SM5847AF NIPPON PRECISION CIRCUITS INC. High-fidelity Digital Audio, Multi-function Digital Filter OVERVIEW The SM5847AF is a 4/8-times oversampling (interpolation), 2-channel, linear-phase FIR, multi-function digital filter for digital audio reproduction equipment. It features independent left and rightchannel digital deemphasis filters and soft muting function. The internal system clock operates at either 192fs or 256fs selectable speed (where fs is the audio sampling frequency). Plus, the divide-by 1, 2, or 4 counter settings means that external clocks of 768fs/ 384fs/192fs (192fs input) and 1024fs/512fs/256fs (256fs input) are supported. The input/output interface supports input data in 16/18/20/24-bit words, and output data in 18/20/22/24-bit words in either 4-times or 8-times oversampling selectable output mode. The SM5847AF operates from a single 3 to 5 V supply, and is available in 44-pin QFP packages. FEATURES ■ ■ ■ ■ ■ ■ ■ Left/right-channel (2-channel processing) 4-times/8-times oversampling (interpolation) • 8-times interpolation filter - 3-stage linear-phase FIR configuration 1st stage (fs to 2fs): 169-tap 2nd stage (2fs to 4fs): 29-tap 3rd stage (4fs to 8fs): 17-tap - ≤ ±0.00002 dB passband ripple (0 to 0.4535fs) - ≥ 117 dB stopband attenuation (0.5465fs to 7.4535fs) • 4-times interpolation filter - 2-stage linear-phase FIR configuration 1st stage (fs to 2fs): 169-tap 2nd stage (2fs to 4fs): 29-tap - ≤ ±0.00002 dB passband ripple (0 to 0.4535fs) - ≥ 116 dB stopband attenuation (0.5465fs to 3.4535fs) Digital deemphasis • IIR filter configuration • fs = 32kHz, 44.1kHz, 48kHz • 2-channel independent ON/OFF control 26 × 24-bit parallel multiplier/32-bit accumulator Overflow limiter Soft muting • 2-channel independent ON/OFF control Input data format ■ ■ ■ ■ ■ ■ ■ ■ ■ • 2s complement, MSB first • 3 selectable formats - LR alternating, 16/18/20/24-bit serial, rightjustified data - LR alternating, 24-bit serial, left-justified data - LR simultaneous, 24-bit serial, left-justified data Output data format • 2s complement, MSB first, LR simultaneous • 18/20/22/24-bit serial • BCKO burst (NPC format) Dither round-off processing • Dither round-off ON/OFF selectable 25-bit internal data word length Internal system clock • 192fs/256fs selectable • Maximum operating frequency 192fs mode: 37 MHz max (5 V) 20.7 MHz max (3 V) 256fs mode: 27.6 MHz max (5 V) 25 MHz max (3 V) Jitter-free function • Jitter-free/Sync mode selectable Crystal oscillator circuit built-in 3 to 5 V supply 44-pin plastic QFP CMOS process ORDERING INFORMATION D e vice P ackag e SM5847AF 44-pin QFP NIPPON PRECISION CIRCUITS—1 SM5847AF PINOUT OMD 1 DOR 2 DOL 3 WCKO 4 BCKO 5 VSS 6 VSSAC 7 VDDAC 8 VDD 9 DG NC DEMPR CKDV2 CKDV1 35 34 DEMPL 37 36 VSS VDD 38 FSEL1 40 39 MUTEL FSEL2 41 MUTER 43 42 DITHN 44 (Top View) RSTN 32 SYNCN 31 OW2N 30 OW1N 29 VDD 28 VSS 27 IW2N/DIR 26 IW1N/DIL 25 INF1N 10 24 CKSLN 11 23 NC 12 13 14 15 16 17 18 19 20 21 22 CKO VSS VDD XTO XTI VSS VDD LRCI DI/INF2N BCKI NC SM 5 8 4 7 A F 33 PACKAGE DIMENSIONS (Unit: mm) 44-pin plastic QFP + 0.30 12.80 − + 0.30 10.00 − + 0.05 0.17 − 0 to 10 10.00 + − 0.30 4 − C + 0.20 0.60 − 0. 7 0.20 M 0.15 + 0.20 1.50 − 0.10 0.80 + 0.05 0.15 − (1.40) + 0.10 0.35 − + 0.05 0.17 − 12.80 + − 0.30 (1.40) NIPPON PRECISION CIRCUITS—2 SM5847AF DI/INF2N LRCI BCKI BLOCK DIAGRAM XTI IW1N/DIL XTO CKO CKSLN Input Data Interface System Clock CKDV1 CKDV2 SYNCN RSTN Timing Controller Filter and Attenuation Arithmetic Block OMD OW1N OW2N DG DOR Mute Controller Output Data Interface Block DOL MUTER VSS VSSAC Deemphasis Controller WCKO MUTEL VDD VDDAC BCKO FSEL1 FSEL2 INF1N DITHN DEMPL DEMPR IW2N/DIR NIPPON PRECISION CIRCUITS—3 SM5847AF PIN DESCRIPTION Number Name I/O 1 OMD Ip 1 Description 2 DOR O2 Right-channel data output 3 DOL O2 Left-channel data output 4 W C KO O2 W ord clock output 5 B C KO O2 Bit clock output Output data rate (4fs/8fs) select pin 6 VSS – Ground 7 VSSAC – Ground 8 V D DAC – Supply voltage 9 VDD – Supply voltage 10 DG O2 11 NC – 12 C KO O2 13 VSS – 14 VDD – Supply voltage 15 X TO O Oscillator output Deglitched signal output No internal connection (must be open) Master clock output Ground 16 XTI I Oscillator input/master clock input 17 VSS – Ground 18 VDD – Supply voltage 19 LRCI I1 Input data sample rate (fs) clock input 20 DI/INF2N I1 Data input/input format select pin 2 21 BCKI I1 Bit clock input 22 NC – No internal connection (must be open) 23 NC – No internal connection (must be open) 24 CKSLN Ip 2 Master clock frequency (192fs/256fs) select pin 25 INF1N Ip 2 Input format select pin 1 26 IW1N/DIL Ip 1 Input data word length select pin 1/left-channel data input 27 IW2N/DIR Ip 1 Input data word length select pin 2/right-channel data input 28 VSS – Ground 29 VDD – Supply voltage 30 OW1N Ip 2 