SS6642G 3-Pin Simple Step-Up DC/DC Converter FEATURES DESCRIPTION The SS6642G is a high efficiency step-up DC/DC converter for applications using 1 to 4 NiMH battery cells. Only three external components are required to deliver a fixed output voltage of 2.7V, 3.0V, 3.3V, 3.7V, 4.5V or 5V. The SS6642G starts up from less than 0.9V input with 1mA load. A Pulse Frequency Modulation scheme optimizes performance for applications with light output loading and low input voltages. The output ripple and noise are lower when compared with circuits operating in PSM mode. A guaranteed start-up from less than 0.9 V. High efficiency. Low quiescent current. Fewer external components needed. Low ripple and low noise. Fixed output voltage: 2.7V, 3.0V, 3.3V, 3.7V, 4.5V and 5V. Space-saving packages: SOT-23, SOT-89 and TO-92. Pb-free, RoHS compliant. APPLICATIONS The PFM control circuit operating at a 100KHz Pagers. Cameras. Wireless Microphones. Pocket Organizers. Battery Backup Suppliers. Portable Instruments. (max.) switching rate results in smaller passive components. The space saving SOT-23, SOT89 and TO-92 packages make the SS6642G an ideal choice for DC/DC converter for space conscious applications, such as pagers, electronic cameras, and wireless microphones. TYPICAL APPLICATION CIRCUIT VIN VOUT L1 100µH D1 SS12 SS6642-xxG + + C1 SW 22µF VOUT C2 47µF GND One Cell Step-Up DC/DC Converter 1/15/2005 Rev.2.10 www.SiliconStandard.com 1 of 22 SS6642G ORDERING INFORMATION PIN CONFIGURATION SS6642-XXXXXX Packing type TR: Tape and reel TB: Tube Package type GU: RoHS-compliant SOT-23 GX: RoHS-compliant SOT-89 GZ: RoHS-compliant TO-92 Output voltage 27: 2.7V 30: 3.0V 33: 3.3V 37: 3.7V 45: 4.5V 50: 5.0V SOT-89 TOP VIEW 1: GND 2: VOUT 3: SW 1 TO-92 TOP VIEW 1: GND 2: VOUT 3: SW 2 3 1 2 3 SOT-23 TOP VIEW 1: GND 2: SW 3: VOUT 3 1 2 Example: SS6642-27GXTR 2.7V output version, in RoHS-compliant SOT-89 shipped on tape and reel. SOT-23 MARKING Part No. GU SS6642-27G GM27P SS6642-30G GM30P SS6642-33G GM33P SS6642-37G GM37P SS6642-45G GM45P SS6642-50G GM50P SOT-89 MARKING 1/15/2005 Rev.2.10 Part No. GX SS6642-27G AM27P SS6642-30G AM30P SS6642-33G AM33P SS6642-37G AM37P SS6642-45G AM45P SS6642-50G AM50P www.SiliconStandard.com 2 of 22 SS6642G ABSOLUTE MAXIMUM RATINGS Supply Voltage (VOUT pin) .6V SW pin Voltage 6V SW pin Switch Current 0.6A Operating Temperature Range -40°C to 85°C Maximum Junction Temperature 125°C -65°C to 150°C Storage Temperature Range Lead Temperature (Soldering 10 Sec.) 260°C Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. TEST CIRCUIT VIN VOUT IIN D1 SS12 L1 100µH IS SS6642-xxG + C2 22µF SW VOUT SS6642 VOUT VS + C1 47µF SW VSW GND GND Fig. 1 Test Circuit 1 Fig. 2 Test Circuit 2 SS6642 100W VS VOUT SW FOSC GND Fig. 3 Test Circuit 3 1/15/2005 Rev.2.10 www.SiliconStandard.com 3 of 22 SS6642G ELECTRICAL CHARACTERISTICS (TA=25°C, IOUT=10mA, unless otherwise specified) (Note1) PARAMETER Output Voltage TEST CONDITIONS TEST CKT SYMBOL TYP. MAX. SS6642-27G