SM5844AF Asynchronous Sample Rate Converter OVERVIEW APPLICATIONS The SM5844AF is a digital audio signal, asynchronous sample rate converter LSI. It reads 16 or 20-bit word length input data, and writes 16, 18, or 20-bit word length output data. It also features a built-in digital deemphasis filter and digital attenuator. ■ ■ ■ ■ ■ ■ SLAVE OW18N VDD PACKAGE DIMENSIONS Unit: mm 44-pin QFP 12.80 +- 0.30 10.00 0 to 10 ■ OW20N 0.60 +- 0.20 0.80 0.35 +- 0.10 1.75MAX ■ ■ IFM2 1.45 ■ IISN 0 to 0.20 ■ IFM1 RSTN TST2N TST1N STATE MLEN/DEEM ■ LRCI ICLK ICKSL 10.00 ■ VSS BCKI 12.80 +- 0.30 ■ DI SM5844AF ■ Left/right-channel processing (stereo) Input sample rate (fsi) ranges • 24 to 48 kHz (256fsi mode) • 27 to 55 kHz (384fsi mode) Output sample rate (fso) range • 20 to 100 kHz Sample rate conversion ratio (fso/fsi) • 0.5 to 2.0 times Asynchronous input and output timing (clock inputs) System clock inputs (input and output clocks independent) • 256fsi or 384fsi input system clock • 256fso or 384fso output system clock Deemphasis filter • IIR-type filter • 44.1, 48 or 32 kHz Digital attenuator • 11-bit data for 1025 levels • Smooth, incremental attenuation change • +12 dB gain shift function Direct mute function Through mode operation • Input to output direct Output data clocks (LRCO, BCKO) • External input (slave mode) • Output system clock generated internally (master mode) CMOS-level input/outputs 5 V (standard) single supply 44-pin QFP Molybdenum-gate CMOS process 0.17 +- 0.05 ■ ■ THRUN Functions BCKO DOUT FEATURES LRCO OCLK OCKSL PINOUT DMUTE The SM5844AF operates from a 5 V supply, and is available in 44-pin QFPs. ■ Digital audio equipment, sample rate conversion (audiovisual amplifiers, CD-R, DAT, MD and 8 mm VTRs) Commercial recording/editing equipment, sample rate conversion Input data jitter elimination MCOM MDT/FSI1 MDT/FSI2 NIPPON PRECISION CIRCUITS LTD. NIPPON PRECISION CIRCUITS—1 SM5844AF Filter Characteristics and Converter Efficiency ■ ■ ■ ■ ■ 20-bit internal data word length Deemphasis filter characteristics (IIR filter) • ±0.03 dB gain deviation from ideal filter characteristics Converter noise levels • ≤ −110 dB internally-generated noise • −98 dB (16-bit output), −110 dB (18-bit output) and −122 dB (20-bit output) word rounding noise Anti-aliasing LPF characteristics (4 FIR filters) with automatic output/input sample rate conversion ratio selection • Up converter LPF (1.0 to 2.0 times) • Down converter LPF 1 (48.0 to 44.1 kHz or 0.92 times) • Down converter LPF 2 (44.1 to 32.0 kHz or 0.73 times) • Down converter LPF 3 (48.0 to 32.0 kHz or 0.67 times) Output S/N ratio (theoretical values) S/N ratio Output signal word length 16 bits 16-bit input word length 20-bit input word length 94.8 dB 97 dB 18 bits 97.5 dB 106 dB 20 bits 97.7 dB 109 dB Interfaces ■ Input data format • 2s-complement, L/R alternating, serial • Normal format (non IIS) Mode W ord length 1 16 bits Front/rear p a cking Data sequence Rear 2 3 M S B fi rst 20 bits 4 ■ Front Rear LSB first Output data format • 2s-complement, MSB first, L/R alternating, serial • Continuous bit clock Mode W ord length 1 16 bits 2 18 bits 3 20 bits 4 20 bits 5 16 bits 6 18 bits 7 20 bits IIS selection Nor mal (non IIS) Front/rear p a cking Rear Front IIS NIPPON PRECISION CIRCUITS—2 SM5844AF BLOCK DIAGRAM IFM1 IFM2 MCOM MDT/FSI1 MCK/FSI2 BCKI DI Input data interface Deemphasis and attenuator setup MLEN/DEEM Arithmetic operations ICLK ICKSL LRCI RSTN Input-stage divider Deemphasis operation Input timing controller Attenuator Filter characteristic select Interpolation filter operation TST1N TST2N Output operation timing controller OW18N OW20N Output operation Dither Output format controller Output data interface IISN SLAVE OCLK OCKSL Output-stage clock select LRCI BCKI DI Output-stage divider Through mode switching Mute generator Direct mute THRUN DMUTE STATE LRCO BCKO DOUT NIPPON PRECISION CIRCUITS—3 SM5844AF PIN DESCRIPTION Number1 Name I/O 2 1, 2 DI Ip Data input 3, 4 BCKI Ip Input bit clock 5 LRCI3 Ip Input word clock (fsi) 6 ICLK I Input system clock input 7 ICKSL Ip Input system clock (ICLK) select. 