Output data word length select pin 1 31 OW2N Ip 2 Output data word length select pin 2 32 SYNCN Ip 2 Sync mode select pin 33 RSTN Ip 1 Reset input 34 C K DV 1 Ip 1 Internal system clock frequency divider set pin 1 35 C K DV 2 Ip 1 Internal system clock frequency divider set pin 2 36 DEMPR Ip 1 Right-channel deemphasis ON/OFF pin 37 DEMPL Ip 1 Left-channel deemphasis ON/OFF pin 38 VDD – Supply voltage 39 VSS – Ground 40 FSEL1 Ip 1 Deemphasis filter sample rate (fs) select pin 1 41 FSEL2 Ip 1 Deemphasis filter sample rate (fs) select pin 2 42 MUTEL Ip 1 Left-channel mute ON/OFF pin 43 MUTER Ip 1 Right-channel mute ON/OFF pin DITHN Ip 1 Output data dither ON/OFF pin 44 1. Schmitt input, TTL level 2. TTL level Ip = Pull-up input NIPPON PRECISION CIRCUITS—4 SM5847AF SPECIFICATIONS Absolute Maximum Ratings VSS = VSSAC = 0 V, VDD = VDDAC P arameter Symbol range 1 Rating Unit V D D, V D D A C −0.3 to 6.5 V VI V S S − 0.3 to V D D + 0.3 V Storage temperature range T stg −55 to 125 °C Pow er dissipation PD Supply voltage Input voltage range Condition ≤ 70 °C 900 ≤ 85 °C 700 mW 1. Supply lines for VDD and V D D A C , and ground lines for VSS and V S S A C , should be connected on the printed circuit board to prevent device breakdown due to potential difference when the pow er is applied. Recommended Operating Conditions VSS = VSSAC = 0 V, VDD = VDDAC P arameter Supply voltage range 1 Symbol Rating Unit V D D, V D D A C 3.00 to 5.25 V Ta −40 to 85 °C Operating temperature range 1. The minimum required operating voltage and consequent operating temperature vary with the maximum operating frequency and sampling mode selected, as shown in the following table. VSS = VSSAC = 0 V, VDD = VDDAC Internal system clock Sampling frequency fs (kHz) M i n i mu m s u p p ly voltag e V D D , V D D A C (V) Operating temperature T a (°C) 37 4.75 (5.0 − 5%) −40 to 70 256fs Not guaranteed Not guaranteed Not guaranteed 192fs 20.7 3.00 (3.3 − 10%) 256fs 27.6 4.50 (5.0 − 10%) 192fs 18.5 3.00 (3.3 − 10%) 256fs 25 3.00 (3.3 − 10%) 192fs 10.6 3.00 (3.3 − 10%) 256fs 14.2 3.00 (3.3 − 10%) Mode1 M a x i m um operating frequency (MHz) 192fs 192 108 2 96 55.2 3 −40 to 85 1. Mode with internal frequency divider ratio set to 1 (CKDV 1 = C K DV2 = LOW). 2. 96 kHz + 12.5% variable pitch 3. 48 kHz + 15% variable pitch NIPPON PRECISION CIRCUITS—5 SM5847AF DC Electrical Characteristics VDD = VDDAC = 3.00 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter HIGH-level input voltage 1 HIGH-level input voltage 2 ,4 HIGH-level input voltage 3 L O W -level input voltage 1 L O W -level input voltage 2,4 L O W -level input voltage 3 Input leakage current 1,2 Symbol Condition Unit min typ max V IH1 0.7V D D – – V V IH2 2.0 – – V V D D = V D D A C = 4.75 to 5.25 V 2.4 – – V D D = V D D A C = 3.00 to 4.75 V 2.0 – – V D D = V D D A C = 4.75 to 5.25 V – – 0.3V D D V D D = V D D A C = 3.00 to 4.75 V – – 0.2V D D V D D = V D D A C = 4.75 to 5.25 V – – 0.8 V D D = V D D A C = 3.00 to 4.75 V – – 0.2V D D V D D = V D D A C = 4.75 to 5.25 V – – 0.8 V D D = V D D A C = 3.00 to 4.75 V – – 0.2V D D V IH3 V IL1 V IL2 V IL3 V V V V IIL1 V IN = 0 to 5.25 V −10 – 10 µA IIL2 V IN = 0 V −10 −50 −120 µA HIGH-level output voltage 5 VOH IO H = −4 m A 2.4 – – V L O W -level output voltage 5 VOL IO L = 4 mA – – 0.4 V Input 1. 2. 3. 4. 5. current 3,4 Pin XTI Pins LRCI, DI/INF2N, BCKI Pins IW1N/DIL, IW2N/DIR P i n s O M D, CKSLN, INF1N, OW 1 N , OW 2 N , S Y N C N , R S T N , C K DV1, CKDV2, DEMPR, DEMPL, FSEL1, FSEL2, MUTEL, MUTER, DITHN Pins DOR, DOL, W C K O , BCKO , DG, CKO VDD = VDDAC = 4.75 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C, XTI = external input, no output load Rating P arameter Current consumption Symbol Condition Unit min typ max ID D 1 192fs, XTI = 27 ns (37 MHz), fs = 192 kHz,Ta = −40 to 70 °C – – 166 mA ID D 2 256fs, XTI = 40 ns (25 MHz), fs = 96 k H z – – 115 mA ID D 3 384fs, XTI = 27 ns (37 MHz), fs = 96 kHz, estimated value – – 105 mA ID D 4 192fs, XTI = 54 ns (18.5 MHz), fs = 96 kHz, estimated value – – 95 mA ID D 5 384fs, XTI = 54 ns (18.5 MHz), fs = 48 kHz, estimated value – – 65 mA VDD = VDDAC = 3.00 to 3.60 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C, XTI = external input, no output load Rating P arameter Symbol Condition Unit min typ max ID D 6 256fs, XTI = 81 ns (12.3 MHz), fs = 48 kHz, estimated value – – 27 mA ID D 7 384fs, XTI = 54 ns (18.5 MHz), fs = 48 kHz, estimated value – – 28 mA Current consumption NIPPON PRECISION CIRCUITS—6 SM5847AF AC Electrical Characteristics Crystal oscillator (XTI, XTO) VDD = VDDAC = 3.00 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter Oscillator frequency 1 Symbol Condition Unit min typ max – – 50 fO S C MHz 1. External circuit components should be matched for the crystal oscillator element