VIN=1.8V 2.633 2.700 2.767 SS6642-30G VIN=1.8V 2.925 3.000 3.075 SS6642-33G VIN=2.0V 3.218 3.300 3.382 3.607 3.700 3.792 1 VOUT UNIT V SS6642-37G V IN=2.0V SS6642-45G VIN=3.0V 4.387 4.500 4.613 SS6642-50G VIN=3.0V 4.875 5.000 5.125 0.8 0.9 V 0.7 V Start-Up Voltage IOUT=1mA, VIN:0→2V 1 VSTART Min. Hold-on Voltage IOUT=1mA, VIN:2→0V 1 VHOLD No-Load Input Current IOUT=0mA 1 IIN Supply Current MIN. SS6642-27G 42 SS6642-30G 50 SS6642-33G 60 SS6642-37G 65 SS6642-45G 2 IS1 µA 15 µA 70 90 SS6642-50G VS=VOUT x 0.95 Measurement of the IC input current (VOUT pin) Supply Current SS6642-27G 7 SS6642-30G 7 SS6642-33G 7 SS6642-37G 7 SS6642-45G 2 IS2 µA 7 7 SS6642-50G VS=VOUT + 0.5V Measurement of the IC input current (VOUT pin) SW Leakage Current 1/15/2005 Rev.2.10 VSW=6V, VS=VOUT + 0.5V 2 www.SiliconStandard.com 0.5 µA 4 of 22 SS6642G ELECTRICAL CHARACTERISTICS PARAMETER (Continued) TEST CONDITIONS SYMBOL MIN. TYP. SS6642-27G 2.2 SS6642-30G 2.1 SS6642-33G 2.0 SS6642-37G SW Switch-On Resistance TEST CKT 2 SS6642-45G MAX. UNIT 2.0 RON Ω 1.9 1.9 SS6642-50G VS=VOUT x 0.95, VSW=0.4V VS=VOUT x 0.95 Oscillator Duty Cycle Measurement of the SW pin waveform 3 DUTY 65 75 85 % 3 FOSC 80 105 130 KHz 1 η VS=VOUT x 0.95 Max. Oscillator Freq. Measurement of the SW pin waveform Efficiency 85 % Note 1: Specifications are production tested at TA=25°C. Specifications over the -40°C to 85°C operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC). TYPICAL PERFORMANCE CHARACTERISTICS 2.8 85 2.7 80 2.6 VIN =1.5V VIN =1.8V VIN =2.0V V IN =1.2V 2.5 2.4 Efficiency (%) Output Voltage (V) Test circuit refer to typical application circuit Capacitor (C2) : 47 µ F (Tantalum Type) Diode (D1) : 1N5819 Schottky Type 75 VIN =1.8V 70 65 VIN =1.5V V IN =0.9V 60 2.3 VIN =1.2V VIN =0.9V 2.2 0 55 20 40 60 80 100 120 140 160 180 0 20 40 Fig. 4 SS6642-27 Load Regulation (L=100µH CD54) 60 80 100 120 140 160 180 Output current (mA) Output Current (mA) 1/15/2005 Rev.2.10 VIN =2.0V Fig. 5 SS6642-27 Efficiency (L=100µH CD54) www.SiliconStandard.com 5 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 2.8 (Continued) 85 80 2.7 Efficiency (%) Output Voltage (V) 75 2.6 VIN=1.5V VIN=1.2V VIN=2.0V VIN=1.8V 2.5 70 VIN=2.0V VIN=1.8V 65 60 VIN=1.2V 2.4 VIN=1.5V VIN=0.9V 55 VIN=0.9V 2.3 0 20 40 60 80 100 120 140 160 180 200 220 50 240 0 20 40 60 Output Current (mA) Fig. 6 SS6642-27 Load Regulation (L=47µH CD54) 120 140 160 180 220 240 200 1.0 0.9 0.9 0.8 Start up Input Voltage (V) 0.6 0.5 Hold on 0.4 Start up 0.8 0.7 Input Voltage (V) 100 Output current (mA) SS6642-27 Efficiency (L=47µH CD54) Fig. 7 1.0 80 0.3 0.2 0.7 0.6 0.5 Hold on 0.4 0.3 0.2 0.1 0.1 0.0 0 Fig. 8 2 4 6 8 10 12 14 16 0.0 18 0 2 4 6 8 10 12 14 16 18 Output Current (mA) Output Current (mA) SS6642-27 Start-Up & Hold-ON Voltage (L=47µH CD54) Fig. 9 SS6642-27 Start-Up & Hold-ON Voltage (L=100µH CD54) 2.80 160 2.78 Switching Frequency (kHz) 2.76 Output Voltage (V) 2.74 2.72 2.70 2.68 2.66 2.64 140 120 100 80 60 2.62 2.60 -40 -20 