384fsi when HIGH, and 256fsi when LOW . Description Input format select 8, 9 IFM1 Ip IFM1 IFM2 W ord length LOW LOW 16 bits LOW HIGH HIGH LOW HIGH HIGH Data sequence Data position Rear packed 10, 11 IFM2 Ip M S B fi rst 20 bits Front packed LSB first Rear packed 12, 13 VDD – 5 V supply pin 14, 15 DMUTE Ip Direct mute pin 16 MCOM Ip Interface switch control pin. M D T, MCK and MLEN control when HIGH. FSI1, FSI2 and DEEM control when LOW . Ip W h e n M C O M i s H I G H : Microcontroller interface data input (MDT) 17 18 19, 20 MDT/FSI1 MCK/FSI2 MLEN/DEEM Ip Ip W h e n M C O M i s L OW : Deemphasis frequency set pins W h e n M C O M i s H I G H : Microcontroller interface bit clock (MCK) FSI1 FSI2 fsi LOW HIGH 48.0 kHz × LOW 44.1 kHz HIGH HIGH 32.0 kHz W h e n M C O M i s H I G H : Microcontroller data word latch clock (MLEN) W h e n M C O M i s L OW : Deemphasis ON/OFF control (DEEM) Output format select When IISN = HIGH (nor mal mode) 21, 22 OW18N Ip OW20N OW18N LOW LOW W ord length Data position Front packed 20 bits LOW HIGH HIGH LOW 18 bits HIGH HIGH 16 bits OW20N OW18N W ord length LOW LOW LOW HIGH HIGH LOW 18 bits HIGH HIGH 16 bits Rear packed When IISN = LOW (IIS mode) 23, 24 OW20N Ip Data position 20 bits 25, 26 IISN Ip IIS output mode select. Normal mode when HIGH, and IIS mode when LOW . 27 S TAT E O Internal operation status output (for operation check) 28 TST1N Ip Output dither control. Dither ON when LOW , and OFF when HIGH. 29 TST2N Ip Test pin. Test mode when LOW . Normal operating mode when HIGH. IIS mode Front packed NIPPON PRECISION CIRCUITS—4 SM5844AF Number1 Name I/O 2 30, 31 RSTN Ip Reset pin 32, 33 VSS – 0 V ground pin 34, 35 S L AV E Ip B C K O and LRCO mode set. Outputs (master mode) when LOW , and inputs (slave mode) when HIGH. 36, 37 THRU N Ip DOUT through mode set. Normal mode when HIGH, and through mode when LOW . 38 OCKSL Ip Output system clock (OCLK) select. 384fso when HIGH, and 256fso when LOW . 39 OCLK I Output system clock input 40 LRCO3 I/O Output word clock input/output (fso). Input/output mode set by the level on SLAVE. 41, 42 B C KO I/O Output bit clock input/output. Input/output mode set by the level on SLAVE. 43, 44 DOUT O Data output Description 1. Pins which have the same name are connected internally. Accordingly, circuit connections can be made to either pin or to both pins. 2. I = input, Ip = Input with pull-up resistor (HIGH-level pins can be left open), O = output, I/O = input/output 3. fsi is the input word clock (LRCI) frequency, and fso is the output word clock (LRCO) frequency. SPECIFICATIONS Absolute Maximum Ratings VSS = 0 V P arameter Symbol Rating Unit Supply voltage range VDD −0.3 to 7.0 V Input voltage range V IN −0.3 to V D D + 0.3 V Storage temperature range T stg −40 to 125 °C Pow er dissipation PD 550 mW Soldering temperature T sld 255 °C Soldering time tsld 10 s Symbol Rating Unit Supply voltage range VDD 4.75 to 5.5 V Operating temperature range T opr −20 to 70 °C Recommended Operating Conditions VSS = 0 V P arameter NIPPON PRECISION CIRCUITS—5 SM5844AF DC Electrical Characteristics VDD = 4.75 to 5.5 V, VSS = 0 V, Ta = −20 to 70 °C P arameter Symbol Current consumption ID D Rating Condition Unit min typ max – – 80 mA V D D = 5.0 V 1 voltage 2 ,3 V IH 0.7V D D – – V L O W -level input voltage 2 ,3 V IL – – 0.3V D D V voltage 2 V A CI 0.3V D D – – V p-p HIGH-level output voltage 4 VOH IO H = −1.0 mA V D D − 0.5 – – V voltage 4 VOL HIGH-level input A