used. External clock input (XTI) VDD = VDDAC = 3.00 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter Master clock frequency Symbol Condition fXTI Master clock duty 1/2V D D thresholds Unit min typ max – – 60 MHz 40 – 60 % Internal system clock The crystal oscillator frequency or external clock input master clock frequency ratings are described in the preceding tables, but it is the internal system clock frequency rating, set by the internal frequency divider (CKDV1, CKDV2), that must be satisfied. The master clock frequency is a multiple of the sampling frequency fs. CKDV1 = CKDV2 = LOW (internal system clock frequency = XTI input frequency), VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter Symbol Condition Unit min typ max V D D = V D D A C = 4.50 to 5.25 V 0.256 – 27.6 V D D = V D D A C = 3.00 to 5.25 V 0.256 – 25 V D D = V D D A C = 4.75 to 5.25 V, T a = −40 to 70 °C 0.384 – 37 V D D = V D D A C = 3.00 to 5.25 V 0.384 – 20.7 256fs (CKSLN = LOW , CKDV1 = LOW , CKDV2 = LOW ) System clock frequency fS Y S 1 MHz 192fs (CKSLN = HIGH, CKDV1 = LOW , CKDV2 = LOW ) System clock frequency fS Y S 2 MHz NIPPON PRECISION CIRCUITS—7 SM5847AF Serial input timing (BCKI, LRCI, DI/INF2N, IW1N/DIL, IW2N/DIR) VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter BCKI pulse cycle Condition tI B C Y BCKI HIGH-level pulsewidth B C K I L OW -level pulsewidth DI, DIL, DIR setup time DI, DIL, DIR hold time Last BCKI rising edge to LRCI edge LRCI edge to first BCKI rising edge 1. CKSLN = HIGH 2. C K S L N = L OW CKSLN = HIGH 3. C K S L N = L OW Symbol tB C W H tB C W L tD S tD H tB L tL B Unit min typ max Note 1 55 – – Note 2 80 – – Note 3 100 – – Note 1 25 – – Note 2 35 – – Note 3 45 – – Note 1 25 – – Note 2 35 – – Note 3 45 – – Note 1 10 – – Note 2 20 – – Note 3 30 – – Note 1 10 – – Note 2 20 – – Note 3 30 – – Note 1 10 – – Note 2 20 – – Note 3 30 – – Note 1 10 – – Note 2 20 – – Note 3 30 – – ns ns ns ns ns ns ns (192fs), V D D = V D D A C = 4.75 to 5.25 V, T a = −40 to 70 °C (256fs), V D D = V D D A C = 4.50 to 5.25 V (192fs), V D D = V D D A C = 3.00 to 4.75 V (256fs), V D D = V D D A C = 3.00 to 4.50 V tIBCY 1.5V BCKI tBCWH tBCWL DI DIL DIR 1.5V tDS tDH tBL LRCI tLB 1.5V NIPPON PRECISION CIRCUITS—8 SM5847AF Reset timing (RSTN) VDD = VDDAC = 3.00 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C Rating P arameter R S T N L OW -level reset pulsewidth Symbol Condition tR S T Unit min1 typ max 2t M C K – – ns 1. tM C K is equal to 1/f XTI or 1/f O S C . For example, tR S T = 54 ns when f XTI = 37 MHz. 1.5V RSTN tRST Output timing (CKO, BCKO, WCKO, DOL, DOR, DG) VDD = VDDAC = 4.75 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 70 °C, CL = 50 pF Rating P arameter XTI falling edge to CKO falling edge delay Symbol tX TO B C K O falling edge to W C K O , DOL, DOR, DG delay tB D O B C K O rising edge to W C K O falling edge tW O H W C K O falling edge to BCKO rising edge tW O S B C K O period tO B C Y B C K O HIGH-level pulsewidth tO B C H B C K O L OW -level pulsewidth tO B C L DOL, DOR setup time tO D S DOL, DOR hold time tO D H B C K O rising edge to W C K O falling edge tW O H W C K O falling edge to BCKO rising edge tW O S B C K O period tO B C Y B C K O HIGH-level pulsewidth tO B C H B C K O L OW -level pulsewidth tO B C L DOL, DOR setup time tO D S DOL, DOR hold time tO D H Condition V D D = V D D A C = 3.00 to 5.25 V, T a = −40 to 85 °C Output mode: 8fs OMD = HIGH (fs = 192 kHz) External clock input: XTI = 27 ns (37 MHz), C K S L N = HIGH (192fs) Divider ratio: 1 C K DV 1 = C K DV2 = LOW Output data length: 24 bits O W 1 N = OW 2 N = L OW Output mode: 4fs O M D = L OW (fs = 192 kHz) External clock input: XTI = 27 ns (37 MHz), C K S L N = HIGH (192fs) Divider ratio: 1 C K DV 1 = C K DV2 = LOW Output data length: 24 bits O W 1 N = OW 2 N = L OW Unit min typ max 4 – 9 ns 4 – 11 ns −4 – 2 ns 8 – – ns 8 – – ns 27 – – ns 7 – – ns 7 – – ns 7 – – ns 7 – – ns 17 – – ns 17 – – ns 54 – – ns 18 – – ns 18 – – ns 18 – – ns 18 – – ns NIPPON PRECISION CIRCUITS—9 SM5847AF VDD = VDDAC = 4.50 to 5.25 V, VSS = VSSAC = 0 V, Ta = −40 to 85 °C, CL = 50 pF Rating P arameter Symbol B C K O HIGH-level pulsewidth tO B C H B C K O L OW -level pulsewidth tO B C L DOL, DOR setup time tO D S DOL, DOR hold time tO D H B C K O HIGH-level pulsewidth tO B C H B C K O L OW -level pulsewidth tO B C L DOL, DOR setup time tO D S DOL, DOR hold time tO D H Condition Unit min typ max External clock input: XTI = 36 ns (27.6 MHz), CKSLN = L O W (256fs), fs = 108 k H z Divider ratio: 1 C K DV 1 = C K DV2 = LOW Output mode: 8fs, OMD = H I G H 10 – – ns 10 – – ns 11 – – ns 11 – – ns External clock input: XTI = 36 ns (27.6 MHz), CKSLN = L O W (256fs), fs = 108 k H z Divider ratio: 1 C K DV 1 = C K DV2 = LOW Output mode: 4fs, OMD = L O W 26 – – ns 26 – – ns 