0 20 40 60 80 Temperature (°C) Fig. 10 SS6642-27 Output Voltage vs. Temperature 1/15/2005 Rev.2.10 100 40 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 11 SS6642-27 Switching Frequency vs. Temperature www.SiliconStandard.com 6 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 1.8 SW Turn ON Resistance (Ω) Maximum Duty Cycle (%) 80 (Continued) 78 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 0.0 -20 0 20 40 60 80 100 Temperature (°C) Fig. 12 SS6642-27 Maximum Duty Cycle vs. Temperature -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 13 SS6642-27 SW Turn ON Resistance vs. Temperature 45 3.1 VIN=2.0V 3.0 40 Output voltage VOUT(V) Supply Current (µA) 2.9 35 30 25 20 15 VIN=1.5V 2.8 VIN=1.8V 2.7 2.6 2.5 2.4 2.3 VIN=1.2V 2.2 10 VIN=0.9V 2.1 5 -40 -20 0 20 40 60 80 2.0 100 0 Temperature (°C) Fig. 14 SS6642-27 Supply Current vs. Temperature 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Output Current (mA) Fig. 15 SS6642-30 Load Regulation (L=100µH, CD54) 85 3.1 3.0 80 2.9 Output Voltage (V) Efficiency (%) 75 70 VIN=1.8V 65 60 VIN=2.0 VIN=1.2V 2.8 VIN=1.5V VIN=1.8V VIN=2.0V 2.7 2.6 2.5 VIN=1.5V 2.4 55 2.3 VIN=1.2V VIN=0.9V 2.2 50 0 20 40 60 80 100 120 140 160 180 VIN=0.9V 0 20 40 1/15/2005 Rev.2.10 80 100 120 140 160 180 200 220 Output Current (mA) Output Current (mA) Fig. 16 SS6642-30 Efficiency (L=100µH, CD54) 60 Fig. 17 SS6642-30 Load Regulation (L=47µH CD54) www.SiliconStandard.com 7 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 85 (Continued) 1.0 Start up 0.9 80 0.8 Input Voltage (V) Efficiency (%) 75 70 65 VIN=2.0V VIN=1.8V 60 0.7 0.6 Hold on 0.5 0.4 0.3 0.2 55 VIN=1.5V VIN=0.9V 50 0 0.1 VIN=1.2V 25 50 75 100 125 150 175 200 0.0 225 0 Output Current (mA) Fig. 18 Fig. 19 SS6642-30 Efficiency (L=47µH CD54) 4 6 8 10 12 14 16 18 20 Output Current (mA) SS6642-30 Start-up & Hold-on Voltage (L=100µH CD54) 3.10 1.0 3.08 Start up 0.9 3.06 Output Voltage (V) 0.8 Input Voltage (V) 2 0.7 0.6 0.5 Hold on 0.4 0.3 3.02 3.00 2.98 2.96 0.2 2.94 0.1 2.92 2.90 -40 0.0 0 2 4 6 8 10 12 14 16 18 No Load 3.04 20 -20 0 20 40 60 80 100 Temperature (°C) Fig. 21 SS6642-30 Output Voltage vs. Temperature Output Current (mA) Fig. 20 SS6642-30 Start-up & Hold-on Voltage (L=47µH CD54) 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 Temperature (°C) Fig. 22 SS6642-30 Switching Frequency vs. Temperature 1/15/2005 Rev.2.10 100 78 76 74 72 70 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 23 SS6642-30 Maximum Duty Cycle vs. Temperature www.SiliconStandard.com 8 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 45 1.8 1.6 40 1.4 35 Supply Current (µA) SW Turn ON Resistance (Ω) (Continued) 1.2 1.0 0.8 0.6 30 25 20 15 0.4 10 0.2 0.0 -40 Fig. 24 -20 0 20 40 60 80 5 -40 100 Temperature (°C) SS6642-30 SW Turn ON Resistance vs. Temperature -20 0 20 40 60 80 100 Temperature (°C) Fig. 25 SS6642-30 Supply Current vs. Temperature 90 3.4 VIN=2.0V 3.3 85 3.1 80 VIN=1.8V VIN=1.5V Efficiency (%) Output Voltage (V) 3.2 3.0 2.9 VIN=1.2V 