C-coupled input L O W -level output IO L = 1.0 mA – – 0.4 V IIH V IN = V D D – 10 20 µA L O W -level input current 2 ,3 IIL V IN = 0 V – 10 20 µA Input leakage current 3 IL H V IN = V D D – – 1.0 µA 250 500 1000 kΩ HIGH-level input current 2 Pull-up resistance 3 R IH 1. ICKSL = LOW , OCKSL = LOW , fI C L K = 13.0 MHz, f O C L K = 13.0 MHz, no output load 2. Pins ICLK and OCLK. 3. Pins DI, BCKI, LRCI, ICKSL, IFM1, IFM2, DMUTE, MCOM, MDT/FSI1, MCK/FSI2, MLEN/DEEM, OW 1 8 N , OW20N, IISN, TST1N, T S T 2 N , R S T N , T H R U N , O C K S L a n d S L AVE. 4. P i n s D O U T, BCKO , LRCO and STATE. AC Electrical Characteristics VDD = 4.75 to 5.5 V, VSS = 0 V, Ta = −20 to 70 °C ICLK input P arameter Symbol L O W -level clock pulsewidth tC W L HIGH-level clock pulsewidth tC W H Clock pulse cycle tC Y Condition Rating ICKSL System clock min typ max LOW 256fsi 30 – – HIGH 384fsi 10 – – LOW 256fsi 30 – – HIGH 384fsi 10 – – LOW 256fsi 80 – 162 HIGH 384fsi 47 – 106 OCKSL System clock min typ max Unit ns ns ns OCLK input P arameter Symbol L O W -level clock pulsewidth tC W L HIGH-level clock pulsewidth tC W H Clock pulse cycle tC Y Condition Rating LOW 256fso 15 – – HIGH 384fso 10 – – LOW 256fso 15 – – HIGH 384fso 10 – – LOW 256fso 39 – 200 HIGH 384fso 26 – 130 Unit ns ns ns ICLK and OCLK timing >0.7VDD ICLK OCLK 0.5VDD <0.3VDD t CWH t CWL t CY NIPPON PRECISION CIRCUITS—6 SM5844AF BCKI, DI, LRCI inputs Rating P arameter Symbol Unit min typ max B C K I L OW -level pulsewidth tB C W L 1 50 – – ns BCKI HIGH-level pulsewidth tB C W H 1 50 – – ns tB C Y 1 100 – – ns DI setup time tD S 50 – – ns DI hold time tD H 50 – – ns Last BCKI rising edge to LRCI edge tB L 1 50 – – ns LRCI edge to first BCKI rising edge tL B 1 50 – – ns BCKI pulse cycle BCKI, DI, LRCI timing t BCY1 t BCWH1 t BCWL1 0.5VDD BCKI t DS t DH 0.5VDD DI t BL1 t LB1 0.5VDD LRCI BCKO, LRCO (Inputs when SLAVE = HIGH) Rating P arameter Symbol Unit min typ max B C K O L OW -level pulsewidth tB C W L 2 78 – – ns B C K O HIGH-level pulsewidth tB C W H 2 78 – – ns tB C Y 2 156 – – ns Last BCKO rising edge to LRCO edge tB L 2 78 – – ns LRCO edge to first BCKO rising edge tL B 2 78 – – ns B C K O pulse cycle 1 1. B C KO clock inputs exceeding 64fso cannot be detected, and will cause incorrect operation. NIPPON PRECISION CIRCUITS—7 SM5844AF BCKO, LRCO timing t BCY2 t BCWH2 t BCWL2 0.5VDD BCKO t BL2 t LB2 0.5VDD LRCO MDT, MCK, MLEN inputs Rating P arameter Symbol Unit min typ max M C K a n d M L E N r ise time 1 tr – – 100 ns MCK and MLEN fall time 1 tf – – 100 ns MDT setup time tM D S 50 – – ns MDT hold time tM D H 50 – – ns MLEN setup time tM C S 50 – – ns MLEN hold time tM C H 50 – – ns M L E N L OW -level pulsewidth tM E W L 50 – – ns MLEN HIGH-level pulsewidth tM E W H 50 – – ns 1. tr and t f are the input waveform transition times measured between 0.1V D D and 0.9V D D levels. MDT, MCK, MLEN timing 0.5VDD MDT t MDS t MDH 0.5VDD MCK t MCS t MCH 0.5VDD MLEN t MEWL t MEWH NIPPON PRECISION CIRCUITS—8 SM5844AF DEEM, DMUTE inputs Rating P arameter Symbol Unit min typ max Rise time tr – – 100 ns Fall time tf – – 100 ns DOUT, BCKO, LRCO input/outputs SLAVE = LOW (outputs), CL = 15 pF Rating P arameter Symbol Condition Unit min typ max LRCO pulse cycle tL O C Y – 1/fso – ns L R C O L OW -level pulsewidth tL O C L – 1/2fso – ns LRCO HIGH-level pulsewidth tL O C H – 1/2fso – ns O C K S L = L OW – 1/64fso – B C K O pulse cycle tB O C Y OCKSL = HIGH – 1/48fso – O C K S L = L OW – 1/128fso – OCKSL = HIGH – 1/96fso – O C K S L = L OW – 1/128fso – OCKSL = HIGH – 1/96fso – ts b H 1 From OCLK fall to BCKO rise 10 – 70 ns tsbL1 From OCLK fall to BCKO fall 10 – 70 ns ts b H 2 From OCLK fall to BCKO rise 15 – 80 ns tsbL2 From OCLK fall to BCKO fall 15 – 80 ns tb d H 1 Fr o m B C KO fall to DOUT rise 0 – 20 ns tb