27 – – ns 27 – – ns 1.5V XTI CKO 1.5V tXTO BCKO 1.5V WCKO DOL DOR DG 1.5V tBDO WCKO 1.5V tWOH BCKO tWOS 1.5V tOBCL tOBCH tOBCY DOL DOR 1.5V tODS tODH NIPPON PRECISION CIRCUITS—10 SM5847AF Filter Characteristics 8-times interpolation filter P arameter Rating P assband 0 to 0.4535fs Stopband 0.5465fs to 7.4535fs ≤ ±0.00002 dB P assband ripple Stopband attenuation ≥ 117 dB Group delay Constant 8fs filter response with deemphasis OFF Attenuation (dB) 0 20 40 60 80 100 120 140 0.0 1.0 2.0 4.0 3.0 5.0 6.0 7.0 8.0 Frequency (× fs) Attenuation (dB) 8fs filter band transition response with deemphasis OFF -0.00008 -0.00004 0.00000 0.00004 0.00008 0.000 0.125 0.250 0.375 0.500 Frequency (× fs) 8fs filter passband response with deemphasis OFF 0 Attenuation (dB) 20 40 60 80 100 120 140 0.440 0.465 0.490 0.515 0.540 0.565 0.590 0.615 0.640 Frequency (× fs) NIPPON PRECISION CIRCUITS—11 SM5847AF 4-times interpolation filter P arameter Rating P assband 0 to 0.4535fs Stopband 0.5465fs to 3.4535fs ≤ ±0.00002 dB P assband ripple Stopband attenuation ≥ 116 dB Group delay Constant 4fs filter response with deemphasis OFF Attenuation (dB) 0 20 40 60 80 100 120 140 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 Frequency (× fs) Attenuation (dB) 4fs filter band transition response with deemphasis OFF -0.00008 -0.00004 0.00000 0.00004 0.00008 0.000 0.125 0.250 0.375 0.500 Frequency (× fs) 4fs filter passband response with deemphasis OFF 0 Attenuation (dB) 20 40 60 80 100 120 140 0.440 0.465 0.490 0.515 0.540 0.565 0.590 0.615 0.640 Frequency (× fs) NIPPON PRECISION CIRCUITS—12 SM5847AF Deemphasis filter Sampling frequency (fs) P arameter P assband bandwidth (kHz) 32 kHz 44.1 kHz 48 kHz 0 to 14.5 0 to 20.0 0 to 21.7 ≤ ±0.01 dB Attenuation D e viation from ideal characteristic P h a s e, θ 0 to 1.5° 0 0 32kHz Attenuation (dB) 2 Phase -20 44.1kHz 48kHz 4 Attenuation 6 -40 -60 Phase (degrees) Passband response with deemphasis ON 8 32kHz 44.1kHz 48kHz 10 10 20 50 100 200 500 1k 2k 5k 10k 20k [Hz] Frequency (Hz) NIPPON PRECISION CIRCUITS—13 SM5847AF FUNCTIONAL DESCRIPTION Oversampling (Interpolation) The interpolation arithmetic block is comprised of 3 cascaded, 2-times FIR interpolation filters, as shown in figure 1. The input signal is sampled at rate fs, and then either 4-times or 8-times oversampling data is output. Sampling noise in the 0.5465fs to 3.4535fs (4fs output) or 0.5465fs to 7.4535fs (8fs output) region is removed. Input fs 2-times interpolator 1st FIR 169-tap 2fs 2-times interpolator 2nd FIR 29-tap 4fs Deemphasis IIR filter Deemphasis OFF Deemphasis ON 4fs Soft mute 4fs 2 -times interpolator 3rd FIR 17-tap 8fs 4fs Output Figure 1. Arithmetic operating block NIPPON PRECISION CIRCUITS—14 SM5847AF Digital Deemphasis (DEMPL, DEMPR, FSEL1, FSEL2) Most deemphasis filters are constructed using analog circuit techniques. Here, an IIR filter is employed to faithfully reproduce the gain and phase characteristics of standard analog deemphasis filters, corresponding to analog 50µs/15µs frequency characteristics. Three sets of filter coefficients for the three fs = 32/44.1/48 kHz sampling frequencies are supported. Deemphasis for other values of fs are not supported. Deemphasis ON/OFF (DEMPL, DEMPR) Filter coefficient select (FSEL1, FSEL2) Table 2. Deemphasis filter coefficient select FSEL1 FSEL2 Sampling frequency (fs) LOW LOW 44.1 kHz LOW HIGH 48 kHz HIGH LOW Prohibited mode HIGH HIGH 32 kHz Deemphasis for the left and right-channel can be controlled independently. Table 1. Deemphasis control DEMPL DEMPR Deemphasis LOW × Left-channel OFF HIGH × Left-channel ON × LOW Right-channel OFF × HIGH Right-channel ON Soft Muting (MUTEL, MUTER) The muting function controls the muting of left and right-channel independently. Input data continues to be accepted even when mute is operating. Mute ON/OFF When MUTEL (MUTER) goes HIGH, the attenuation changes smoothly from 0 to −∞ dB. Similarly, when MUTEL (MUTER) goes LOW, muting is released and the attenuation changes smoothly from −∞ to 0 dB. This operation is termed soft muting. Mute operation at reset When RSTN goes LOW, the DOL and DOR outputs are immediately muted to −∞ dB. When RSTN goes HIGH, reset is released and the outputs are immediately set to 0 dB attenuation. Note that even when either MUTEL or MUTER or both are HIGH, the reset operation takes precedence. Soft muting takes an interval of approximately 512/fs, or about 11.6 ms when fs = 44.1 kHz. Table 3. Mute control MUTEL MUTER Soft muting LOW × Left-channel OFF HIGH × Left-channel ON × LOW Right-channel OFF × HIGH Right-channel ON NIPPON PRECISION CIRCUITS—15 SM5847AF Analog Output Click Noise Under the following conditions, a click noise may be output from the DAC (digital-to-analog converter) connected to the SM5847AF. ■ ■ ■ When a system reset on RSTN occurs When the internal system clock mode, set by CKSLN, CKDV1, and CKDV2, is switched When the deemphasis mode, set by DEMPL, DEMPR, FSEL1, and FSEL2, is switched DI/INF2N, IW1N/DIL, IW2N/DIR MUTEL/MUTER ■ ■ When the audio data input mode, set by INF1N, DI/INF2N, IW1N/DIL, and IW2N/DIR, is switched When the SYNCN jitter-free mode switch timing exceeds the internal timing delay limit An external muting circuit connected to the analog output may be required to eliminate this noise. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Normal operation H L H soft mute RSTN 512/fs L soft mute H 512/fs L H reset L reset 0dB Gain −∞ +FS External DAC analog output (full scale signal) zero -FS click noise FS: full scale Figure 2. Soft muting/reset operation NIPPON PRECISION CIRCUITS—16 SM5847AF Internal System Clock (XTI, XTO, CKO, CKSLN, CKDV1, CKDV2) The SM5847AF supports two system clock frequencies selected by CKSLN, 192fs and 256fs, where fs is the sampling frequency. The master clock can be provided either by a crystal oscillator connected between XTI and XTO, or by an external master clock input on XTI. Note that the feedback resistor required by the oscillator option is not built-in. External components should be selected to match the crystal oscillator element. Note also that XTO must be left open (floating) for the external master clock input option. Note that even though it is necessary that the master clock and LRCI clock (sampling frequency fs) be in sync, it is not necessary that they be exactly in-phase (see jitter-free mode description). Table 4. Internal system clock select CKSLN System clock LOW 256fs HIGH 192fs Table 5. System clock frequency divider ratio select C K DV1 C K DV2 Divider ratio Master clock LOW LOW 1 192fs, 256fs LOW HIGH – Prohibited mode HIGH LOW 4 768fs, 1024fs HIGH HIGH 2 384fs,512fs The SM5847AF features independent divide-by 1, 2, or 4counter, selected by CKDV1 and CKDV2. This provides the 192fs or 256fs system clock with the necessary divider ratios to support master clocks with frequencies of 768fs, 384fs, 192fs, 1024fs, 512fs or 256fs. Normal sampling frequencies 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, 96 kHz, 176.4 kHz and 192 kHz are supported. However, some combinations of sampling frequency and master clock frequency are not supported, as follows. ■ ■ ■ 768fs and 1024fs at 88.2 and 96 kHz 768fs, 384fs, 1024fs, 512fs, and 256fs at 176.4 kHz 768fs, 384fs, 1024fs, 512fs and 256fs at 192 kHz Divider 16 15 12 XTI R1 XTO CKO XTAL C1 SM5847AF Master Clock Buffer output C2 Figure 3. Crystal oscillator connection Note also that the internal crystal oscillator circuit cannot operate at frequencies ≥ 50 MHz. The master clock input on XTI is output on CKO. Divider Master clock stop operation The master clock is input after power is applied. But if, after the XTI and LRCI clocks are input and power-ON reset occurs with all-zero input audio data, the master clock input on XTI is held either HIGH or LOW level, operation effectively stops. Note also that a reset signal is not accepted when the master clock and LRCI clock stop. 16 XTI External Clock 15 XTO XTO : open 12 SM5847AF CKO Master Clock Buffer output Figure 4. External clock connection NIPPON PRECISION CIRCUITS—17 SM5847AF Table 6. Master clock frequency example XTI system clock frequency (MHz) CKSLN = HIGH (192fs) Sampling frequency fs (kHz) C K S L N = L OW (256fs) C K D V1 C K D V2 C K D V1 C K D V2 C K D V1 C K D V2 C K D V1 C K D V2 C K D V1 C K D V2 C K D V1 C K D V2 L OW L OW HIGH HIGH HIGH L OW L OW L OW HIGH HIGH HIGH L OW 192fs 384fs 768fs 256fs 512fs 1024fs 32 6.144 12.288 24.576 8.192 16.384 32.768 44.1 8.4627 16.9344 33.8688 11.2896 22.5792 45.1584 48 9.216 18.432 36.864 12.288 24.576 49.152 guaranteed 1 22.5792 45.1584 Not guaranteed 88.2 16.9344 33.8688 Not 96 18.432 36.864 Not guaranteed 24.576 49.152 Not guaranteed 176.4 33.8688 Not guaranteed Not guaranteed Not guaranteed Not guaranteed Not guaranteed 192 36.864 Not guaranteed Not guaranteed 1 Not guaranteed Not guaranteed Not guaranteed 1. Refer to the AC characteristics system clock ratings. System Reset (RSTN) During normal device operation, reset signals are not required. However, the SM5847AF must be reset under the following conditions. When RSTN is LOW, the DOL and DOR outputs are tied LOW, muting the output signal to an attenuation level of −∞. At power-ON When the LRCI clock and internal operation timing need to be resynchronized in jitter-free mode. After the LRCI or XTI clocks, or both, stop and are subsequently started. After system reset, when RSTN goes HIGH, the arithmetic and output timing counters are reset on the first LRCI start edge, assuming that the XTI and LRCI input clocks have already stabilized. The LRCI