2.8 2.7 2.6 VIN=2.0V 75 70 VIN=1.8V 65 60 VIN=1.2V 2.5 2.3 55 VIN=0.9V 2.4 0 25 50 75 100 125 150 175 50 200 VIN=0.9V 0 25 50 Output Current (mA) SS6642-33 Load Regulation (L=100µH, CD54) 90 3.3 85 3.2 80 VIN=1.5V VIN=2.0V VIN=1.8V 3.0 2.9 2.8 VIN=1.2V 2.4 0 25 50 75 175 200 VIN=2.0V 65 60 VIN=1.8V VIN=1.5V VIN=0.9V VIN=1.2V 45 100 125 150 175 200 Output Current (mA) Fig. 28 SS6642-33 Load Regulation (L=47µH, CD54) 1/15/2005 Rev.2.10 150 70 50 VIN=0.9V 2.5 125 75 55 2.7 2.6 100 SS6642-33 Efficiency (L=100µH, CD54) Fig. 27 3.4 3.1 75 Output Current (mA) Efficiency (%) Output Voltage (V) Fig. 26 VIN=1.5V 225 40 0 25 50 75 100 125 150 175 200 225 250 Output Current (mA) Fig. 29 www.SiliconStandard.com SS6642-33 Efficiency (L=47µH,CD54) 9 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 3.50 1.1 1.0 3.45 Output Voltage Vout (V) Start up 0.9 Input Voltage (V) 0.8 0.7 0.6 0.5 Hold on 0.4 0.3 0.2 3.40 3.35 No Load 3.30 3.25 3.20 3.15 3.10 3.05 0.1 0.0 (Continued) 0 2 4 6 8 10 12 14 16 18 3.00 -40 20 -20 0 20 40 60 80 100 Temperature (°C) Output Current (mA) Fig. 30 SS6642-33 Start-up & Hold-on Voltage (L=100µH CD54) Fig. 31 SS6642-33 Output Voltage vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 76 74 72 70 -40 1.8 45 1.6 40 1.4 1.2 1.0 0.8 0.6 0.4 -20 Fig. 33 Supply Current IDD1 (µA) SW Turn ON Resistance (Ω) Temperature (°C) Fig. 32 SS6642-33 Switching Frequency vs. Temperature 78 0 20 40 60 80 100 Temperature (°C) SS6642-33 Maximum Duty Cycle vs. Temperature 35 30 25 20 15 0.2 0.0 -40 Fig. 34 -20 0 20 40 60 80 100 Temperature (°C) SS6642-33 SW Turn ON Resistance vs. Temperature 1/15/2005 Rev.2.10 10 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 35 SS6642-33 Supply Current vs. Temperature www.SiliconStandard.com 10 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 90 3.8 3.7 85 3.6 80 VIN=1.2V 3.4 VIN=2.5V 3.3 VIN=1.8V 3.2 75 Efficiency (%) Output Voltage (V) 3.5 VIN =2.0V 3.1 3.0 2.9 2.8 2.7 VIN =2.5V 70 65 VIN=1.2V 60 VIN =0.9V 2.5 2.4 25 0 50 VIN=1.8V VIN=0.9V 45 75 100 125 150 175 200 225 250 40 275 0 Output Current (mA) Fig. 36 SS6642-37 Load Regulation (L=100µH) 75 100 125 150 175 200 225 250 85 3.6 3.5 80 3.4 VIN=2.5V 3.3 75 VIN=2.0V VIN=1.8V 3.2 Efficiency (%) Output Voltage (V) 50 90 3.7 3.1 3.0 2.9 VIN=1.2V 2.8 2.7 VIN=2.5V 70 65 VIN=1.8V 60 55 2.5 45 VIN=0.9V 2.4 0 25 50 75 VIN=2.0V VIN=0.9V VIN=1.2V 50 2.6 100 125 150 175 200 225 250 40 275 0 Output Current (mA) Fig. 38 SS6642-37 Load Regulation (L=47µH) 25 50 75 100 125 150 175 200 225 250 275 Output Current (mA) Fig. 39 SS6642-37 Efficiency (47µH) 4.00 1.6 3.95 1.4 3.90 3.85 Output Voltage (V) 1.2 Input Voltage (V) 25 Output Current (mA) Fig. 37 SS6642-37 Efficiency (100µH) 3.8 Start up 3.80 1.0 No Load 3.75 0.8 3.70 3.65 Hold on 0.6 3.60 0.4 3.55 3.50 0.2 0.0 VIN=2.0V 55 50 2.6 2.3 (Continued) 3.45 0 5 10 15 20 Output Current (mA) Fig. 40 SS6642-37 Start-up & Hold-on Voltage (L=100µH) 1/15/2005 Rev.2.10 3.40 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 