d L 1 Fr o m B C KO fall to DOUT fall 0 – 20 ns B C K O L OW -level pulsewidth B C K O HIGH-level pulsewidth O C L K t o B C KO delay time ( O C K S L = L OW ) O C L K t o B C KO delay time (OCKSL = HIGH) B C K O to DOUT and LRCO delay time tB O W L tB O W H ns ns ns SLAVE = HIGH (inputs), CL = 15 pF Rating P arameter Symbol Condition Unit min typ max tb d H 2 Fr o m B C KO fall to DOUT rise 10 – 100 ns tb d L 2 Fr o m B C KO fall to DOUT fall 10 – 100 ns B C K O to DOUT delay time NIPPON PRECISION CIRCUITS—9 SM5844AF DOUT, BCKO, LRCO timing OCLK BCKO t sbL1, t sbL2 t sbH1, t sbH2 t BOWH t BOWL t BOCY BCKO t bdH, t bdL DOUT t bdH t bdL LRCO t LOCH t LOCL t LROOY NIPPON PRECISION CIRCUITS—10 SM5844AF Filter Characteristics Anti-aliasing filter frequency characteristic 0 48k 20 48k 44.1k 32k 40 Attenuation (dB) 44.1k 32k Up conversion 60 80 100 120 140 0.250 0.300 0.350 0.400 0.450 Frequency (fs) 0.500 0.550 0.600 0.650 Deemphasis filter frequency characteristic 0 48.0 kHz 44.1 kHz 32 kHz 2 –20 4 –40 6 –60 Phase characteristic, Θ (°) Attenuation (dB) 0 48.0, 44.1 and 32 kHz 8 10 Phase Attenuation 12 10 20 50 100 200 500 1k Frequency (Hz) 2K 5k 10k 20k NIPPON PRECISION CIRCUITS—11 SM5844AF FUNCTIONAL DESCRIPTION Input Data Interface (DI, LRCI, BCKI, IFM1, IFM2) Mode IFM1 IFM2 W ord length 1 LOW LOW 16 bits 2 LOW HIGH 3 HIGH LOW 4 HIGH HIGH Data position Data sequence Rear packed M S B fi rst 20 bits Front packed Rear packed C o m m o n f eatures Non IIS L/R alternating Bit serial LSB first Attenuator and Deemphasis Selection The attenuator is set using the microcontroller interface. When the attenuator is used, deemphasis settings also need to be set using the microcontroller interface. The microcontroller interface comprises MDT, MCK and MLEN, and is used to receive all input serial data. Table 1. Attenuator and deemphasis function selection Function set method External pins ( M C O M = L OW ) Microcontroller interface flags (MCOM = HIGH) Deemphasis ON/OFF DEEM FDEEM Deemphasis frequency (fsi) select FSI1, FSI2 FFSI1, FFSI2 N/A (no attenuation) 11 bits (a1 to a11) Irreversible (test mode 1) FTST1, FTST2 Function Attenuator data set Test mode select When MCOM is HIGH, serial data received on MDT, MCK and MLEN sets the attenuation data and control flag data. When MCOM is LOW, the logic levels on FSI1, FSI2 and DEEM select the device function. NIPPON PRECISION CIRCUITS—12 SM5844AF Microcontroller Interface (MCOM, MDT, MCK, MLEN) When MCOM is HIGH, MDT (data), MCK (clock) and MLEN (latch enable clock) interface pins are used. latched into the mode register on the rising edge of the latch enable clock MLEN. The mode register addressed is determined by the 1st bit of the 12 data bits before MLEN goes HIGH. If this bit is LOW, then the data is read into the attenuation data register as shown in figure 1. If this bit is HIGH, then the data is read into the mode flag register as shown in figure 2. The function of each bit in the mode flag register is described in table 1. Input data on MDT is synchronized to the MCK clock. Data is read into the input stage shift register on the rising edge of MCK. Accordingly, the input data should change on the falling edge of MCK. Input data enters an internal SIPO (serial-to-parallel converter register), and then the parallel data is MDT B1 B2 B3 B4 B8 B9 B10 B11 LOW a0 a1 a2 a6 a7 a8 a9 MSB B12 a10 LSB MCK MLEN MCK and MLEN can also follow the dotted lines. Figure 1. Attenuation data format (B1 = LOW) B1 MDT HIGH B2 * * B5 Not used B6 B7 B8 B9 B10 B11 B12 FTST1 FTST2 FRATE F12DB FFSI1 FFSI2 FDEEM MCK MLEN MCK and MLEN can also follow the dotted lines. Figure 2. Mode flag data format (B1 = HIGH) NIPPON PRECISION CIRCUITS—13 SM5844AF Table 2. Mode flag description Mode function select B1 Bit Reset mode M