start edge is determined by the state of INF1N and INF2N. When INF1N is LOW or when both INF1N and INF2N are HIGH, the start edge is the rising edge. When INF1N is HIGH and INF2N is LOW, the start edge is the falling edge. ■ ■ ■ The system is reset by applying a LOW-level pulse on RSTN. RSTN RSTN=L LRCI Internal reset OMD=H 8fs WCKO OMD=L 4fs DOL/DOR zero Figure 5. System reset timing and output muting (INF1N = LOW or INF1N = INF2N = HIGH) NIPPON PRECISION CIRCUITS—18 SM5847AF Audio Data Input (INF1N, DI/INF2N, IW1N/DIL, IW2N/DIR, BCKI, LRCI) The input data format and input pin functions are selected by the state of INF1N and INF2N. When INF1N is LOW, the inputs are left and right-channel data inputs, and when INF1N is HIGH, the DI/INF2N input is an input format select pin, and DIL and DIR are the audio data inputs. Input data format select Table 7. Input settings and functions Pin function selection INF1N DI/INF2N Input format LOW − LOW − HIGH LOW LR alternating, left-justified data HIGH HIGH LR simultaneous 2 , left-justified data DI/INF2N IW1N/DIL IW2N/DIR DI IW1N IW2N INF2N DIL DIR LR alternating 1 , right-justified data 1. Alternating left-channel and right-channel data input on a single input DI. 2. S i multaneous left-channel and right-channel data input on two inputs, DIL and DIR, respectively. Input data word length The input data word length is selected by the state of IW1N and IW2N when INF1N is LOW. 20-bit is selected when INF1N is HIGH. Table 8. Input data word length select INF1N IW1N/DIL IW2N/DIR Input word length LOW LOW 24 bits HIGH LOW 20 bits LOW HIGH 18 bits HIGH HIGH 16 bits – – 24 bits LOW HIGH Jitter-free Function (SYNCN) The arithmetic circuit and output control timing is derived from the system clock, and is therefore independent of the input LRCI and BCKI clocks. Accordingly, any jitter in the data input clock (LRCI and BCKI) does not cause jitter in the output. Generally, the internal timing is synchronized to the LRCI input timing after a system reset release, when RSTN goes from LOW to HIGH, on the first LRCI clock start edge. If the input timing and LRCI start edge timing subsequently drift, the input timing is automatically resynchronized when the timing error exceeds a certain value. There are 2 timing error values at which resynchronization occurs, selected by the state of SYNCN. resynchronized and all functions continue to operate normally. Sync mode (SYNCN = LOW) When SYNCN is LOW, the timing error value is ±1 × (XTI master clock period), which is a much smaller timing error tolerance than in jitter-free mode. In this mode, the internal timing is guaranteed to follow the LRCI clock timing within this tolerance, making this mode useful for systems constructed from a multiple number of SM5847AF devices. Jitter-free mode (SYNCN = HIGH) When SYNCN is HIGH, the timing error value is ±3/8 × (LRCI clock period). When the difference between the input timing and LRCI start edge position do not exceed this value, internal timing is not NIPPON PRECISION CIRCUITS—19 SM5847AF Audio Data Output (DOL, DOR, BCKO, WCKO, DG, OW1N, OW2N, OMD, DITHN) Output data format Output timing The output data is in serial, simultaneous left and right-channel, 2s complement, MSB first, BCKO burst (NPC format) format. Left-channel data is output on DOL, and right-channel data is output on DOR. The output timing is dependent on the CKSLN level and output data word length. Output data word length The output data word length is selected by the state of OW1N and OW2N. When CKSLN is LOW, the output timing does not change with the output data word length. However, when CKSLN is HIGH, the DOL and DOR output timing for 24-bit output data length (OW1N = OW2N = LOW) start 1 clock cycle earlier than for 18, 20, or 22-bit output data length. Table 9. Output data word length select OW1N OW2N Output word length LOW LOW 24 bits HIGH LOW 22 bits LOW HIGH 20 bits HIGH HIGH 18 bits Table 10. Output timing P arameter Symbol Bit clock rate TB Data word length TDW CKSLN OMD = HIGH O M D = L OW HIGH 1/192fs 1/96fs LOW 1/256fs 1/128fs HIGH 24t S Y S 48t S Y S LOW 32t S Y S 64t S Y S Output mode Output dither processing The output mode, either 4fs oversampling or 8fs oversampling, is selected by the level on OMD, where fs is the input sampling rate. OMD Output mode LOW 4fs The output data word length is set by OW1N and OW2N, whereas the SM5847AF performs all internal calculations in 25-bit words. As a consequence, dither processing is provided to round-off errors. The SM5847AF uses triangular dither processing (triangular probability density function or TPDF) and can be turned ON or OFF. Simple round-off processing occurs when dither is OFF (DITHN = HIGH). HIGH 8fs Table 12. Dither select Table 11. Output mode select DITHN Dither LOW