41 SS6642-37 Output Voltage vs. Temperature www.SiliconStandard.com 11 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS (Continued) 80 Maximum Duty Cycle (%) Switching Frequency (KHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 76 74 72 70 -40 100 Temperature (°C) Fig. 42 SS6642-37 Switching Frequency vs. Temperature 78 -20 0 20 40 60 80 100 Temperature (°C) Fig. 43 SS6642-37 Maximum Duty Cycle vs Temperature 90 4.6 4.4 85 80 4.0 VIN=3.0V 3.8 Efficiency (%) Output Voltage (V) 4.2 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=0.9V 3.0 VIN=1.2V 75 70 VIN=3.0V 65 VIN=2.0V 60 VIN=1.5V 2.8 VIN=0.9V 55 2.6 2.4 VIN=1.2V 50 2.2 0 50 100 150 200 250 300 350 0 400 Output Current (mA) Fig. 44 SS6642-45 Load Regulation (L=100µH) 50 100 150 200 250 300 350 400 Output Current (mA) Fig. 45 SS6642-45 Efficiency (L=100µH) 1.6 4.6 4.4 1.4 1.2 4.0 VIN=3.0V 3.8 Input Voltage (V) Output Voltage (V) 4.2 VIN=1.5V 3.6 VIN=2.0V 3.4 3.2 VIN=0.9V 3.0 VIN=1.2V Start up 1.0 Hold on 0.8 0.6 0.4 2.8 2.6 0.2 2.4 0.0 2.2 0 50 100 150 200 250 300 350 Output Current (mA) Fig. 46 SS6642-45 Load Regulation (L=100µH) 1/15/2005 Rev.2.10 400 0 5 10 15 20 Output Current (mA) Fig. 47 SS6642-45 Start-up & Hold-On Voltage (L=100µH) www.SiliconStandard.com 12 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 5.0 90 4.9 80 4.7 4.6 70 Supply Current (µA) Output Voltage (V) 4.8 No Load 4.5 4.4 4.3 60 50 40 30 4.2 20 4.1 4.0 (Continued) -40 -20 0 20 40 60 80 10 100 -40 Temperature (°C) Fig. 48 SS6642-45 Output Voltage vs. Temperature -20 0 20 40 60 80 100 Temperature (°C) Fig. 49 SS6642-45 Supply Current vs. Temperature 80 Maximum Duty Cycle (%) Switching Frequency (kHz) 160 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 50 SS6642-45 Switching Frequency vs. Temperature 78 76 74 72 70 -40 0 20 40 60 80 100 Temperature (°C) Fig. 51 SS6642-45 Maximum Duty Cycle vs. Temperature 5.5 1.8 1.6 5.0 1.4 4.5 Output Voltage (V) SW Turn ON Resistance (Ω) -20 1.2 1.0 0.8 0.6 0.4 VIN=3.0V VIN=2.0V 4.0 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 VIN=0.9V 2.0 0.2 0.0 1.5 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 52 SS6642-45 SW Turn ON Resistance vs. Temperature 1/15/2005 Rev.2.10 0 50 100 150 200 250 300 350 400 Output Current (mA) Fig. 53 SS6642-50 Load Regulation ( L=100µH CD54) www.SiliconStandard.com 13 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 90 5.0 80 4.5 70 Output Voltage (V) 5.5 Efficiency (%) 100 VIN=3.0V VIN=2.0V 60 VIN=0.9V 50 VIN=1.5V VIN=1.2V 40 20 0 50 Fig. 54 100 150 200 250 300 350 3.5 VIN=1.5V 3.0 VIN=1.2V 2.5 VIN=0.9V 1.5 0 400 VIN=3.0V VIN=2.0V 4.0 2.0 30 (Continued) 50 100 150 200 250 300 350 400 Output Current (mA) Output Current (mA) SS6642-50 Efficiency (L=100µH CD54) Fig. 55 SS6642-50 Load Regulation (L=47µH CD54) 90 1.8 85 1.6 80 1.4 Input Voltage (V) Efficiency (%) 75 70 VIN=3.0V 65 60 VIN=2.0V 55 50 VIN=0.9V 45 0 50 VIN=1.5V 1.0 Start up 0.8 Hold on 0.6 0.4 VIN=1.2V 100 1.2 0.2 150 200 250 300 350 