input Value (LSB) 12 NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 Figure 5-3. Integral Nonlinearity (INL) Error 124 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.2.4.2 MibADC Total Error The absolute accuracy or total error of an MibADC as shown in Figure Figure 5-4 is the maximum value of the difference between an analog value and the ideal midstep value. 0 ... 111 0 ... 110 0 ... 100 Total Error At Step 0 ... 101 (–1 1/4 LSB) 0 ... 011 PRODUCT PREVIEW Digital Output Code 0 ... 101 0 ... 010 Total Error At Step 0 ... 001 (1/2 LSB) 0 ... 001 0 ... 000 0 1 2 3 4 5 6 7 Analog Input Value (LSB) 12 NOTE A: 1 LSB = (ADREFHI – ADREFLO)/2 Figure 5-4. Absolute Accuracy (Total) Error Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 125 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.3 www.ti.com General-Purpose Input/Output The GPIO module on this device supports two ports, GIOA and GIOB. The I/O pins are bidirectional and bit-programmable. Both GIOA and GIOB support external interrupt capability. 5.3.1 Features PRODUCT PREVIEW The GPIO module has the following features: • Each IO pin can be configured as: – Input – Output – Open Drain • The interrupts have the following characteristics: – Programmable interrupt detection either on both edges or on a single edge (set in GIOINTDET) – Programmable edge-detection polarity, either rising or falling edge (set in GIOPOL register) – Individual interrupt flags (set in GIOFLG register) – Individual interrupt enables, set and cleared through GIOENASET and GIOENACLR registers respectively – Programmable interrupt priority, set through GIOLVLSET and GIOLVLCLR registers • Internal pullup/pulldown allows unused I/O pins to be left unconnected For information on input and output timings see Section 3.8 and Section 3.9 126 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.4 Enhanced High-End Timer (N2HET) The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O.. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. Features The N2HET module has the following features: • Programmable timer for input and output timing functions • Reduced instruction set (30 instructions) for dedicated time and angle functions • 160 words of instruction RAM protected by parity • User defined number of 25-bit virtual counters for timer, event counters and angle counters • 7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual counters • Up to 32 pins usable for input signal measurements or output signal generation • Programmable suppression filter for each input pin with adjustable limiting frequency • Low CPU overhead and interrupt load • Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU) or DMA • Diagnostic capabilities with different loopback mechanisms and pin status readback functionality 5.4.2 N2HET RAM Organization The timer RAM uses 4 RAM banks, where each bank has two port access capability. This means that one RAM address may be written while another address is read. The RAM words are 96-bits wide, which are split into three 32-bit fields (program, control, and data). 5.4.3 Input Timing Specifications The N2HET instructions PCNT and WCAP impose some timing constraints on the input signals. 1 NHETx 3 4 2 Figure 5-5. N2HET Input Capture Timings Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 127 PRODUCT PREVIEW 5.4.1 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-9. Dynamic Characteristics for the N2HET Input Capture Functionality MIN (1) PARAMETER (2) MAX (1) 25 (2) UNIT 1 Input signal period, PCNT or WCAP for rising edge to rising edge 2 (hr) (lr) tc(VCLK2) + 2 2 (hr) (lr) tc(VCLK2) - 2 ns 2 Input signal period, PCNT or WCAP for falling edge to falling edge 2 (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 3 Input signal high phase, PCNT or WCAP for rising edge to falling edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 4 Input signal low phase, PCNT or WCAP for falling edge to rising edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns (1) (2) hr = High-resolution prescaler, configured using the HRPFC field of the Prescale Factor Register (HETPFR). lr = Loop-resolution prescaler, configured using the LFPRC field of the Prescale Factor Register (HETPFR) Both N2HET1 and N2HET2 have three channels each that are enhanced to be able to capture inputs with smaller pulse widths than that specified in Table 5-9. These are N2HET1 channels 15, 20 and 31, and N2HET2 channels 12, 14 and 16. The input capture capability for these channels is specified in the following table. Table 5-10. Input Capture Capability for N2HET Channels with Enhancements PRODUCT PREVIEW PARAMETER MIN MAX UNIT 1 Input signal period, PCNT or WCAP for rising edge to rising edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 2 Input signal period, PCNT or WCAP for falling edge to falling edge (hr) (lr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 3 Input signal high