o d e fl ag P arameter B2 to B5 L OW/HIGH Select Not used T S T 2 N = L OW B6 B7 B8 FTST1 FTST2 F R AT E Test mode select 1 Test mode select 2 B10 F12DB FFSI1 FTST1 Mode LOW LOW 0 LOW HIGH 1 HIGH LOW 2 HIGH HIGH 3 LOW Input/output sample rate ratio check after every output HIGH Input/output sample rate ratio check for high accuracy after every 2048 outputs LOW Nor mal operation (no shift) HIGH +12 dB gain shift LOW LOW LOW Input/output rate HIGH B9 FTST2 Attenuator LOW Deemphasis filter fs select 1 FFSI2 FFSI1 fsi LOW LOW LOW HIGH HIGH LOW 48.0 kHz HIGH HIGH 32.0 kHz LOW 44.1 kHz B11 B12 FFSI2 FDEEM Deemphasis filter fs select 2 Deemphasis control ON/OFF LOW Deemphasis filter OFF HIGH Deemphasis filter ON LOW LOW Deemphasis (DEEM, FSI1, FSI2 pins or FDEEM, FFSI1, FFSI2 flags) The digital deemphasis filter is an IIR filter with variable coefficients to faithfully reproduce the gain and phase characteristics of standard analog deemphasis filters. The filter coefficients are selected by FSI1 (or FFSI1 flag) and FSI2 (or FFSI2 flag) to correspond to the sampling frequencies fs = 44.1, 48.0 and 32.0 kHz. Table 3. Deemphasis ON/OFF W h e n M C O M = L OW When MCOM = HIGH Deemphasis DEEM = HIGH FDEEM = HIGH ON D E E M = L OW F D E E M = L OW OFF Table 4. Deemphasis fs select (FSI1, FSI2 pins or FFSI1, FFSI2 flags) M C O M = L OW ( M C O M = H I G H ) fs FSI1 (FFSI1) FSI2 (FFSI2) LOW LOW HIGH LOW LOW HIGH 48.0 kHz HIGH HIGH 32.0 kHz 44.1 kHz NIPPON PRECISION CIRCUITS—14 SM5844AF Attenuation (MDT, MCK, MLEN) The digital attenuator coefficients are read in as serial data on the microcontroller interface. Data on MDT is read into the internal shift register on the rising edge of MCK, and then 12 bits are latched internally on the rising edge of MLEN. MDT When the leading bit is 0 (B1 = LOW), the following 11 bits are read into the attenuation register and used as an unsigned integer in MSB first format. See figure 3. B1 B2 B3 B4 B8 B9 B10 B11 LOW a0 a1 a2 a6 a7 a8 a9 B12 a10 MSB LSB MCK MLEN MCK and MLEN can also follow the dotted lines. Figure 3. Attenuation data format (microcontroller interface) Although the attenuation data comprises 11 bits, only 1025 levels are valid as given by the following. 10 DATT = ∑ ai × 2 DATT Gain = 20 × log ---------------- [dB] 1024 when F12DB = LOW ( 10 – i ) i=0 DATT = 20 × log ---------------- [dB] 256 The gain of the attenuator for values of DATT from 001H to 400H are given by the following equations. Note that when the F12DB flag is HIGH, the gain is shifted by +12.0412 dB. when F12DB = HIGH After a system reset initialization, DATT is set to 400H and the F12DB flag is LOW, corresponding to 0 dB gain. (The F12DB flag is described in table 2.) Table 5. Attenuator settings F 1 2 D B = L OW (default) F12DB = HIGH Attenuation data DAT T Gain (dB) Linear expression Gain (dB) Linear expression 000H −∞ 0.0 −∞ 0.0 001H −60.206 1/1024 −48.165 1/256 ↓ ↓ ↓ ↓ ↓ 100H −12.041 256/1024 0.0 256/256 ↓ ↓ ↓ ↓ ↓ 3FFH −0.0085 1023/1024 12.032 1023/256 400H (to 7FFH) 0 1.0 12.041 4.0 NIPPON PRECISION CIRCUITS—15 SM5844AF Attenuator operation A change in the attenuation data DATT causes the gain to change smoothly from its previous value towards the new setting. The new attenuation data is stored in the attenuation data register and the current attenuation level is stored in a temporary register. Consequently, if a new attenuation level is read in before the previously set level is reached, the gain changes smoothly from the current value towards the latest setting as shown in figure 4. The attenuation counter output changes, and hence the gain changes, by 1 step every output sample. The time taken to reduce the gain from 0 dB (or 12 dB) to −∞ dB is (1024/fso), which corresponds to approximately 23.2 ms when fso = 44.1 kHz. Level 