ON HIGH OFF NIPPON PRECISION CIRCUITS—20 SM5847AF Group Delay The data input to data output group delay is the delay which occurs due to the digital filter calculations. It is the time between the serial input data is completely read in (at rate fs) until the serial data is output (at rate 8fs or 4fs, depending on the mode selected). tINPUT represents the LRCI clock rising edge after the serial input data has been read in at rate fs. tOUTPUT represents the WCKO clock falling edge at the start of serial data output at rate 8fs or 4fs. Table 13. Group delay Mode CKSLN G roup delay t O U T P U T − tI N P U T SYNCN LOW After reset, or sync mode HIGH Jitter-free mode LOW After reset, or sync mode HIGH Jitter-free mode Unit 48.625/fs L O W (256fs) 48.25/fs − 49.0/fs sec 48.75/fs HIGH (192fs) 48.375/fs − 49.125/fs 1/fs LRCI serial data input (DI/INF2N, IW1N/DIL, IW2N/DIR) 48/fs t INPUT LRCI 1/fs WCKO 8fs OMD=H t OUTPUT CKSLN=L (256fs) serial data output (DOL,DOR) WCKO 4fs OMD=L t OUTPUT serial data output (DOL,DOR) WCKO 8fs OMD=H CKSLN=H (192fs) t OUTPUT serial data output (DOL,DOR) WCKO 4fs OMD=L t OUTPUT serial data output (DOL,DOR) Figure 6. Group delay timing (SYNCN = LOW) NIPPON PRECISION CIRCUITS—21 SM5847AF TIMING DIAGRAMS Input Timing Examples 1 / fs Lch LRCI *1 Rch 1 16 MSB LSB 1 16 MSB LSB BCKI 16bit 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Don't care Don't care 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DI/ INF2N IW1N/DIL = H, IW2N/DIR = H 1 18 MSB LSB 1 18 MSB LSB BCKI 18bit Don't care 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Don't care 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DI/ INF2N IW1N/DIL = L, IW2N/DIR = H 1 20 MSB LSB 1 20 MSB LSB BCKI 20bit Don't care 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Don't care 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DI/ INF2N 1 24 MSB LSB IW1N/DIL = H, IW2N/DIR = L 1 24 MSB LSB BCKI 24bit Don't care 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Don't care 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DI/ INF2N IW1N/DIL = L, IW2N/DIR = L *1: Optional BCKI clock cycles Figure 7. LR alternating, right-justified data, 2s complement, MSB first, INF1N = L NIPPON PRECISION CIRCUITS—22 SM5847AF 1 / fs Lch LRCI Rch 24 1 *1 24 1 BCKI MSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 IW1N/DIL LSB Don't care Don't care MSB IW2N/DIR LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Don't care Don't care *1: There must be a minimum of 24 BCKI clock cycles. Data input after the LSB is ignored. Figure 8. LR alternating, left-justified data, 2s complement, MSB first, INF1N = H, DI/INF2N = L, 24-bit 1 / fs LRCI 1 24 *1 BCKI MSB MSB Don't care LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 IW2N/DIR LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 IW1N/DIL Don't care *1: There must be a minimum of 24 BCKI clock cycles. Data input after the LSB is ignored. Figure 9. LR simultaneous, left-justified data, 2s complement, MSB first, INF1N = H, DI/INF2N = H, 24-bit NIPPON PRECISION CIRCUITS—23 SM5847AF Output Timing Examples 1 / 8fs WCKO 1 18 MSB LSB BCKO 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18bit OW1N = H OW2N = H DOL MSB LSB 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 20 BCKO LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20bit OW1N = L OW2N = H DOL LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 22 MSB LSB BCKO 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22bit OW1N = H OW2N = L DOL MSB 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB 1 24 BCKO MSB DOL LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 24bit OW1N = L OW2N = L MSB LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR DG 192fs internal system clock 1 10 22 12 24 TB TDW Figure 10. 2s complement, MSB first, CKSLN = H, OMD = H NIPPON PRECISION CIRCUITS—24 SM5847AF 1 / 4fs WCKO 1 18 MSB LSB BCKO 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18bit OW1N = H OW2N = H DOL MSB LSB 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 20 BCKO LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20bit OW1N = L OW2N = H DOL LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 22 MSB LSB BCKO 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22bit OW1N = H OW2N = L DOL MSB LSB 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 24 BCKO MSB DOL LSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 24bit OW1N = L OW2N = L MSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB DG 192fs internal system clock 20 2 24 44 48 TB TDW Figure 11. 