0.0 400 0 2 4 6 Output Current (mA) 8 10 12 14 16 18 20 Output Current (mA) Fig. 56 SS6642-50 Efficiency (L=47µH CD54) Fig. 57 SS6642-50 Start-up & Hold-on Voltage (L=100µH CD50) 5.3 160 Switching Frequency (kHz) Output Voltage VOUT (V) 5.2 5.1 No Load 5.0 4.9 4.8 4.7 4.6 4.5 4.4 -40 -20 0 20 40 60 80 Temperature (°C) Fig. 58 SS6642-50 Output Voltage vs. Temperature 1/15/2005 Rev.2.10 100 140 120 100 80 60 40 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 59 SS6642-50 Switching Frequency vs. Temperature www.SiliconStandard.com 14 of 22 SS6642G TYPICAL PERFORMANCE CHARACTERISTICS 1.8 SW Turn ON Resistance (Ω) Maximum Duty Cycle (%) 80 (Continued) 78 76 74 72 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 70 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 60 SS6642-50 Maximum Duty Cycle vs. Temperature 0.0 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 61 SS6642-50 SW Turn ON Resistance vs. Temperature 100 90 VOUT Supply Current IDD1 (µA) 80 50mV/div 70 60 10mA 50 40 Load Step 30 50mA/div 20 10 -40 -20 0 20 40 60 80 100 Temperature (°C) Fig. 62 SS6642-50 Supply Current vs. Temperature Fig. 63 Load Transient Response (L1=100µH, C2=47µF, VIN=2V) VOUT 20mv/div VIN 0.5V/div Fig. 64 Line Transient Response (L1=100µH, C2=47µF) 1/15/2005 Rev.2.10 www.SiliconStandard.com 15 of 22 SS6642G BLOCK DIAGRAM SW 1.25V REF. VOUT 1M + Enable GND OSC, 100KHz PIN DESCRIPTIONS PIN 1 : GND - Ground. Must be low impedance; solder directly to ground plane. PIN 3 : SW –Drain of the internal N-channel MOSFET switch. PIN 2 : VOUT - IC supply pin. Connect VOUT to the regulator output. 1/15/2005 Rev.2.10 www.SiliconStandard.com 16 of 22 SS6642G APPLICATION INFORMATION GENERAL DESCRIPTION The SS6642G PFM (pulse frequency modulation) controller IC combines a switch-mode regulator, Nchannel power MOSFET, precision voltage reference, and voltage detector in a single monolithic device. It offers extremely low quiescient current, high efficiency, and very low gate threshold voltage to ensure start-up with low battery voltage (0.8V typ.). Designed to maximize battery life in portable products, it minimizes switching losses by only switching as needed to service the load. PFM controllers transfer a discrete amount of energy per cycle and regulate the output voltage by modulating the switching frequency with a constant turn-on time. Switching frequency depends on load, input voltage, and inductor value, and it can range up to 100KHz. The SW on-resistance is typically 1.9 to 2.2Ω to minimize switch losses. When the output voltage drops, the error comparator enables the 100kHz oscillator that turns on the MOSFET for around 7.5us and off for 2.5us. Turning on the MOSFET allows inductor current to ramp up, storing energy in a magnetic field. When the MOSFET turns off, inductor current is forced through the diode to the output capacitor and load. As the stored energy is depleted, the current ramps down until the diode turns off. At this point, the inductor