1 Level 5 0 dB Level 3 Gain Level 2 −∞ ∆t Level 4 Time Figure 4. Attenuator operation example NIPPON PRECISION CIRCUITS—16 SM5844AF Direct Mute (DMUTE) Direct mute ON/OFF Table 6. DMUTE operation DMUTE Function LOW Nor mal data is output from the next output word (mute OFF) HIGH 0 data is output from the next output word (mute ON) Reset mute Table 7. RSTN mute operation RSTN Function LOW 0 data is output from the next output word (mute ON) HIGH Nor mal data is output from the 3073rd output word ( m ute OFF) Internal operating status (STATE) Internally, all functions are performed using 20-bit serial data, and the conversion rate and filter type are automatically selected for output. Output data is in 20-bit front-packed format. Table 8. Bit function Output bit position 1st to 18th 19th 20th Content (Output data cycle/input data cycle) − 9 Ex. 1st 18th 00.1111111111110111 ⇒ 1.0 times 01.1111111111110111 ⇒ 2.0 times (1/2 conversion rate ratio) 00.0111111111110111 ⇒ 0.5 times (2.0 conversion rate ratio) DA1 DA0 Selected filter type DA1 DA0 Filter Mode 0 0 Up converter 1 1 0 44.1 to 48 kHz 2 0 1 32 to 44.1 kHz 3 1 1 32 to 48 kHz 4 Note that when THRUN is LOW, LRCO and BCKO are not guaranteed to be synchronized to the STATE output. NIPPON PRECISION CIRCUITS—17 SM5844AF System Clock Input system clock (ICLK, ICKSL) Output system clock (OCLK, OCKSL) The input system clock can be set to run at either 256fsi or 384fsi, where fsi is the input frequency on LRCI. The output system clock can be set to run at either 256fso or 384fso, where fso is the input frequency on LRCO. In through mode, OCLK and OCKSL have no function and are not used. Note that ICLK and LRCI should be divided from a common clock source or PLL to maintain synchronism. Table 9. ICLK system clock ICKSL ICLK system clock rate HIGH 384fsi LOW 256fsi Note that in slave mode, a suitable clock must be input on OCLK. The clock on OCLK should ideally have a protection circuit to prevent incorrect operation for times when the clock on ICLK is halted. Table 10. OCLK system clock S L AV E OCKSL O C L K s y s t e m clock rate HIGH 384fso LOW 256fso × Not used LOW HIGH Output data interface and output clock selection (LRCO, BCKO, DOUT, SLAVE) Table 11. Output mode description Function THRUN S L AV E Mode Description L R C O , B C KO state LOW Master mode Output word clock (LRCO) and output bit clock ( B C KO) are divided from OCLK. Outputs HIGH Slave mode Output word clock (LRCO) and output bit clock ( B C KO) are supplied externally. Inputs 1 Through mode Output word clock (LRCO), output bit clock ( B C KO) and output data (DOUT) are the same as LRCI, BCKI and DI, respectively. Outputs HIGH LOW × 1. The number of BCKO input clock cycles should not exceed 64 per word. Correct operation is not guaranteed beyond these limits. System Reset (RSTN) Through Mode (THRUN) At power-ON, all device functions must be reset. The device is reset by applying a LOW-level pulse on RSTN. At system reset, the internal arithmetic operation, output timing counter and internal flag register operation are synchronized on the next LRCI rising edge. Note that all flags are set to their defaults (all LOW). Table 12. THRUN operation THRUN Mode Description LOW Through mode Direct connections are made: LRCI to LRCO, BCKI to BCKO , and DI to D O U T. HIGH Nor mal mode Sample rate converter operation A power-ON reset signal can be applied from an external microcontroller. For systems where ICLK and LRCI are stable at power ON, initialization can be performed by connecting a 0.001 µF capacitor between RSTN and VSS. Otherwise, a capacitor value should be chosen such that RSTN does not go HIGH until after LRCI and ICLK have stabilized. NIPPON PRECISION CIRCUITS—18 SM5844AF Internal Arithmetic Timing Auto-reset Output