2s complement, MSB first, CKSLN = H, OMD = L NIPPON PRECISION CIRCUITS—25 SM5847AF 1 / 8fs WCKO 1 18 MSB LSB BCKO 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18bit OW1N = H OW2N = H DOL MSB 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB 1 20 BCKO LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20bit OW1N = L OW2N = H DOL LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 22 MSB LSB BCKO 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22bit OW1N = H OW2N = L DOL MSB LSB 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 24 MSB LSB BCKO 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 24bit OW1N = L OW2N = L DOL MSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB DG 256fs internal system clock 1 14 16 25 30 32 TB TDW Figure 12. 2s complement, MSB first, CKSLN = L, OMD = H NIPPON PRECISION CIRCUITS—26 SM5847AF 1 / 4fs WCKO 1 18 MSB LSB BCKO 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 18bit OW1N = H OW2N = H DOL MSB 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB 1 20 BCKO LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 20bit OW1N = L OW2N = H DOL LSB MSB 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 22 MSB LSB BCKO 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22bit OW1N = H OW2N = L DOL MSB LSB 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR 1 24 MSB LSB BCKO 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 24bit OW1N = L OW2N = L DOL MSB 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 DOR LSB DG 256fs internal system clock 2 28 32 50 60 64 TB TDW Figure 13. 2s complement, MSB first, CKSLN = L, OMD = L NIPPON PRECISION CIRCUITS—27 SM5847AF TYPICAL APPLICATION (1) This circuit shows a basic connection to a 24-bit input DAC (SM5865BM). (Note that certain circuit details required for good DAC analog output characteristics have been omitted.) 36.864 MHz external clock, 48/96/192 kHz sampling rate fs, 24-bit data, 8fs oversampling operation +5V 36.864MHz SM5865BM fs +5V 24-bit Data 17 BCKI LRCI VDD VSS 16 15 14 13 VSS 18 VDD 19 XTI 20 XTO 21 DI/INF2N Bit Clock 12 1 DVSS 2 DI 3 BCKI AVSSA 24 RAP 23 IOUTA 22 4 WCKI IOUTAN 21 5 IWSL RAN 20 11 6 RSTN AVDDA 19 10 7 TSTN AVDDB 18 VDD 9 8 TO 26 IW1N/DIL VDDAC 8 9 DVDD 27 IW2N/DIR VSSAC 7 10 CKI 22 23 24 CKSLN 25 INF1N SM5847AF 28 VSS RBP 17 30 OW1N WCKO 4 31 OW2N DOL 3 1 DVSS 32 DOR 2 2 DI OMD 1 3 BCKI 34 35 36 37 VSS 12 CVSS VDD 11 CKDVN 5 CKDV2 6 BCKO CKDV1 VSS 29 VDD 33 38 39 40 41 42 43 44 CKDV1 CKDV2 I/V Converter IOUTB 16 IOUTBN 15 RBN 14 I/V Converter AVSSB 13 AVSSA 24 RAP 23 IOUTA 22 4 WCKI IOUTAN 21 5 IWSL RAN 20 6 RSTN AVDDA 19 7 TSTN AVDDB 18 8 TO 9 DVDD I/V Converter RBP 17 OMD 10 CKI RSTN 11 CKDVN 12 CVSS IOUTB 16 IOUTBN 15 RBN 14 I/V Converter AVSSB 13 SM5865BM Figure 14. SM5847AF and SM5865BM connection Table 14. Operating mode select Internal system clock frequency divider ratio select Sampling frequency fs (kHz) Output mode select CKSLN = HIGH (192fs) Mode C K DV1 C K DV2 Divider OMD Output mode 48 768fs HIGH LOW 4 HIGH 8fs 96 384fs HIGH HIGH 2 HIGH 8fs 192 192fs LOW LOW 1 HIGH 8fs External clock XTI (MHz) 36.864 NIPPON PRECISION CIRCUITS—28 SM5847AF TYPICAL APPLICATION (2) This circuit shows a basic connection to a 24-bit input DAC (Burr-Brown PCM1704U). 36.864 MHz external clock, 48/96/192 kHz sampling rate fs, 24-bit data, 8fs or 4fs oversampling operation (Note that certain circuit details required for good DAC analog output characteristics have been omitted.) 36.864MHz fs +5V 24-bit Data -5V 17 LRCI VDD VSS 23 24 CKSLN 16 15 14 13 VSS 18 VDD 19 XTI 20 XTO 21 BCKI 22 DI/INF2N Bit Clock 25 INF1N 12 1 DATA -V CC 20 2 BCLK 19 PCM1704U 11 3 10 4 -V DD 18 17 VDD 9 5 DGND AGND 16 26 IW1N/DIL VDDAC 8 6 +V DD AGND 15 27 IW2N/DIR VSSAC 7 7 WCLK 8 9 28 VSS VSS 29 VDD BCKO 5 30 OW1N WCKO 4 31 OW2N DOL 3 DOR 2 1 DATA -V CC 20 OMD 1 2 BCLK 19 35 36 37 VSS 34 VDD CKDV1 33 CKDV2 32 SM5847AF 38 39 40 41 42 43 I/V Converter IOUT 14 6 13 12 20BIT 10 INVERT +VCC 11 3 44 CKDV1 CKDV2 PCM1704U 18 4 17 -V DD 5 DGND AGND 16 6 +VDD AGND 15 7 WCLK OMD 9 RSTN 10 I/V Converter I OUT 14 8 13 12 20BIT INVERT +VCC 11 +5V Figure 15. SM5847AF and Burr-Brown PCM1704U connection Table 15. Operating mode select Internal system clock frequency divider ratio select Sampling frequency fs (kHz) Output mode select CKSLN = HIGH (192fs) Mode C K DV1 C K DV2 Divider OMD Output mode 48 768fs HIGH LOW 4 HIGH 8fs 96 384fs HIGH HIGH 2 HIGH 8fs 192 192fs LOW LOW 1 LOW 4fs External clock XTI (MHz) 36.864 NIPPON PRECISION CIRCUITS—29 SM5847AF NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility fo r the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinafter, including compliance with expor t controls on the distribution or dissemination of the products. Customers shall not expor t, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies. NIPPON PRECISION CIRCUITS INC. NIPPON PRECISION CIRCUITS INC. 4-3, Fukuzumi 2-chome Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698 NC9803DE 2000.2 NIPPON PRECISION CIRCUITS—30