phase, PCNT or WCAP for rising edge to falling edge 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 4 Input signal low phase, PCNT or WCAP for falling edge to rising edge 2 (hr) tc(VCLK2) + 2 225 (hr) (lr) tc(VCLK2) - 2 ns 5.4.4 N2HET1-N2HET2 Interconnections In some applications the N2HET resolutions must be synchronized. Some other applications require a single time base to be used for all PWM outputs and input timing captures. The N2HET provides such a synchronization mechanism. The Clk_master/slave (HETGCR.16) configures the N2HET in master or slave mode (default is slave mode). A N2HET in master mode provides a signal to synchronize the prescalers of the slave N2HET. The slave N2HET synchronizes its loop resolution to the loop resolution signal sent by the master. The slave does not require this signal after it receives the first synchronization signal. However, anytime the slave receives the re-synchronization signal from the master, the slave must synchronize itself again.. NHET1 EXT_LOOP_SYNC NHET_LOOP_SYNC NHET2 NHET_LOOP_SYNC EXT_LOOP_SYNC Figure 5-6. N2HET1 – N2HET2 Synchronization Hookup 5.4.5 N2HET Checking 5.4.5.1 Internal Monitoring To assure correctness of the high-end timer operation and output signals, the two N2HET modules can be used to monitor each other’s signals as shown in Figure 5-7. The direction of the monitoring is controlled by the I/O multiplexing control module. 128 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com NHET1[1,3,5,7,9,11] IOMM mux control signal x NHET1[1,3,5,7,9,11] / NHET2[8,10,12,14,16,18] NHET1 NHET2[8,10,12,14,16,18] NHET2 Figure 5-7. N2HET Monitoring 5.4.5.2 Output Monitoring using Dual Clock Comparator (DCC) N2HET1[31] is connected as a clock source for counter 1 in DCC1. This allows the application to measure the frequency of the pulse-width modulated (PWM) signal on N2HET1[31]. Both N2HET1[31] and N2HET2[0] can be configured to be internal-only channels. That is, the connection to the DCC module is made directly from the output of the N2HETx module (from the input of the output buffer). For more information on DCC see Section 4.7.3. 5.4.6 Disabling N2HET Outputs Some applications require the N2HET outputs to be disabled under some fault condition. The N2HET module provides this capability via the "Pin Disable" input signal. This signal, when driven low, causes the N2HET outputs identified by a programmable register (HETPINDIS) to be tri-stated. Please refer to the RM48x Technical Reference Manual (SPNU481) for more details on the "N2HET Pin Disable" feature. GIOA[5] is connected to the "Pin Disable" input for N2HET1, and GIOB[2] is connected to the "Pin Disable" input for N2HET2. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 129 PRODUCT PREVIEW Similarly, N2HET2[0] is connected as a clock source for counter 1 in DCC2. This allows the application to measure the frequency of the pulse-width modulated (PWM) signal on N2HET2[0]. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.4.7 www.ti.com High-End Timer Transfer Unit (HET-TU) A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU. 5.4.7.1 • • • • • • • • • 5.4.7.2 Features CPU and DMA independent Master Port to access system memory 8 control packets supporting dual buffer configuration Control packet information is stored in RAM protected by parity Event synchronization (HET transfer requests) Supports 32 or 64 bit transactions Addressing modes for HET address (8 byte or 16 byte) and system memory address (fixed, 32 bit or 64bit) One shot, circular and auto switch buffer transfer modes Request lost detection Trigger Connections PRODUCT PREVIEW Table 5-11. HET TU1 Request Line Connection Modules Request Source HET TU1 Request N2HET1 HTUREQ[0] HET TU1 DCP[0] N2HET1 HTUREQ[1] HET TU1 DCP[1] N2HET1 HTUREQ[2] HET TU1 DCP[2] N2HET1 HTUREQ[3] HET TU1 DCP[3] N2HET1 HTUREQ[4] HET TU1 DCP[4] N2HET1 HTUREQ[5] HET TU1 DCP[5] N2HET1 HTUREQ[6] HET TU1 DCP[6] N2HET1 HTUREQ[7] HET TU1 DCP[7] Table 5-12. HET TU2 Request Line Connection 130 Modules Request Source HET TU2 Request N2HET2 HTUREQ[0] HET TU2 DCP[0] N2HET2 HTUREQ[1] HET TU2 DCP[1] N2HET2 HTUREQ[2] HET TU2 DCP[2] N2HET2 HTUREQ[3] HET TU2 DCP[3] N2HET2 HTUREQ[4] HET TU2 DCP[4] N2HET2 HTUREQ[5] HET TU2 DCP[5] N2HET2 HTUREQ[6] HET TU2 DCP[6] N2HET2 HTUREQ[7] HET TU2 DCP[7] Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.5 Controller Area Network (DCAN) The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or multiplexed wiring. 5.5.1 Features PRODUCT PREVIEW Features of the DCAN module include: • Supports CAN protocol version 2.0 part A, B • Bit rates up to 1 MBit/s • The CAN kernel can be clocked by the oscillator for baud-rate generation. • 64 mailboxes on each DCAN • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loop-back modes for self-test operation • Automatic bus on after Bus-Off state by a programmable 32-bit timer • Message RAM protected by parity • Direct access to Message RAM during test mode • CAN Rx / Tx pins configurable as general purpose IO pins • Message RAM Auto Initialization • DMA support For more information on the DCAN see the RM48x Technical Reference Manual (SPNU481). 