may ring due to residual energy and stray capacitance. The output capacitor stores charge when the current flowing through the diode is high, and releases it when the current is low, thereby maintaining a steady voltage across the load. or continuous conduction mode. Continuous conduction mode means that the inductor current does not ramp down to zero during each cycle. VIN IIN ID IOUT SW VOUT + EXT Isw Ico VEXT IIN IPK ISW Charge Co. ID IOUT TDIS VSW Discharge Co. t Discontinuous Conduction Mode As the load increases, the output capacitor discharges faster and the error comparator initiates cycles sooner, increasing the switching frequency. The maximum duty cycle ensures adequate time for energy transfer to the output during the second half of each cycle. Depending on the circuit, a PFM controller can operate in either discontinuous mode 1/15/2005 Rev.2.10 www.SiliconStandard.com 17 of 22 SS6642G In the continuous mode, the switching frequency is VEXT 1 (VOUT + VD − VIN) TON (VOUT + VD − VSW ) x VIN − VSW * [1 + ( )] 2 VOUT + VD − VSW 1 VOUT + VD − VIN ≅ TON VOUT + VD − VSW fSW = IIN IPK ISW where Vsw = switch drop and is proportional to output current. ID IOUT VSW t Continuous Conduction Mode Continuous Conduction Mode At the boundary between continuous and discontinuous modes, output current (IOB) is determined by In discontinuous mode operation, at the end of the switch ON time, peak current and energy in the inductor build according to where Vd is the diode drop, TON L RON= Switch turn-on resistance, RS= Inductor DC resistance TON = Switch ON time In the discontinuous mode, the switching frequency (Fsw) is Fsw = 2 * (L) * (VOUT + VD − VIN) * (IOUT) 1/15/2005 Rev.2.10 VIN 2 × TON 2 To operate as an efficient energy transfer element, the inductor must fulfill three requirements. First, the inductance must be low enough for the inductor to store adequate energy under the worst-case condition of minimum input voltage and switch ON time. Second, the inductance must also be high enough so that the maximum current rating of the SS6642 and the inductor are not exceeded at the other worstcase condition of maximum input voltage and ON time. Lastly, the inductor must have sufficiently low DC resistance so excessive power is not lost as heat in the windings. Unfortunately, this is inversely related to physical size. Minimum and maximum input voltage, output voltage and output current must be established in advance and then the inductor can be selected. VIN 1 VIN IOB = * TON * (1 − x ) * * VOUT 2 L x = (RON + RS ) * Inductor Selection (1 + x ) RON + Rs VIN IPK = * TON) * 1 − exp( − L RON + Rs x VIN ≅ * (TON) * 1 − 2 L ≅ VIN TON L (simple loss equation), where x = (RON + RS ) * www.SiliconStandard.com TON L 18 of 22 SS6642G EL = 1 L × Ipk 2 2 When loading is over IOB, the PFM controller operates in continuous mode. Inductor peak current can be derived from The power supplied by the inductor per cycle must be equal to or greater than PL/fSW = (VOUT + VD − VIN) * (IOUT) * ( 1 ) fsw x VOUT+ VD − VSW x VIN− VSW IPK = − * IOUT+ * TON * 1− V V 2 IN SW 2L − 2 in order for the converter to regulate the output. Valley current (Iv) is VOUT+ VD − VSW x VIN− VSW x IV = − * IOUT− * TON* 1− 2L 2 VIN− VSW 2 Table 1 Indicates resistance and height for each coil. Power Inductor Type Coilcraft SMT Type DS1608 (www.coilcraft.com) DO3316 Sumida SMT Type CD54 Hold SMT Type PM54 Hold SMT Type PM75 Inductance ( µH ) Rated Current Height (A) (mm) 22 0.10 0.7 47 0.18 0.5 100 0.38 0.3 22 0.08 2.7 47 0.14 1.8 47 0.25 0.7 100 0.50 0.5 47 0.25 0.7 100 0.50 0.5 33 0.11 1.2 Capacitor Selection A poor choice for an output capacitor can result in poor efficiency and high output ripple. Ordinary aluminum electrolytics, while inexpensive may have unacceptably poor ESR and ESL. There are low-ESR aluminum capacitors for switch mode DC-DC converters which work much better than general types. Tantalum capacitors provide still better performance but are more expensive. OSCON capacitors have extremely low ESR and small size. If capacitance is reduced, output ripple will increase. 1/15/2005 Rev.2.10 Resistance ( Ω ) 2.9 5.2 4.5 4.5 5.0 Most of the input supply is applied to the input bypass capacitor, so the capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage. Diode Selection Speed, forward drop, and leakage current are the three main considerations in selecting a rectifier diode. Best performance is obtained with Schottky rectifier diodes such as the 1N5819. SSC also has Schottkies for surface-mount. For lower output power a 1N4148 can be used, although efficiency and start-up voltage will suffer substantially. www.SiliconStandard.com 19 of 22 SS6642G The power dissipated in the MOSFET switch is Component Power Dissipation Operating in discontinuous mode, power loss in the winding resistance of the inductor can be approximated to PD L = 2 TON VOUT + VF * (POUT ) * (RD ) * 3 L VOUT where POUT=VOUT * IOUT; RS=Inductor DC R; PDSW = 2 TON VOUT + VD − VIN * (POUT ) * (RON) * 3 L VOUT The power dissipated in the rectifier diode is VD PDd = * (POUT ) VOUT VD = Diode drop. 1/15/2005 Rev.2.10 www.SiliconStandard.com 20 of 22 SS6642G PHYSICAL DIMENSIONS (unit: mm) All package options are Pb-free, RoHS compliant. SOT-23 (GU) D 0.25 E1 E c L e θ L1 e1 A2 A A1 b SYMBOL MIN MAX A 0.95 1.45 A1 0.05 0.15 A2 0.90 1.30 b 0.30 0.50 c 0.08 0.22 D 2.80 3.00 E 2.60 3.00 E1 1.50 1.70 e 0.95 BSC e1 1.90 BSC L 0.30 L1 0.60 0.60 REF θ 0˚ 8˚ SOT-89 (GX) D A SYMBOL MIN MAX C A 1.40 1.60 B 0.44 0.56 B1 0.36 0.48 C 0.35 0.44 D 4.40 4.60 D1 1.50 1.83 E 2.29 2.60 D1 H E L B e e1 1/15/2005 Rev.2.10 B1 e 1.50 BSC e1 3.00 BSC H 3.94 4.25 L 0.89 1.20 www.SiliconStandard.com 21 of 22 SS6642G TO-92 (GZ) SYMBOL MIN MAX A 4.32 5.33 b 0.36 0.47 D 4.45 5.20 E 3.18 4.19 e 2.42 2.66 e1 1.15 1.39 j 3.43 - L 12.70 - S 2.03 2.66 A D b S E L j e1 e Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties. 1/15/2005 Rev.2.10 www.SiliconStandard.com 22 of 22