Timing Calculation The clock on LRCI should pass through 1 cycle for every 384 (ICKSL = HIGH) or 256 (ICKSL = LOW) ICLK clock cycles to maintain correct internal arithmetic sequence. If the number of ICLK cycles is different, increases or decreases, or any jitter is present, device operation could be affected. The output timing is calculated to maintain the desired ratio between the output data cycle and the input data cycle. There is a fixed-value tolerance within which the internal sequence and LRCI clock timing are not adversely affected. Table 13. Clock tolerance ICKSL Allow a b le clock variation HIGH (384fs mode) +8/−6 cycles L O W (256fs mode) +4/−3 cycles The output is in MSB-first, 2s-complement, L/R alternating, bit serial format with a continuous bit clock. Table 14. Output format selection IISN 1 2 3 HIGH HIGH Output format OW20N OW18N HIGH W ord length HIGH LOW 18 bits LOW HIGH 20 bits LOW LOW 20 bits 5 HIGH HIGH 16 bits HIGH LOW 18 bits LOW × 20 bits 7 LOW Front/rear p a cking 16 bits 4 6 IIS selection Non IIS IIS The ratio between the output sample rate and input sample rate is measured automatically and the most suitable filter type for this ratio is selected automatically. Mode Filter fs ratio (fso/fsi) Selects range 1 Up converter 1.0 to 2.0 ≥ 0.97 2 48.0 to 44.1 kHz 0.91875 0.865 to 0.97 3 44.1 to 32.0 kHz 0.72562 0.711 to 0.865 4 48.0 to 32.0 kHz 0.66667 ≤ 0.711 When the selected fs conversion ratio and the actual sample rate conversion ratio do not coincide, the following phenomenon are generated. Output Format Control (OW18N, OW20N, IISN) Mode Conversion rates from 0.5 to 2.0 times are supported using the following 4 filter types. Table 15. fs ratio and filter selection Whenever the allowable tolerance is exceeded, the internal sequence is automatically reset so that the internal sequence matches the LRCI clock. When this occurs, there is a possibility that click noise will be generated. Inputs Filter Characteristic Selection Rear Table 16. fs ratio mismatch Condition Affect Actual sample rate conversion ratio is low er than the selected filter conversion ratio The audio band high-pass develops aliasing noise. Actual sample rate conversion ratio is higher than the selected filter conversion ratio The audio band high-pass is cut off. Note: An output noise may be generated if the fs conversion ratio changes at a rate greater than 0.057%/sec. Front NIPPON PRECISION CIRCUITS—19 SM5844AF TIMING DIAGRAMS Input Timing Examples (DI, BCKI, LRCI) Audio data input timing (rear-packed 16-bit word, IFM1 = LOW, IFM2 = LOW) 1/fs Left-channel data Right-channel data MSB DI 1 2 14 15 LSB MSB 16 1 LSB 2 14 15 16 BCKI LRCI Audio data input timing (rear-packed 20-bit word, IFM1 = LOW, IFM2 = HIGH) 1/fs Left-channel data Right-channel data MSB DI 1 2 18 19 LSB MSB 20 1 LSB 2 18 19 20 BCKI LRCI Audio data input timing (front-packed 20-bit word, IFM1 = HIGH, IFM2 = LOW) 1/fs Left-channel data Right-channel data MSB DI 1 2 3 19 LSB MSB 20 1 LSB 2 3 19 20 1 BCKI LRCI All data bits after the LSB (20th bit) are ignored. Accordingly, more than 20 BCKI cycles are required. NIPPON PRECISION CIRCUITS—20 SM5844AF Audio data input timing (rear-packed 20-bit word, LSB first, IFM1 = HIGH, IFM2 = HIGH) 1/fs Left-channel data Right-channel data LSB DI 1 2 18 MSB LSB 20 1 19 MSB 2 18 19 20 BCKI LRCI Output Timing Examples (DOUT, BCKO, LRCO) Audio data output timing (rear-packed 16-bit word) 1/fso Left-channel data Right-channel data MSB DOUT 1 2 15 LSB MSB 16 1 LSB 2 15 16 BCKO LRCO Audio data output timing (rear-packed 18-bit word) 1/fso Left-channel data Right-channel data MSB DOUT 1 2 17 LSB MSB 18 1 LSB 2 17 18 BCKO LRCO Audio data output timing (rear-packed 20-bit word) 1/fso Left-channel data Right-channel data MSB DOUT 1 2 19 LSB MSB 20 