5.5.2 Electrical and Timing Specifications Table 5-13. Dynamic Characteristics for the DCANx TX and RX pins MAX Unit td(CANnTX) Delay time, transmit shift register to CANnTX pin (1) Parameter 15 ns td(CANnRX) Delay time, CANnRX pin to receive shift register 5 ns (1) MIN These values do not include rise/fall times of the output buffer. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 131 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.6 www.ti.com Local Interconnect Network Interface (LIN) The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a K-line. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-master/multiple-slave with a message identification for multi-cast transmission between any network nodes. 5.6.1 LIN Features PRODUCT PREVIEW The following are features of the LIN module: • Compatible to LIN 1.3, 2.0 and 2.1 protocols • Multi-buffered receive and transmit units DMA capability for minimal CPU intervention • Identification masks for message filtering • Automatic Master Header Generation – Programmable Synch Break Field – Synch Field – Identifier Field • Slave Automatic Synchronization – Synch break detection – Optional baudrate update – Synchronization Validation • 231 programmable transmission rates with 7 fractional bits • Error detection • 2 Interrupt lines with priority encoding 132 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Serial Communication Interface (SCI) 5.7.1 Features • • • • • • • • • • • Standard universal asynchronous receiver-transmitter (UART) communication Supports full- or half-duplex operation Standard nonreturn to zero (NRZ) format Double-buffered receive and transmit functions Configurable frame format of 3 to 13 bits per character based on the following: – Data word length programmable from one to eight bits – Additional address bit in address-bit mode – Parity programmable for zero or one parity bit, odd or even parity – Stop programmable for one or two stop bits Asynchronous or isosynchronous communication modes Two multiprocessor communication formats allow communication between more than two devices. Sleep mode is available to free CPU resources during multiprocessor communication. The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection. Four error flags and Five status flags provide detailed information regarding SCI events. Capability to use DMA for transmit and receive data. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 133 PRODUCT PREVIEW 5.7 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.8 www.ti.com Inter-Integrated Circuit (I2C) The inter-integrated circuit (I2C) module is a multi-master communication module providing an interface between the RM4x microcontroller and devices compliant with Philips Semiconductor I2C-bus specification version 2.1 and connected by an I2C-bus. This module will support any slave or master I2C compatible device. 5.8.1 Features PRODUCT PREVIEW The I2C has the following features: • Compliance to the Philips I2C bus specification, v2.1 (The I2C Specification, Philips document number 9398 393 40011) – Bit/Byte format transfer – 7-bit and 10-bit device addressing modes – General call – START byte – Multi-master transmitter/ slave receiver mode – Multi-master receiver/ slave transmitter mode – Combined master transmit/receive and receive/transmit mode – Transfer rates of 10 kbps up to 400 kbps (Phillips fast-mode rate) • Free data format • Two DMA events (transmit and receive) • DMA event enable/disable capability • Seven interrupts that can be used by the CPU • Module enable/disable capability • The SDA and SCL are optionally configurable as general purpose I/O • Slew rate control of the outputs • Open drain control of the outputs • Programmable pullup/pulldown capability on the inputs • Supports Ignore NACK mode NOTE This I2C module does not support: • High-speed (HS) mode • C-bus compatibility mode • The combined format in 10-bit address mode (the I2C sends the slave address second byte every time it sends the slave address first byte) 134 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.8.2 I2C I/O Timing Specifications Table 5-14. I2C Signals (SDA and SCL) Switching Characteristics (1) Standard Mode Fast Mode Unit MIN MAX MIN MAX 75.2 149 75.2 149 tc(I2CCLK) Cycle time, Internal Module clock for I2C, prescaled from VCLK tc(SCL) Cycle time, SCL 10 2.5 ms tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 ms th(SCLL-SDAL) Hold time, SCL low after SDA low (for a repeated START condition) 4 0.6 ms tw(SCLL) Pulse duration, SCL low 4.7 1.3 ms tw(SCLH) Pulse duration, SCL high 4 0.6 ms tsu(SDA-SCLH) Setup time, SDA valid before SCL high 250 100 ns th(SDA-SCLL) Hold time, SDA valid after SCL low (for I2C bus devices) tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 ms tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 4.0 0.6 ms tw(SP) Pulse duration, spike (must be suppressed) Cb (1) (2) (3) (3) 0 3.45 (2) 0 ns 0.9 0 Capacitive load for each bus line 400 ms 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. The maximum th(SDA-SCLL) for I2C bus devices has only to be met if the device does not stretch the low period (tw(SCLL)) of the SCL signal. Cb = The total capacitance of one bus line in pF. SDA tw(SDAH) tsu(SDA-SCLH) tw(SCLL) tw(SP) tsu(SCLH-SDAH) tw(SCLH) tr(SCL) SCL tc(SCL) tf(SCL) th(SCLL-SDAL) th(SDA-SCLL) tsu(SCLH-SDAL) th(SCLL-SDAL) Stop Start Repeated Start Stop Figure 5-8. I2C Timings Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 135 PRODUCT PREVIEW Parameter RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com NOTE • • • • A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum th(SDA-SCLL) has only to be met if the device does not stretch the LOW period (tw(SCLL)) of the SCL signal. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH). Cb = total capacitance of one bus line in pF. If mixed with fast-mode devices, faster fall-times are allowed. PRODUCT PREVIEW 136 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.9 Multi-Buffered / Standard Serial Peripheral Interface The MibSPI is a high-speed synchronous serial input/output port that allows a serial bit stream of programmed length (2 to 16 bits) to be shifted in and out of the device at a programmed bit-transfer rate. Typical applications for the SPI include interfacing to external peripherals, such as I/Os, memories, display drivers, and analog-to-digital converters. 5.9.1 Features Both Standard and MibSPI modules have the following features: • 16-bit shift register • Receive buffer register • 8-bit baud clock generator, supports max up to 20Mhz baud rate • SPICLK can be internally-generated (master mode) or received from an external clock source (slave mode) • Each word transferred can have a unique format • SPI I/Os not used in the communication can be used as digital input/output signals MibSPIx/SPIx I/Os MibSPI1 MIBSPI1SIMO[1:0], MIBSPI1SOMI[1:0], MIBSPI1CLK, MIBSPI1nCS[5:0], MIBSPI1nENA MibSPI3 MIBSPI3SIMO, MIBSPI3SOMI, MIBSPI3CLK, MIBSPI3nCS[5:0], MIBSPI3nENA MibSPI5 MIBSPI5SIMO[3:0], MIBSPI5SOMI[3:0], MIBSPI5CLK, MIBSPI5nCS[3:0], MIBSPI5nENA SPI2 SPI2SIMO, ZSPI2SOMI, SPI2CLK, SPI2nCS[1:0], SPI2nENA SPI4 SPI4SIMO, SPI4SOMI, SPI4CLK, SPI4nCS[0], SPI4nENA 5.9.2 MibSPI Transmit and Receive RAM Organization The Multibuffer RAM is comprised of 128 buffers. Each entry in the Multibuffer RAM consists of 4 parts: a 16-bit transmit field, a 16-bit receive field, a 16-bit control field and a 16-bit status field. The Multibuffer RAM can be partitioned into multiple transfer group with variable number of buffers each. 5.9.3 MibSPI Transmit Trigger Events Each of the transfer groups can be configured individually. For each of the transfer groups a trigger event and a trigger source can be chosen. A trigger event can be for example a rising edge or a permanent low level at a selectable trigger source. For example, up to 15 trigger sources are available which can be utilized by each transfer group. These trigger options are listed in Table 5-16 and Section 5.9.3.2 for MibSPI1 and MibSPi3 respectively. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 137 PRODUCT PREVIEW Table 5-15. MibSPI/SPI Configurations RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 5.9.3.1 www.ti.com MIBSPI1 Event Trigger Hookup Table 5-16. MIBSPI1 Event Trigger Hookup PRODUCT PREVIEW Event # TGxCTRL TRIGSRC[3:0] Trigger Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 N2HET1[8] EVENT9 1010 N2HET1[10] EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Intern Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI1 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. NOTE For GIOx trigger sources, the connection to the MibSPI1 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin, or by driving the GIOx pin from an external trigger source. 5.9.3.2 MIBSPI3 Event Trigger Hookup Table 5-17. MIBSPI3 Event Trigger Hookup 138 Event # TGxCTRL TRIGSRC[3:0] Trigger Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 HET[8] EVENT9 1010 N2HET1[10] EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-17. MIBSPI3 Event Trigger Hookup (continued) Event # TGxCTRL TRIGSRC[3:0] Trigger EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Intern Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI3 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. NOTE For GIOx trigger sources, the connection to the MibSPI3 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin, or by driving the GIOx pin from an external trigger source. MIBSPI5 Event Trigger Hookup PRODUCT PREVIEW 5.9.3.3 Table 5-18. MIBSPI5 Event Trigger Hookup Event # TGxCTRL TRIGSRC[3:0] Trigger Disabled 0000 No trigger source EVENT0 0001 GIOA[0] EVENT1 0010 GIOA[1] EVENT2 0011 GIOA[2] EVENT3 0100 GIOA[3] EVENT4 0101 GIOA[4] EVENT5 0110 GIOA[5] EVENT6 0111 GIOA[6] EVENT7 1000 GIOA[7] EVENT8 1001 N2HET1[8] EVENT9 1010 N2HET1[10] EVENT10 1011 N2HET1[12] EVENT11 1100 N2HET1[14] EVENT12 1101 N2HET1[16] EVENT13 1110 N2HET1[18] EVENT14 1111 Intern Tick counter NOTE For N2HET1 trigger sources, the connection to the MibSPI5 module trigger input is made from the input side of the output buffer (at the N2HET1 module boundary). This way, a trigger condition can be generated even if the N2HET1 signal is not selected to be output on the pad. Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 139 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com NOTE For GIOx trigger sources, the connection to the MibSPI5 module trigger input is made from the output side of the input buffer. This way, a trigger condition can be generated either by selecting the GIOx pin as an output pin + selecting the pin to be a GIOx pin, or by driving the GIOx pin from an external trigger source. If the mux control module is used to select different functionality instead of the GIOx signal, then care must be taken to disable GIOx from triggering MibSPI5 transfers; there is no multiplexing on the input connections. PRODUCT PREVIEW 140 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.9.4 MibSPI/SPI Master Mode I/O Timing Specifications Table 5-19. SPI Master Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = output, SPISIMO = output, and SPISOMI = input) (1) (2) (3) 1 2 (5) 3 (5) 4 (5) 5 (5) 6 (5) 7 (5) 8 (6) 9 (6) (1) (2) (3) (4) (5) (6) Parameter MIN MAX Unit 40 256tc(VCLK) ns Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – tr(SPC)M – 3 0.5tc(SPC)M + 3 ns tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – tf(SPC)M – 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – tf(SPC)M – 3 0.5tc(SPC)M + 3 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – tr(SPC)M – 3 0.5tc(SPC)M + 3 td(SPCH-SIMO)M Delay time, SPISIMO valid before SPICLK low (clock polarity = 0) 0.5tc(SPC)M – 5 td(SPCL-SIMO)M Delay time, SPISIMO valid before SPICLK high (clock polarity = 1) 0.5tc(SPC)M – 5 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 0) 0.5tc(SPC)M – tf(SPC) – 3 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 1) 0.5tc(SPC)M – tr(SPC) – 3 tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 0) 0.5tf(SPC) + 2 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 1) 0.5tf(SPC) + 2 tc(SPC)M Cycle time, SPICLK (4) tw(SPCH)M ns ns ns ns th(SPCL-SOMI)M Hold time, SPISOMI data valid after SPICLK low (clock polarity = 0) 5 th(SPCH-SOMI)M Hold time, SPISOMI data valid after SPICLK high (clock polarity = 1) 5 tC2TDELAY Setup time CS active until SPICLK high (clock polarity = 0) CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) - tf(SPICS) + tr(SPC) – 15 (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3 CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) - tf(SPICS) + tr(SPC) – 15 (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3 Setup time CS active until SPICLK low (clock polarity = 1) CSHOLD = 0 C2TDELAY*tc(VCLK) + 2*tc(VCLK) - tf(SPICS) + tf(SPC) – 15 (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3 CSHOLD = 1 C2TDELAY*tc(VCLK) + 3*tc(VCLK) - tf(SPICS) + tf(SPC) – 15 (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3 Hold time SPICLK low CS until inactive (clock polarity = 0) 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) - 5 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tf(SPC) + tr(SPICS) + 8 ns Hold time SPICLK high until CS inactive (clock polarity = 1) 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) - 5 0.5*tc(SPC)M + T2CDELAY*tc(VCLK) + tc(VCLK) tr(SPC) + tr(SPICS) + 8 ns (C2TDELAY+1) * tc(VCLK) tf(SPICS) – 25 (C2TDELAY+1)*tc(VCLK) ns (C2TDELAY+2)*tc(VCLK) ns tT2CDELAY 10 tSPIENA SPIENAn Sample point 11 tSPIENAW SPIENAn Sample point from write to buffer ns ns ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set. tc(VCLK) = interface clock cycle time = 1 / f(VCLK) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns. The external load on the SPICLK pin must be less than 60pF. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 141 PRODUCT PREVIEW NO. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 SPISIMO 5 Master Out Data Is Valid 6 7 Master In Data Must Be Valid SPISOMI PRODUCT PREVIEW Figure 5-9. SPI Master Mode External Timing (CLOCK PHASE = 0) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 8 9 SPICSn 10 11 SPIENAn Figure 5-10. SPI Master Mode Chip Select Timing (CLOCK PHASE = 0) 142 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-20. SPI Master Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = output, SPISIMO = output, and SPISOMI = input) (1) (2) (3) Parameter MIN MAX Unit 40 256tc(VCLK) ns Pulse duration, SPICLK high (clock polarity = 0) 0.5tc(SPC)M – tr(SPC)M – 3 0.5tc(SPC)M + 3 ns tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 1) 0.5tc(SPC)M – tf(SPC)M – 3 0.5tc(SPC)M + 3 tw(SPCL)M Pulse duration, SPICLK low (clock polarity = 0) 0.5tc(SPC)M – tf(SPC)M – 3 0.5tc(SPC)M + 3 tw(SPCH)M Pulse duration, SPICLK high (clock polarity = 1) 0.5tc(SPC)M – tr(SPC)M – 3 0.5tc(SPC)M + 3 tv(SIMO-SPCH)M Valid time, SPICLK high after SPISIMO data valid (clock polarity = 0) 0.5tc(SPC)M – 5 tv(SIMO-SPCL)M Valid time, SPICLK low after SPISIMO data valid (clock polarity = 1) 0.5tc(SPC)M – 5 tv(SPCH-SIMO)M Valid time, SPISIMO data valid after SPICLK high (clock polarity = 0) 0.5tc(SPC)M – tr(SPC) – 3 tv(SPCL-SIMO)M Valid time, SPISIMO data valid after SPICLK low (clock polarity = 1) 0.5tc(SPC)M – tf(SPC) – 3 tsu(SOMI-SPCH)M Setup time, SPISOMI before SPICLK high (clock polarity = 0) tr(SPC) tsu(SOMI-SPCL)M Setup time, SPISOMI before SPICLK low (clock polarity = 1) tf(SPC) tv(SPCH-SOMI)M Valid time, SPISOMI data valid after SPICLK high (clock polarity = 0) 5 tv(SPCL-SOMI)M Valid time, SPISOMI data valid after SPICLK low (clock polarity = 1) 5 tC2TDELAY Setup time CS CSHOLD = 0 active until SPICLK high (clock polarity = 0) CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) – 15 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tr(SPC) + 3 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) – 15 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tr(SPC) + 3 Setup time CS active until SPICLK low (clock polarity = 1) CSHOLD = 0 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) – 15 0.5*tc(SPC)M + (C2TDELAY+2) * tc(VCLK) tf(SPICS) + tf(SPC) + 3 CSHOLD = 1 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) – 15 0.5*tc(SPC)M + (C2TDELAY+3) * tc(VCLK) tf(SPICS) + tf(SPC) + 3 Hold time SPICLK low CS until inactive (clock polarity = 0) T2CDELAY*tc(VCLK) + tc(VCLK) - tf(SPC) + tr(SPICS) 4 T2CDELAY*tc(VCLK) + tc(VCLK) - tf(SPC) + tr(SPICS) + 8 ns Hold time SPICLK high until CS inactive (clock polarity = 1) T2CDELAY*tc(VCLK) + tc(VCLK) - tr(SPC) + tr(SPICS) 4 T2CDELAY*tc(VCLK) + tc(VCLK) - tr(SPC) + tr(SPICS) + 8 ns (C2TDELAY+1)* tc(VCLK) tf(SPICS) – 25 (C2TDELAY+1)*tc(VCLK) ns (C2TDELAY+2)*tc(VCLK) ns 1 tc(SPC)M Cycle time, SPICLK (5) tw(SPCH)M 2 3 (5) 4 (5) 5 (5) 6 (5) 7 (5) 8 (6) 9 (6) tT2CDELAY (4) 10 tSPIENA SPIENAn Sample Point 11 tSPIENAW SPIENAn Sample point from write to buffer (1) (2) (3) (4) (5) (6) ns ns ns ns ns ns ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set. tc(VCLK) = interface clock cycle time = 1 / f(VCLK) For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. When the SPI is in Master mode, the following must be true: For PS values from 1 to 255: tc(SPC)M ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)M = 2tc(VCLK) ≥ 40ns. The external load on the SPICLK pin must be less than 60pF. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). C2TDELAY and T2CDELAY is programmed in the SPIDELAY register Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 143 PRODUCT PREVIEW NO. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 Master Out Data Is Valid SPISIMO 6 Data Valid 7 Master In Data Must Be Valid SPISOMI PRODUCT PREVIEW Figure 5-11. SPI Master Mode External Timing (CLOCK PHASE = 1) Write to buffer SPICLK (clock polarity=0) SPICLK (clock polarity=1) SPISIMO Master Out Data Is Valid 8 9 SPICSn 10 11 SPIENAn Figure 5-12. SPI Master Mode Chip Select Timing (CLOCK PHASE = 1) 144 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.9.5 SPI Slave Mode I/O Timings Table 5-21. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 0, SPICLK = input, SPISIMO = input, and SPISOMI = output) (1) (2) (3) (4) 1 2 (6) 3 (6) 4 (6) 5 (6) 6 (6) 7 (6) 8 9 (1) (2) (3) (4) (5) (6) Parameter MIN MAX Unit tc(SPC)S Cycle time, SPICLK (5) 40 256tc(VCLK) ns tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14 td(SPCH-SOMI)S Delay time, SPISOMI valid after SPICLK high (clock polarity = 0) trf(SOMI) + 18 td(SPCL-SOMI)S Delay time, SPISOMI valid after SPICLK low (clock polarity = 1) trf(SOMI) + 18 th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock polarity =0) 2 th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock polarity =1) 2 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 0) 2 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 1) 2 th(SPCL-SIMO)S Hold time, SPISIMO data valid after SPICLK low (clock polarity = 0) 2 th(SPCH-SIMO)S Hold time, SPISIMO data valid after S PICLK high (clock polarity = 1) 2 td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock polarity = 0) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high (clock polarity = 1) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data has been written to the SPI buffer) tf(ENAn) tc(VCLK)+tf(ENAn)+1 4 ns ns ns ns ns ns ns ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set. If the SPI is in slave mode, the following must be true: tc(SPC)S ≥ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8]. For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. tc(VCLK) = interface clock cycle time = 1 /f(VCLK) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 145 PRODUCT PREVIEW NO. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 SPISOMI Data Is Valid SPISOMI 6 7 SPISIMO Data Must Be Valid SPISIMO PRODUCT PREVIEW Figure 5-13. SPI Slave Mode External Timing (CLOCK PHASE = 0) SPICLK (clock polarity=0) SPICLK (clock polarity=1) 8 SPIENAn 9 SPICSn Figure 5-14. SPI Slave Mode Enable Timing (CLOCK PHASE = 0) 146 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com Table 5-22. SPI Slave Mode External Timing Parameters (CLOCK PHASE = 1, SPICLK = input, SPISIMO = input, and SPISOMI = output) (1) (2) (3) (4) MIN MAX Unit 1 tc(SPC)S Cycle time, SPICLK (5) 40 256tc(VCLK) ns (6) tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 0) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 1) 14 tw(SPCL)S Pulse duration, SPICLK low (clock polarity = 0) 14 tw(SPCH)S Pulse duration, SPICLK high (clock polarity = 1) 14 td(SOMI-SPCL)S Dealy time, SPISOMI data valid after SPICLK low (clock polarity = 0) trf(SOMI) + 18 td(SOMI-SPCH)S Delay time, SPISOMI data valid after SPICLK high (clock polarity = 1) trf(SOMI) + 18 th(SPCL-SOMI)S Hold time, SPISOMI data valid after SPICLK high (clock polarity =0) 2 th(SPCH-SOMI)S Hold time, SPISOMI data valid after SPICLK low (clock polarity =1) 2 tsu(SIMO-SPCH)S Setup time, SPISIMO before SPICLK high (clock polarity = 0) 2 tsu(SIMO-SPCL)S Setup time, SPISIMO before SPICLK low (clock polarity = 1) 2 tv(SPCH-SIMO)S High time, SPISIMO data valid after SPICLK high (clock polarity = 0) 2 tv(SPCL-SIMO)S High time, SPISIMO data valid after SPICLK low (clock polarity = 1) 2 2 3 (6) 4 (6) 5 (6) 6 (6) 7 (6) 8 (1) (2) (3) (4) (5) (6) Parameter ns ns ns ns ns ns td(SPCH-SENAH)S Delay time, SPIENAn high after last SPICLK high (clock polarity = 0) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) ns td(SPCL-SENAH)S Delay time, SPIENAn high after last SPICLK low (clock polarity = 1) 1.5tc(VCLK) 2.5tc(VCLK)+tr(ENAn) 9 td(SCSL-SENAL)S Delay time, SPIENAn low after SPICSn low (if new data has been written to the SPI buffer) tf(ENAn) tc(VCLK)+tf(ENAn)+14 ns 10 td(SCSL-SOMI)S Delay time, SOMI valid after SPICSn low (if new data has been written to the SPI buffer) tc(VCLK) 2tc(VCLK)+trf(SOMI)+8 ns The MASTER bit (SPIGCR1.0) is set and the CLOCK PHASE bit (SPIFMTx.16) is set. If the SPI is in slave mode, the following must be true: tc(SPC)S ≤ (PS + 1) tc(VCLK), where PS = prescale value set in SPIFMTx.[15:8]. For rise and fall timings, see the "switching characteristics for output timings versus load capacitance" table. tc(VCLK) = interface clock cycle time = 1 /f(VCLK) When the SPI is in Slave mode, the following must be true: For PS values from 1 to 255: tc(SPC)S ≥ (PS +1)tc(VCLK) ≥ 40ns, where PS is the prescale value set in the SPIFMTx.[15:8] register bits. For PS values of 0: tc(SPC)S = 2tc(VCLK) ≥ 40ns. The active edge of the SPICLK signal referenced is controlled by the CLOCK POLARITY bit (SPIFMTx.17). Copyright © 2011, Texas Instruments Incorporated Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 147 PRODUCT PREVIEW NO. RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 5 4 SPISOMI SPISOMI Data Is Valid 6 7 SPISIMO Data Must Be Valid SPISIMO PRODUCT PREVIEW Figure 5-15. SPI Slave Mode External Timing (CLOCK PHASE = 1) SPICLK (clock polarity=0) SPICLK (clock polarity=1) 8 SPIENAn 9 SPICSn 10 SPISOMI Slave Out Data Is Valid Figure 5-16. SPI Slave Mode Enable Timing (CLOCK PHASE = 1) 148 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.10 Ethernet Media Access Controller The Ethernet Media Access Controller (EMAC) provides an efficient interface between RM4x and the network. The EMAC supports both 10Base-T and 100Base-TX, or 10 Mbits/second (Mbps) and 100 Mbps in either half- or full-duplex mode, with hardware flow control and quality of service (QoS) support. The EMAC controls the flow of packet data from the RM4x device to the PHY. The MDIO module controls PHY configuration and status monitoring. Both the EMAC and the MDIO modules interface to the RM4x device through a custom interface that allows efficient data transmission and reception. This custom interface is referred to as the EMAC control module, and is considered integral to the EMAC/MDIO peripheral. The control module is also used to multiplex and control interrupts. 