1 LSB 2 19 20 BCKO LRCO NIPPON PRECISION CIRCUITS—21 SM5844AF Audio data output timing (front-packed 20-bit word, OW18N = LOW, OW20N = LOW) 1/fso Left-channel data Right-channel data MSB DOUT 1 2 19 LSB MSB 20 1 LSB 2 19 20 BCKO LRCO Audio data output timing (IIS mode, front-packed 16/18/20-bit word selected by OW18N and OW20N) 1/fso Left-channel data Right-channel data MSB DOUT 1 2 16 17 18 19 LSB MSB 20 1 LSB 2 16 17 18 19 20 BCKO LRCO Data is output in 20-bit units. State Data Output Timing State data output timing (IISN = HIGH) 1/fso State data MSB STATE 1 LSB 2 19 20 BCKO LRCO State data output timing (IISN = LOW) 1/fso State data MSB STATE 1 LSB 2 19 20 BCKO LRCO NIPPON PRECISION CIRCUITS—22 SM5844AF Delay Time tINPUT is the time when the serial input data has been read in completely (on the rising edge of LRCI). tOUTPUT is the time when the serial output data has been read out completely (on the rising edge of LRCO). The delay between input and output is given by tOUTPUT − tINPUT = (49 ± 2)/fsi. 1/fs LRCI Serial data input 49 ±2 t input LRCO Serial data output 1/fso t output t INPUT t OUTPUT – t INPUT t OUTPUT NIPPON PRECISION CIRCUITS—23 SM5844AF TYPICAL APPLICATIONS Input Interface Circuits Digital audio interface receiver (PD0052) VCOOUT 384fs ICLK ICKSL DIR PD0052 LRCK LRCI BCK BCKI DI DATA MLEN/DEEM EMP 32k 44.1k SM5844AF MCOM MODE 48k MDT/FSI1 1FM1 MCK/FSI2 1FM2 Digital audio interface transceiver(YM3613) OCKSL OCLK SM5844AF 384fs 16.9344 MHz øA LRCO WCI BCKO BCI DOUT DIN IISN DIT YM3613 OW18N OW20N SEL THRUN SLAVE NIPPON PRECISION CIRCUITS—24 SM5844AF APPLICATION NOTE Delay in the slave mode In the slave mode , the delay (tbdH2, tbdL2)of DUOT from BCKO is MIN= 10ns, MAX= 100ns which is ratter wide width. As specified in AC Electrical Characteristics, and BCKO is prohibited from inputting longer than 64fso. When tbdH2, tbdL2 is maximum 100ns, ideal timing may not be attained for the following devise, depending on the OCLK cycle (example 1). Please use considering the timing in the following examples in the slave mode. (example 1) OCLK= 39ns(fs= 99.84kHz), OCKSL= L(256fs), BCKO(64fso)= 156ns, OW20N= L, OW 1 8 N = H LRCO BCKO (LSB) DOUT L2 100ns L1 100ns 156ns (example 2) OCLK= 59ns(fs= 44.1kHz), OCKSL= H(384fs), BCKO(64fso)= 354ns, OW20N= L, OW 1 8 N = H LRCO BCKO (LSB) DOUT L2 100ns L1 100ns 354ns NIPPON PRECISION CIRCUITS—25 SM5844AF NIPPON PRECISION CIRCUITS INC. reserves the right to make changes to the products described in this data sheet in order to improve the design or performance and to supply the best possible products. Nippon Precision Circuits Inc. assumes no responsibility for the use of any circuits shown in this data sheet, conveys no license under any patent or other rights, and makes no claim that the circuits are free from patent infringement. Applications for any devices shown in this data sheet are for illustration only and Nippon Precision Circuits Inc. makes no claim or warranty that such applications will be suitable for the use specified without further testing or modification. The products described in this data sheet are not intended to use for the apparatus which influence human lives due to the failure or malfunction of the products. Customers are requested to comply with applicable laws and regulations in effect now and hereinaft er, including compliance with export controls on the distribution or dissemination of the products. Customers shall not export, directly or indirectly, any products without first obtaining required licenses and approvals from appropriate government agencies. NIPPON PRECISION CIRCUITS INC. NIPPON PRECISION CIRCUITS LTD. 4-3, Fukuzumi 2 chome Koto-ku, Tokyo 135-8430, Japan Telephone: 03-3642-6661 Facsimile: 03-3642-6698 NC9308DE 2000.09 NIPPON PRECISION CIRCUITS—26