5.10.1 Ethernet MII Electrical and Timing Specifications 1 2 MII_MRXD MII_MRXDV MII_MRXER PRODUCT PREVIEW MII_MRCLK VALID Figure 5-17. MII Receive Timing Table 5-23. MII Receive Timing Description MIN tsu(GMIIMRXD) Parameter Setup time, GMIIMRXD to GMIIMRCLK rising edge 8ns tsu(GMIIMRXDV) Setup time, GMIIMRXDV to GMIIMRCLK rising edge 8ns tsu(GMIIMRXER) Setup time, GMIIMRXER to GMIIMRCLK rising edge 8ns th(GMIIMRXD) Hold time, GMIIMRXD valid after GMIIRCLK rising edge 8ns th(GMIIMRXDV) Hold time, GMIIMRXDV valid after GMIIRCLK rising edge 8ns th(GMIIMRXER) Hold time, GMIIMRXDV valid after GMIIRCLK rising edge 8ns Copyright © 2011, Texas Instruments Incorporated MAX Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 149 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 1 MII_MTCLK MII_MTXD MII_MTXEN VALID Figure 5-18. MII Transmit Timing Table 5-24. MII Transmit Timing Parameter Description MIN MAX td(GMIIMTXD) Delay time, GMIIMTCLK rising edge to GMIIMTXD 5ns 25ns td(GMIIMTXEN) Delay time, GMIIMTCLK rising edge to GMIIMTXEN 5ns 25ns PRODUCT PREVIEW 150 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.10.2 Management Data Input/Output (MDIO) 1 3 3 MDCLK 4 5 MDIO (input) Figure 5-19. MDIO Input Timing Table 5-25. MDIO Input Timing Requirements Parameter Value Unit MIN MAX 1 tc(MDCLK) Cycle time, MDCLK 400 - ns 2 tw(MDCLK) Pulse duration, MDCLK high/low 180 - ns 3 tt(MDCLK) Transition time, MDCLK - 5 ns 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK High 10 - ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK High 10 - ns PRODUCT PREVIEW NO. 1 MDCLK 7 MDIO (output) Figure 5-20. MDIO Output Timing Table 5-26. MDIO Output Timing Requirements NO. Parameter Value MIN 1 tc(MDCLK) Cycle time, MDCLK 7 td(MDCLKL-MDIO) Delay time, MDCLK low to MDIO data output valid Copyright © 2011, Texas Instruments Incorporated Unit MAX 400 - ns 0 100 ns Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 151 RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 5.11 Universal Serial Bus Controller 5.11.1 Features This device provides several varities of USB functionality, including: • One full-speed USB device port compatible with the USB Specification Revision 2.0 and USB Specification Revision 1.1 • Two USB host ports compatible with USB Specification Revision 2.0, which is based on the OHCI Specification For USB Release 1.0. 5.11.2 Electrical and Timing Specifications Table 5-27. Full-Speed USB Interface Timing Requirements (1) NO. PRODUCT PREVIEW (1) Parameter MIN MAX Unit FSU20 td(VPL, VML) Time duration, RCVDPLS and RCVDMNS low together during transition 14 ns FSU21 td(VPH, Time duration, RCVDPLS and RCVDMNS high together during transition 8 ns VMH) The capacitive loading is equivalent tp 15 pF Table 5-28. Full-Speed USB Interface Switching Characteristics (1) NO. (1) MIN MAX Unit FSU15 td(TXENL–DATV) Parameter Delay time TXENL active to TXDPLS valid 0 1.5 ns FSU16 td(TXENL–SE0V) Delay time TXENL active to TXSE0 valid 0 1.5 ns FSU17 ts(DAT–SE0) Skew between TXDPLS and TXSE0 transition 1.5 ns FSU18 td(TXENH–DATI) Delay time TXENL inactive to TXDPLS invalid 0 1.5 ns FSU19 td(TXENH–SE0I) Delay time TXENL inactive to TXSE0 invalid 0 1.5 ns The capacitive loading is equivalent tp 15 pF Transmit TXENL FSU15 Receive FSU18 TXDPLS FSU16 FSU17 FSU19 TXSE0 FSU20 FSU21 FSU20 FSU21 RCVDPLS RCVDMNS RCVDATA Figure 5-21. Full-Speed USB Interface – Transmit and Receive Modes 152 Peripheral Information and Electrical Specifications Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 Copyright © 2011, Texas Instruments Incorporated RM48L950 RM48L750 RM48L550 SPNS174 – SEPTEMBER 2011 www.ti.com 6 Mechanical Data 6.1 Thermal Data Table 6-1 shows the thermal resistance characteristics for the QFP - PGE mechanical package. Table 6-2 shows the thermal resistance characteristics for the BGA - ZWT mechanical package. Table 6-1. Thermal Resistance Characteristics (PGE Package) PARAMETER °C / W RΘJA 45 RΘJC 5 6.2 PARAMETER °C / W RΘJA 18.8 RΘJC 7.1 Packaging Information The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. Mechanical Data Copyright © 2011, Texas Instruments Incorporated Submit Documentation Feedback focus.ti.com: RM48L950 RM48L750 RM48L550 153 PRODUCT PREVIEW Table 6-2. Thermal Resistance Characteristics (ZWT Package) PACKAGE OPTION ADDENDUM www.ti.com 2-Sep-2011 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) RM48L550PGET PREVIEW LQFP PGE 144 1000 TBD Call TI Call TI RM48L550ZWTT PREVIEW NFBGA ZWT 337 1000 TBD Call TI Call TI RM48L750PGET PREVIEW LQFP PGE 144 1000 TBD Call TI Call TI RM48L750ZWTT PREVIEW NFBGA ZWT 337 1000 TBD Call TI Call TI XRM48L950PGET ACTIVE LQFP PGE 144 1 TBD Call TI Call TI XRM48L950ZWTT ACTIVE NFBGA ZWT 337 1 TBD Call TI Call TI (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 MECHANICAL DATA MTQF017A – OCTOBER 1994 – REVISED DECEMBER 1996 PGE (S-PQFP-G144) PLASTIC QUAD FLATPACK 108 73 109 72 0,27 0,17 0,08 M 0,50 144 0,13 NOM 37 1 36 Gage Plane 17,50 TYP 20,20 SQ 19,80 22,20 SQ 21,80 0,25 0,05 MIN 0°– 7° 0,75 0,45 1,45 1,35 Seating Plane 0,08 1,60 MAX 4040147 / C 10/96 NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Falls within JEDEC MS-026 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connctivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated