STM32F100xC STM32F100xD STM32F100xE High-density value line, advanced ARM-based 32-bit MCU with 256 to 512 KB Flash, 16 timers, ADC, DAC & 11 comm interfaces Datasheet −production data Features ■ Core: ARM 32-bit Cortex™-M3 CPU – 24 MHz maximum frequency, 1.25 DMIPS /MHz (Dhrystone 2.1) performance – Single-cycle multiplication and hardware division ■ Memories – 256 to 512 Kbytes of Flash memory – 24 to 32 Kbytes of SRAM – Flexible static memory controller with 4 Chip Selects. Supports SRAM, PSRAM and NOR memories – LCD parallel interface, 8080/6800 modes ■ Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os – POR, PDR and programmable voltage detector (PVD) – 4-to-24 MHz crystal oscillator – Internal 8 MHz factory-trimmed RC – Internal 40 kHz RC – PLL for CPU clock – 32 kHz oscillator for RTC with calibration ■ Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers ■ Serial wire debug (SWD) and JTAG I/F ■ DMA – 12-channel DMA controller – Peripherals supported: timers, ADC, SPIs, I2Cs, USARTs and DACs ■ 1 × 12-bit, 1.2 µs A/D converter (up to 16 ch.) – Conversion range: 0 to 3.6 V – Temperature sensor ■ 2 × 12-bit D/A converters ■ Up to 112 fast I/O ports – 51/80/112 I/Os, all mappable on 16 external interrupt vectors and almost all 5 V-tolerant September 2012 This is information on a product in full production. LQFP144 20 × 20 mm LQFP100 14 × 14 mm LQFP64 10 × 10 mm ■ Up to 16 timers – Up to seven 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter – One 16-bit, 6-channel advanced-control timer: up to 6 channels for PWM output, dead time generation and emergency stop – One 16-bit timer, with 2 IC/OC, 1 OCN/PWM, dead-time generation and emergency stop – Two 16-bit timers, each with IC/OC/OCN/PWM, dead-time generation and emergency stop – Two watchdog timers – SysTick timer: 24-bit downcounter – Two 16-bit basic timers to drive the DAC ■ Up to 11 communications interfaces – Up to two I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 2 UARTs – Up to 3 SPIs (12 Mbit/s) – Consumer electronics control (CEC) I/F ■ CRC calculation unit, 96-bit unique ID Table 1. Device summary Reference Part number STM32F100xC STM32F100RC, STM32F100VC, STM32F100ZC STM32F100xD STM32F100RD, STM32F100VD, STM32F100ZD STM32F100xE STM32F100RE, STM32F100VE, STM32F100ZE Doc ID 15081 Rev 7 1/98 www.st.com 1 Contents STM32F100xC, STM32F100xD, STM32F100xE Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 2/98 2.1 Device overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.1 ARM® Cortex™-M3 core with embedded Flash and SRAM . . . . . . . . . 13 2.2.2 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.3 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . 13 2.2.4 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.5 FSMC (flexible static memory controller) . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.6 LCD parallel interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.7 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 14 2.2.8 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.9 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.10 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.2.11 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.12 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.13 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.14 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.15 DMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.16 RTC (real-time clock) and backup registers . . . . . . . . . . . . . . . . . . . . . . 16 2.2.17 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.18 I²C bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.19 Universal synchronous/asynchronous receiver transmitter (USART) . . 19 2.2.20 Universal asynchronous receiver transmitter (UART) . . . . . . . . . . . . . . 19 2.2.21 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.22 GPIOs (general-purpose inputs/outputs) . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.23 Remap capability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.24 ADC (analog-to-digital converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.25 DAC (digital-to-analog converter) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2.26 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.27 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . 21 Pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Contents 4 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1 6 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 5.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 5.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 5.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 5.3.2 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . 38 5.3.3 Embedded reset and power control block characteristics . . . . . . . . . . . 39 5.3.4 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.5 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.3.6 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 5.3.7 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.3.8 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 5.3.9 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.10 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 5.3.11 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 5.3.12 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . . 67 5.3.13 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 5.3.14 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.15 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 5.3.16 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.17 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 5.3.18 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.3.19 DAC electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 5.3.20 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Doc ID 15081 Rev 7 3/98 Contents STM32F100xC, STM32F100xD, STM32F100xE 6.2.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 6.2.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 93 7 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 8 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 4/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE List of tables List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. Table 41. Table 42. Table 43. Table 44. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F100xx features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 High-density STM32F100xx pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 Operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 39 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Maximum current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 Maximum current consumption in Run mode, code with data processing running from RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 STM32F100xxB maximum current consumption in Sleep mode, code running from Flash or RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Typical and maximum current consumptions in Stop and Standby modes . . . . . . . . . . . . 43 Typical current consumption in Run mode, code with data processing running from Flash . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 Typical current consumption in Sleep mode, code running from Flash or RAM . . . . . . . . . 45 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 HSE 4-24 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . 56 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . 57 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 64 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Doc ID 15081 Rev 7 5/98 List of tables Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. 6/98 STM32F100xC, STM32F100xD, STM32F100xE I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 SCL frequency (fPCLK1= 24 MHz, VDD = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 RAIN max for fADC = 12 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy - limited test conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 ADC accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 TS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data . . . . . . . . . . . . . 89 LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data . . . . . . . 90 LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data . . . . . . . . . 91 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. STM32F100xx value line block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 STM32F100xx value line LQFP144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 STM32F100xx value line LQFP100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 STM32F100xx value line in LQFP64 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . . 55 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . . 57 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . . 58 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . . 59 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . 64 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 Standard I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 Standard I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 5 V tolerant I/O input characteristics - CMOS port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5 V tolerant I/O input characteristics - TTL port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . . 84 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . . 84 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 LQFP144, 20 x 20 mm, 144-pin thin quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 LQFP100 – 14 x 14 mm, 100-pin low-profile quad flat package outline . . . . . . . . . . . . . . . 90 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package outline . . . . . . . . . . . . . . . . . 91 Recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 LQFP100 PD max vs. TA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 Doc ID 15081 Rev 7 7/98 Introduction 1 STM32F100xC, STM32F100xD, STM32F100xE Introduction This datasheet provides the ordering information and mechanical device characteristics of the STM32F100xC, STM32F100xD and STM32F100xE value line microcontrollers. In the rest of the document, the STM32F100xC, STM32F100xD and STM32F100xE are referred to as high-density value line devices. This STM32F100xC, STM32F100xD and STM32F100xE datasheet should be read in conjunction with the STM32F100xx high-density ARM-based 32-bit MCUs reference manual (RM0059). For information on programming, erasing and protection of the internal Flash memory please refer to the STM32F100xx high-density value line Flash programming manual (PM0072). The reference and Flash programming manuals are both available from the STMicroelectronics website www.st.com. For information on the Cortex™-M3 core please refer to the Cortex™-M3 Technical Reference Manual, available from the www.arm.com website at the following address: http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/. 8/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE 2 Description Description The STM32F100xx value line family incorporates the high-performance ARM Cortex™-M3 32-bit RISC core operating at a 24 MHz frequency, high-speed embedded memories (Flash memory up to 512 Kbytes and SRAM up to 32 Kbytes), a flexible static memory control (FSMC) interface (for devices offered in packages of 100 pins and more) and an extensive range of enhanced peripherals and I/Os connected to two APB buses. All devices offer standard communication interfaces (up to two I2Cs, three SPIs, one HDMI CEC, up to three USARTs and 2 UARTS), one 12-bit ADC, two 12-bit DACs, up to 9 general-purpose 16-bit timers and an advanced-control PWM timer. The STM32F100xx high-density value line family operates in the –40 to +85 °C and –40 to +105 °C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. The STM32F100xx value line family includes devices in three different packages ranging from 64 pins to 144 pins. Depending on the device chosen, different sets of peripherals are included, the description below gives an overview of the complete range of peripherals proposed in this family. These features make the STM32F100xx value line microcontroller family suitable for a wide range of applications such as motor drives, application control, medical and handheld equipment, PC and gaming peripherals, GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms, and HVACs. Doc ID 15081 Rev 7 9/98 Description STM32F100xC, STM32F100xD, STM32F100xE 2.1 Device overview Table 2. STM32F100xx features and peripheral counts Peripheral STM32F100Rx STM32F100Vx STM32F100Zx Flash - Kbytes 256 384 512 256 384 512 256 384 512 SRAM - Kbytes 24 32 32 24 32 32 24 32 32 FSMC No Yes (1) Yes Advanced-control 1 1 1 General-purpose 10 10 10 SPI 3 3 3 2 2 2 3 3 3 2 2 2 1 1 1 1 16 channels 1 16 channels 1 16 channels GPIOs 51 80 112 12-bit DAC Number of channels 2 2 2 2 2 2 Timers 2 I C Communication USART interfaces UART CEC 12-bit synchronized ADC number of channels CPU frequency 24 MHz Operating voltage Operating temperatures Packages 2.0 to 3.6 V Ambient operating temperature: –40 to +85 °C /–40 to +105 °C Junction temperature: –40 to +125 °C LQFP64 LQFP100 LQFP144 1. For the LQFP100 package, only FSMC Bank1 is available. Bank1 can only support a multiplexed NOR/PSRAM memory. 10/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE STM32F100xx value line block diagram NJTRST JTDI JTCK/SWCLK JTMS/SWDIO JTDO as AF JTAG & SW Ibus Cortex-M3 CPU Fmax : 24 MHz NVIC GP DMA Power VDD18 Voltage reg. 3.3 V to 1.8 V Flash 512 KB 32 bit SRAM 32 KB POR Reset Supply supervision Int POR / PDR @VDDA RC HS @VDDA 12 channels 80 AF EXT.I T WKUP PA[15:0] GPIO port A PB[15:0] GPIO port B @VDD XTAL OSC 4-24 MHz PLL Reset & clock control VSS NRST VDDA VSSA PVD RC LS FSMC VDD= 2.0 V to 3.6 V @VDD33 Dbus System A[25:0] D[15:0] CLK NOE NWE NE[3:0] NBL[1:0] NWAIT NADV as AF Trace controller pbus Flash obl interface as AF AHB : F max = 24 MHz TRACECLK TRACED[0:3] Bus matrix Figure 1. Description OSC_IN OSC_OUT IWDG PCLK1 PCLK2 HCLK FCLK Standby interface VBA T = 1.8 . V to 3.6 V @VBAT XTAL 32 kHz RTC AWU Backup register OSC32_IN OSC32_OUT TAM PER-RTC (ALARM OUT) Backup interface GPIO port D PE[15:0] GPIO port E PF[15:0] GPIO port F PG[15:0] GPIO port G 2 channels, 1 compl. channel and BKIN as AF TIM15 1 channel, 1 compl. channel and BKIN as AF TIM16 1 channel, 1 compl. channel and BKIN as AF TIM17 4 channels, 3 compl. channels, ETR and BKIN as AF TIM1 MOSI, MISO, SCK, NSS as AF SPI1 RX, TX, CTS, RTS, CK as AF 16 ADC channels (ADC_INx) V AHB2 APB 2 AHB2 APB1 APB1: Fmax = 24 MHz PD[15:0] GPIO port C APB2: Fmax = 24 MHz PC[15:0] TIM2 4 channels as AF TIM3 4 channels as AF TIM4 4 channels as AF TIM5 4 channels TIM12 2 channels as AF TIM13 1 channel as AF TIM14 1 channel as AF USART2 RX,TX, CTS, RTS, CK as AF USART3 RX,TX, CTS, RTS, CK as AF UART4 RX,TX, CTS, RTS, CK as AF UART5 RX,TX, CTS, R CK as AF USART1 Temp sensor WWDG 12-bit ADC1 IF SPI2 MOSI, MISO, SCK, NSS as AF SPI3 MOSI, MISO, SCK, NSS as AF REF+ V REF– TIM6 HDMI CEC @VDDA TIM7 HDMI CEC as AF I2C1 SCL, SDA, SMBA as AF I2C2 SCL, SDA, SMBA as AF 12-bit DAC1 DAC1_OUT as AF 12-bit DAC2 DAC2 _OUT as AF IF @VDDA ai17515b 1. AF = alternate function on I/O port pin. 2. TA = –40 °C to +85 °C (junction temperature up to 105 °C) or TA = –40 °C to +105 °C (junction temperature up to 125 °C). Doc ID 15081 Rev 7 11/98 Description STM32F100xC, STM32F100xD, STM32F100xE Figure 2. Clock tree )/,7)&/. WR)ODVKSURJUDPPLQJLQWHUIDFH 0+] +6,5& +6, 3HULSKHUDOFORFN )60&/. (QDEOH +&/. WR$+%EXVFRUH PHPRU\DQG'0$ 0+]PD[ 3//65& 6: 3//08/ +6, [ [[[ 3// 6<6&/. $+% 3UHVFDOHU 0+] PD[ 3//&/. +6( 0+] $3% 3UHVFDOHU +6(26& 26&B287 3HULSKHUDO&ORFN (QDEOH /6(26& N+] WR57& /6( 3&/. WR$3% SHULSKHUDOV WR7,0 7,0[&/. 57&&/. $'& 3UHVFDOHU 3&/. 0+]PD[ 3HULSKHUDO&ORFN (QDEOH 7,0WLPHUV ,I$3%SUHVFDOHU [ HOVH[ 26&B,1 0+]PD[ 3HULSKHUDO&ORFN (QDEOH 35(',9 26&B,1 WR&RUWH[6\VWHPWLPHU )&/.&RUWH[ IUHHUXQQLQJFORFN 7,0 ,I$3%SUHVFDOHU [ HOVH[ &66 26&B287 &ORFN (QDEOH $3% 3UHVFDOHU WR)60& SHULSKHUDOVWR$3% WR7,07,0 7,0DQG7,0 7,0[&/. 3HULSKHUDO&ORFN (QDEOH WR$'& $'&&/.0+]PD[ 57&6(/>@ /6,5& N+] 0&2 WRLQGHSHQGHQWZDWFKGRJ,:'* /6, ,:'*&/. 0DLQ FORF NRXW SXW 3//&/. +6, /HJHQG +6( +LJKVSHHGH[WHUQDOFORFNVLJQDO +6, +LJKVSHHGLQWHUQDOFORFNVLJQDO +6( /6, /RZVSHHGLQWHUQDOFORFNVLJQDO 6<6&/. /6( /RZVSHHGH[WHUQDOFORFNVLJQDO 0&2 DL 1. To obtain an ADC conversion time of 1.2 µs, APB2 must be at 24 MHz. 12/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE 2.2 Overview 2.2.1 ARM® Cortex™-M3 core with embedded Flash and SRAM Description The ARM Cortex™-M3 processor is the latest generation of ARM processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. The ARM Cortex™-M3 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices. The STM32F100xx value line family having an embedded ARM core, is therefore compatible with all ARM tools and software. 2.2.2 Embedded Flash memory Up to 512 Kbytes of embedded Flash memory is available for storing programs and data. 2.2.3 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location. 2.2.4 Embedded SRAM Up to 32 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states. 2.2.5 FSMC (flexible static memory controller) The FSMC is embedded in the high-density value line family. It has four Chip Select outputs supporting the following modes: SRAM, PSRAM, and NOR. Functionality overview: 2.2.6 ● The three FSMC interrupt lines are ORed in order to be connected to the NVIC ● No read FIFO ● Code execution from external memory ● No boot capability ● The targeted frequency is HCLK/2, so external access is at 12 MHz when HCLK is at 24 MHz LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to Doc ID 15081 Rev 7 13/98 Description STM32F100xC, STM32F100xD, STM32F100xE specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or highperformance solutions using external controllers with dedicated acceleration. 2.2.7 Nested vectored interrupt controller (NVIC) The STM32F100xx value line embeds a nested vectored interrupt controller able to handle up to 60 maskable interrupt channels (not including the 16 interrupt lines of Cortex™-M3) and 16 priority levels. ● Closely coupled NVIC gives low latency interrupt processing ● Interrupt entry vector table address passed directly to the core ● Closely coupled NVIC core interface ● Allows early processing of interrupts ● Processing of late arriving higher priority interrupts ● Support for tail-chaining ● Processor state automatically saved ● Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimal interrupt latency. 2.2.8 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 18 edge detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 112 GPIOs can be connected to the 16 external interrupt lines. 2.2.9 Clocks and startup System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-24 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator). Several prescalers allow the configuration of the AHB frequency, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB domains is 24 MHz. 2.2.10 Boot modes At startup, boot pins are used to select one of three boot options: 14/98 ● Boot from user Flash ● Boot from system memory ● Boot from embedded SRAM Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Description The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART1. For further details please refer to AN2606. 2.2.11 2.2.12 Power supply schemes ● VDD = 2.0 to 3.6 V: External power supply for I/Os and the internal regulator. Provided externally through VDD pins. ● VSSA, VDDA = 2.0 to 3.6 V: External analog power supplies for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to VDDA is 2.4 V when the ADC or DAC is used). VDDA and VSSA must be connected to VDD and VSS, respectively. ● VBAT = 1.8 to 3.6 V: Power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. Power supply supervisor The device has an integrated power on reset (POR)/power down reset (PDR) circuitry. It is always active, and ensures proper operation starting from/down to 2 V. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR, without the need for an external reset circuit. The device features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 2.2.13 Voltage regulator The regulator has three operation modes: main (MR), low power (LPR) and power down. ● MR is used in the nominal regulation mode (Run) ● LPR is used in the Stop mode ● Power down is used in Standby mode: the regulator output is in high impedance: the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost) This regulator is always enabled after reset. It is disabled in Standby mode, providing high impedance output. 2.2.14 Low-power modes The STM32F100xx value line supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: ● Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. ● Stop mode Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put Doc ID 15081 Rev 7 15/98 Description STM32F100xC, STM32F100xD, STM32F100xE either in normal or in low power mode. The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output or the RTC alarm. ● Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry. The device exits Standby mode when an external reset (NRST pin), a IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs. Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode. 2.2.15 DMA The flexible 12-channel general-purpose DMA is able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. The two DMA controllers support circular buffer management avoiding the generation of interrupts when the controller reaches the end of the buffer. Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: SPI, DAC, I2C, USART, all timers and ADC. 2.2.16 RTC (real-time clock) and backup registers The RTC and the backup registers are supplied through a switch that takes power either on VDD supply when present or through the VBAT pin. The backup registers are ten 16-bit registers used to store 20 bytes of user application data when VDD power is not present. The real-time clock provides a set of continuously running counters which can be used with suitable software to provide a clock calendar function, and provides an alarm interrupt and a periodic interrupt. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low power RC oscillator or the high-speed external clock divided by 128. The internal low power RC has a typical frequency of 40 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural crystal deviation. The RTC features a 32-bit programmable counter for long term measurement using the Compare register to generate an alarm. A 20-bit prescaler is used for the time base clock and is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. 2.2.17 Timers and watchdogs The STM32F100xx devices include an advanced-control timer, nine general-purpose timers, two basic timers and two watchdog timers. Table 3 compares the features of the advanced-control, general-purpose and basic timers. 16/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 3. Description Timer feature comparison Timer Counter resolution Counter type Prescaler factor DMA request Capture/compare Complementary generation channels outputs TIM1 16-bit Up, down, up/down 16 bits Yes 4 Yes TIM2, TIM3, TIM4, TIM5 16-bit Up, down, up/down Any integer between 1 and 65536 Yes 4 No TIM12 16-bit Up Any integer between 1 and 65536 No 2 No TIM13, TIM14 16-bit Up Any integer between 1 and 65536 No 1 No TIM15 16-bit Up Any integer between 1 and 65536 Yes 2 Yes TIM16, TIM17 16-bit Up Any integer between 1 and 65536 Yes 1 Yes TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No Advanced-control timer (TIM1) The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6 channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The 4 independent channels can be used for: ● Input capture ● Output compare ● PWM generation (edge or center-aligned modes) ● One-pulse mode output If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%). The counter can be frozen in debug mode. Many features are shared with those of the standard TIM timers which have the same architecture. The advanced control timer can therefore work together with the TIM timers via the Timer Link feature for synchronization or event chaining. General-purpose timers (TIM2..5, TIM12..17) There are ten synchronizable general-purpose timers embedded in the STM32F100xx devices (see Table 3 for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base. Doc ID 15081 Rev 7 17/98 Description STM32F100xC, STM32F100xD, STM32F100xE TIM2, TIM3, TIM4, TIM5 STM32F100xx devices feature four synchronizable 4-channel general-purpose timers. These timers are based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or onepulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages. The TIM2, TIM3, TIM4, TIM5 general-purpose timers can work together or with the TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. TIM2, TIM3, TIM4, TIM5 all have independent DMA request generation. These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. Their counters can be frozen in debug mode. TIM12, TIM13 and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM12 has two independent channels, whereas TIM13 and TIM14 feature one single channel for input capture/output compare, PWM or one-pulse mode output. Their counters can be frozen in debug mode. TIM15, TIM16 and TIM17 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output. The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining. TIM15 can be synchronized with TIM16 and TIM17. TIM15, TIM16, and TIM17 have a complementary output with dead-time generation and independent DMA request generation Their counters can be frozen in debug mode. Basic timers TIM6 and TIM7 These timers are mainly used for DAC trigger generation. They can also be used as a generic 16-bit time base. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode. 18/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Description Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. SysTick timer This timer is dedicated for OS, but could also be used as a standard down counter. It features: 2.2.18 ● A 24-bit down counter ● Autoreload capability ● Maskable system interrupt generation when the counter reaches 0. ● Programmable clock source I²C bus The I²C bus interface can operate in multimaster and slave modes. It can support standard and fast modes. It supports dual slave addressing (7-bit only) and both 7/10-bit addressing in master mode. A hardware CRC generation/verification is embedded. The interface can be served by DMA and it supports SM Bus 2.0/PM Bus. 2.2.19 Universal synchronous/asynchronous receiver transmitter (USART) The STM32F100xx value line embeds three universal synchronous/asynchronous receiver transmitters (USART1, USART2 and USART3). The available USART interfaces communicate at up to 3 Mbit/s. They provide hardware management of the CTS and RTS signals, they support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The USART interfaces can be served by the DMA controller. 2.2.20 Universal asynchronous receiver transmitter (UART) The STM32F100xx value line embeds 2 universal asynchronous receiver transmitters (UART4, and UART5). The available UART interfaces support IrDA SIR ENDEC, the multiprocessor communication mode, the single-wire half-duplex communication mode and have LIN Master/Slave capability. The UART interfaces can be served by the DMA controller. 2.2.21 Serial peripheral interface (SPI) Up to three SPIs are able to communicate up to 12 Mbit/s in slave and master modes in fullduplex and simplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The SPIs can be served by the DMA controller. Doc ID 15081 Rev 7 19/98 Description STM32F100xC, STM32F100xD, STM32F100xE HDMI (high-definition multimedia interface) consumer electronics control (CEC) The STM32F100xx value line embeds a HDMI-CEC controller that provides hardware support of consumer electronics control (CEC) (Appendix supplement 1 to the HDMI standard). This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. 2.2.22 GPIOs (general-purpose inputs/outputs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable. The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers. 2.2.23 Remap capability This feature allows the use of a maximum number of peripherals in a given application. Indeed, alternate functions are available not only on the default pins but also on other specific pins onto which they are remappable. This has the advantage of making board design and port usage much more flexible. For details refer to Table 4: High-density STM32F100xx pin definitions; it shows the list of remappable alternate functions and the pins onto which they can be remapped. See the STM32F100xx reference manual for software considerations. 2.2.24 ADC (analog-to-digital converter) The 12-bit analog to digital converter has up to 16 external channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. 2.2.25 DAC (digital-to-analog converter) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in noninverting configuration. 20/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Description This dual digital Interface supports the following features: ● two DAC converters: one for each output channel ● up to 10-bit output ● left or right data alignment in 12-bit mode ● synchronized update capability ● noise-wave generation ● triangular-wave generation ● dual DAC channels’ independent or simultaneous conversions ● DMA capability for each channel ● external triggers for conversion ● input voltage reference VREF+ Eight DAC trigger inputs are used in the STM32F100xx. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 2.2.26 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 2 V < VDDA < 3.6 V. The temperature sensor is internally connected to the ADC1_IN16 input channel which is used to convert the sensor output voltage into a digital value. 2.2.27 Serial wire JTAG debug port (SWJ-DP) The ARM SWJ-DP Interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. The JTAG TMS and TCK pins are shared respectively with SWDIO and SWCLK and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. Doc ID 15081 Rev 7 21/98 Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE Pinouts and pin descriptions Figure 3. STM32F100xx value line LQFP144 pinout 144 143 142 141 140 139 138 137 136 135 134 133 132 131 130 129 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113 112 111 110 109 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PG15 VDD_11 VSS_11 PG14 PG13 PG12 PG11 PG10 PG9 PD7 PD6 VDD_10 VSS_10 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 LQFP144 108 107 106 105 104 103 102 101 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 VDD_2 VSS_2 NC PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 VDD_9 VSS_9 PG8 PG7 PG6 PG5 PG4 PG3 PG2 PD15 PD14 VDD_8 VSS_8 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 VSS_6 VDD_6 PF13 PF14 PF15 PG0 PG1 PE7 PE8 PE9 VSS_7 VDD_7 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PF11 PF12 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PF0 PF1 PF2 PF3 PF4 PF5 VSS_5 VDD_5 PF6 PF7 PF8 PF9 PF10 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14667 22/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE STM32F100xx value line LQFP100 pinout 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 VDD_3 VSS_3 PE1 PE0 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD7 PD6 PD5 PD4 PD3 PD2 PD1 PD0 PC12 PC11 PC10 PA15 PA14 Figure 4. Pinouts and pin descriptions LQFP100 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56 55 54 53 52 51 VDD_2 VSS_2 NC PA 13 PA 12 PA 11 PA 10 PA 9 PA 8 PC9 PC8 PC7 PC6 PD15 PD14 PD13 PD12 PD11 PD10 PD9 PD8 PB15 PB14 PB13 PB12 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PE7 PE8 PE9 PE10 PE11 PE12 PE13 PE14 PE15 PB10 PB11 VSS_1 VDD_1 PE2 PE3 PE4 PE5 PE6 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT VSS_5 VDD_5 OSC_IN OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VREFVREF+ VDDA PA0-WKUP PA1 PA2 ai14391 Doc ID 15081 Rev 7 23/98 Pinouts and pin descriptions STM32F100xx value line in LQFP64 pinout VDD_3 VSS_3 PB9 PB8 BOOT0 PB7 PB6 PB5 PB4 PB3 PD2 PC12 PC11 PC10 PA15 PA14 Figure 5. STM32F100xC, STM32F100xD, STM32F100xE 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 47 2 46 3 45 4 44 5 43 6 42 7 41 8 LQFP64 40 9 39 10 38 11 37 12 36 13 35 14 34 15 33 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 VDD_2 VSS_2 PA13 PA12 PA11 PA10 PA9 PA8 PC9 PC8 PC7 PC6 PB15 PB14 PB13 PB12 PA3 VSS_4 VDD_4 PA4 PA5 PA6 PA7 PC4 PC5 PB0 PB1 PB2 PB10 PB11 VSS_1 VDD_1 VBAT PC13-TAMPER-RTC PC14-OSC32_IN PC15-OSC32_OUT PD0 OSC_IN PD1 OSC_OUT NRST PC0 PC1 PC2 PC3 VSSA VDDA PA0-WKUP PA1 PA2 ai14392 High-density STM32F100xx pin definitions LQFP100 LQFP64 Pin name Type(1) I / O Level(2) Main function(3) (after reset) 1 1 - PE2 I/O FT PE2 TRACECK/ FSMC_A23 2 2 - PE3 I/O FT PE3 TRACED0/FSMC_A19 3 3 - PE4 I/O FT PE4 TRACED1/FSMC_A20 4 4 - PE5 I/O FT PE5 TRACED2/FSMC_A21 5 5 - PE6 I/O FT PE6 TRACED3/FSMC_A22 6 6 1 VBAT S 7 7 2 8 8 3 9 9 4 10 - - PF0 11 - - 12 - 13 14 Pins 24/98 Alternate functions(4) LQFP144 Table 4. PC13-TAMPERI/O RTC(5) Default VBAT PC13(6) TAMPER-RTC I/O PC14(6) OSC32_IN PC15I/O OSC32_OUT(5) PC15(6) OSC32_OUT I/O FT PF0 FSMC_A0 PF1 I/O FT PF1 FSMC_A1 - PF2 I/O FT PF2 FSMC_A2 - - PF3 I/O FT PF3 FSMC_A3 - - PF4 I/O FT PF4 FSMC_A4 PC14OSC32_IN(5) Doc ID 15081 Rev 7 Remap STM32F100xC, STM32F100xD, STM32F100xE High-density STM32F100xx pin definitions (continued) LQFP100 LQFP64 Pin name 15 - - PF5 Type(1) LQFP144 Pins I / O Level(2) Table 4. Pinouts and pin descriptions I/O FT Alternate functions(4) Main function(3) (after reset) Default PF5 FSMC_A5 Remap 16 10 - VSS_5 S VSS_5 17 11 - VDD_5 S VDD_5 18 - - PF6 I/O PF6 19 - - PF7 I/O PF7 20 - - PF8 I/O PF8 21 - - PF9 I/O PF9 22 - - PF10 I/O PF10 23 12 5 OSC_IN I OSC_IN PD0(7) 24 13 6 OSC_OUT O OSC_OUT PD1(7) 25 14 7 NRST I/O NRST 26 15 8 PC0 I/O PC0 ADC_IN10 27 16 9 PC1 I/O PC1 ADC_IN11 28 17 10 PC2 I/O PC2 ADC_IN12 29 18 11 PC3 I/O PC3 ADC_IN13 30 19 12 VSSA S VSSA 31 20 - VREF- S VREF- 32 21 - VREF+ S VREF+ VDDA S VDDA 33 22 13 34 23 14 35 24 15 36 25 16 PA0-WKUP PA1 PA2 I/O I/O I/O PA0 WKUP/USART2_CTS(8) ADC_IN0 TIM2_CH1_ETR TIM5_CH1 PA1 USART2_RTS(8) ADC_IN1/ TIM5_CH2/TIM2_CH2(8) PA2 USART2_TX(8)/TIM5_CH3 ADC_IN2/ TIM15_CH1 TIM2_CH3 (8) USART2_RX(8)/TIM5_CH4 ADC_IN3/TIM2_CH4(8) / TIM15_CH2 37 26 17 PA3 I/O PA3 38 27 18 VSS_4 S VSS_4 39 28 19 VDD_4 S VDD_4 Doc ID 15081 Rev 7 25/98 Pinouts and pin descriptions High-density STM32F100xx pin definitions (continued) Alternate functions(4) Main function(3) (after reset) Default Remap 40 29 20 PA4 I/O PA4 SPI1_NSS(8)/ USART2_CK(8) DAC_OUT1/ADC_IN4 41 30 21 PA5 I/O PA5 SPI1_SCK(8) DAC_OUT2/ADC_IN5 PA6 SPI1_MISO(8)/ ADC_IN6 / TIM3_CH1(8) TIM1_BKIN / TIM16_CH1 TIM1_CH1N/ TIM17_CH1 42 31 22 26/98 Pin name Type(1) LQFP64 LQFP100 LQFP144 Pins I / O Level(2) Table 4. STM32F100xC, STM32F100xD, STM32F100xE PA6 I/O 43 32 23 PA7 I/O PA7 SPI1_MOSI(8)/ ADC_IN7 / TIM3_CH2(8) 44 33 24 PC4 I/O PC4 ADC_IN14 / TIM12_CH1 45 34 25 PC5 I/O PC5 ADC_IN15 / TIM12_CH2 46 35 26 PB0 I/O PB0 47 36 27 PB1 I/O PB1 48 37 28 PB2 I/O FT PB2/BOOT1 49 - - PF11 I/O FT PF11 50 - - PF12 I/O FT PF12 51 - - VSS_6 S VSS_6 52 - - VDD_6 S VDD_6 53 - - PF13 I/O FT PF13 FSMC_A7 54 - - PF14 I/O FT PF14 FSMC_A8 55 - - PF15 I/O FT PF15 FSMC_A9 56 - - PG0 I/O FT PG0 FSMC_A10 57 - - PG1 I/O FT PG1 FSMC_A11 58 38 - PE7 I/O FT PE7 FSMC_D4 TIM1_ETR 59 39 - PE8 I/O FT PE8 FSMC_D5 TIM1_CH1N 60 40 - PE9 I/O FT PE9 FSMC_D6 TIM1_CH1 61 - - VSS_7 S VSS_7 62 - - VDD_7 S VDD_7 63 41 - PE10 I/O FT PE10 FSMC_D7 TIM1_CH2N 64 42 - PE11 I/O FT PE11 FSMC_D8 TIM1_CH2 65 43 - PE12 I/O FT PE12 FSMC_D9 TIM1_CH3N 66 44 - PE13 I/O FT PE13 FSMC_D10 TIM1_CH3 Doc ID 15081 Rev 7 ADC_IN8/TIM3_CH3 TIM1_CH2N / TIM13_CH1 ADC_IN9/TIM3_CH4(8) TIM1_CH3N / TIM14_CH1 FSMC_A6 STM32F100xC, STM32F100xD, STM32F100xE High-density STM32F100xx pin definitions (continued) Type(1) Alternate functions(4) Main function(3) (after reset) Default Remap LQFP64 LQFP100 LQFP144 Pins I / O Level(2) Table 4. Pinouts and pin descriptions Pin name 67 45 - PE14 I/O FT PE14 FSMC_D11 TIM1_CH4 68 46 - PE15 I/O FT PE15 FSMC_D12 TIM1_BKIN 69 47 29 PB10 I/O FT PB10 I2C2_SCL/USART3_TX(8) TIM2_CH3 / HDMI_CEC 70 48 30 PB11 I/O FT PB11 I2C2_SDA/USART3_RX(8) TIM2_CH4 71 49 31 VSS_1 S VSS_1 72 50 32 VDD_1 S VDD_1 TIM12_CH1 73 51 33 PB12 I/O FT PB12 SPI2_NSS/ I2C2_SMBA/ USART3_CK(8)/ TIM1_BKIN(8) 74 52 34 PB13 I/O FT PB13 SPI2_SCK/ USART3_CTS(8)/ TIM1_CH1N TIM12_CH2 75 53 35 PB14 I/O FT PB14 SPI2_MISO/TIM1_CH2N USART3_RTS(8)/ TIM15_CH1 76 54 36 PB15 I/O FT PB15 SPI2_MOSI/ TIM1_CH3N(8)/ TIM15_CH1N TIM15_CH2 77 55 - PD8 I/O FT PD8 FSMC_D13 USART3_TX 78 56 - PD9 I/O FT PD9 FSMC_D14 USART3_RX 79 57 - PD10 I/O FT PD10 FSMC_D15 USART3_CK 80 58 - PD11 I/O FT PD11 FSMC_A16 USART3_CTS 81 59 - PD12 I/O FT PD12 FSMC_A17 TIM4_CH1 / USART3_RTS 82 60 - PD13 I/O FT PD13 FSMC_A18 TIM4_CH2 83 - - VSS_8 S VSS_8 84 - - VDD_8 S VDD_8 85 61 - PD14 I/O FT PD14 FSMC_D0 TIM4_CH3 86 62 - PD15 I/O FT PD15 FSMC_D1 TIM4_CH4 87 - - PG2 I/O FT PG2 FSMC_A12 88 - - PG3 I/O FT PG3 FSMC_A13 89 - - PG4 I/O FT PG4 FSMC_A14 90 - - PG5 I/O FT PG5 FSMC_A15 91 - - PG6 I/O FT PG6 92 - - PG7 I/O FT PG7 Doc ID 15081 Rev 7 27/98 Pinouts and pin descriptions High-density STM32F100xx pin definitions (continued) Alternate functions(4) LQFP144 LQFP100 LQFP64 Main function(3) (after reset) Pin name 93 - - PG8 94 - - VSS_9 S VSS_9 95 - - VDD_9 S VDD_9 I/O FT Default Remap PG8 96 63 37 PC6 I/O FT PC6 TIM3_CH1 97 64 38 PC7 I/O FT PC7 TIM3_CH2 98 65 39 PC8 I/O FT PC8 TIM13_CH1 TIM3_CH3 99 66 40 PC9 I/O FT PC9 TIM14_CH1 TIM3_CH4 100 67 41 PA8 I/O FT PA8 USART1_CK/ TIM1_CH1(8)/MCO PA9 USART1_TX(8)/ TIM1_CH2(8) / TIM15_BKIN 101 68 42 PA9 I/O FT 102 69 43 PA10 I/O FT PA10 USART1_RX(8)/ TIM1_CH3(8) / TIM17_BKIN 103 70 44 PA11 I/O FT PA11 USART1_CTS / TIM1_CH4(8) 104 71 45 PA12 I/O FT PA12 USART1_RTS / TIM1_ETR(8) 105 72 46 PA13 I/O FT JTMSSWDIO 106 73 28/98 Type(1) Pins I / O Level(2) Table 4. STM32F100xC, STM32F100xD, STM32F100xE - Not connected 107 74 47 VSS_2 S VSS_2 108 75 48 VDD_2 S VDD_2 109 76 49 PA14 I/O FT JTCKSWCLK 110 77 50 PA15 I/O FT JTDI SPI3_NSS TIM2_CH1_ETR / SPI1_NSS 111 78 51 PC10 I/O FT PC10 UART4_TX USART3_TX 112 79 52 PC11 I/O FT PC11 UART4_RX USART3_RX 113 80 53 PC12 I/O FT PC12 UART5_TX USART3_CK 114 81 - PD0 I/O FT PD0 FSMC_D2(9) 115 82 - PD1 I/O FT PD1 FSMC_D3(9) 116 83 54 PD2 I/O FT PD2 TIM3_ETR/UART5_RX 117 84 - PD3 I/O FT PD3 FSMC_CLK USART2_CTS 118 85 - PD4 I/O FT PD4 FSMC_NOE USART2_RTS Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE High-density STM32F100xx pin definitions (continued) Type(1) Alternate functions(4) Main function(3) (after reset) Default Remap PD5 FSMC_NWE USART2_TX LQFP64 LQFP100 LQFP144 Pins I / O Level(2) Table 4. Pinouts and pin descriptions Pin name 119 86 - PD5 120 - - VSS_10 S VSS_10 121 - - VDD_10 S VDD_10 122 87 - PD6 I/O FT PD6 FSMC_NWAIT USART2_RX 123 88 - PD7 I/O FT PD7 FSMC_NE1 USART2_CK 124 - - PG9 I/O FT PG9 FSMC_NE2 125 - - PG10 I/O FT PG10 FSMC_NE3 126 - - PG11 I/O FT PG11 127 - - PG12 I/O FT PG12 FSMC_NE4 128 - - PG13 I/O FT PG13 FSMC_A24 129 - - PG14 I/O FT PG14 FSMC_A25 130 - - VSS_11 S VSS_11 131 - - VDD_11 S VDD_11 132 - - PG15 I/O FT PG15 133 89 55 PB3/ I/O FT JTDO SPI3_SCK PB3/TRACESWO TIM2_CH2 / SPI1_SCK 134 90 56 PB4 I/O FT NJTRST SPI3_MISO TIM3_CH1 SPI1_MISO 135 91 57 PB5 I/O PB5 I2C1_SMBA/ SPI3_MOSI TIM16_BKIN TIM3_CH2 / SPI1_MOSI 136 92 58 PB6 I/O FT PB6 I2C1_SCL(8)/ TIM4_CH1(8) / TIM16_CH1N USART1_TX PB7 I2C1_SDA(8) / FSMC_NADV / TIM4_CH2(8) / TIM17_CH1N USART1_RX I/O FT 137 93 59 PB7 I/O FT 138 94 60 BOOT0 139 95 61 PB8 I/O FT PB8 TIM4_CH3(8)/TIM16_CH1 / HDMI_CEC I2C1_SCL 140 96 62 PB9 I/O FT PB9 TIM4_CH4(8)/ TIM17_CH1 I2C1_SDA 141 97 - PE0 I/O FT PE0 TIM4_ETR / FSMC_NBL0 142 98 - PE1 I/O FT PE1 FSMC_NBL1 I BOOT0 143 99 63 VSS_3 S VSS_3 144 100 64 VDD_3 S VDD_3 1. I = input, O = output, S = supply. Doc ID 15081 Rev 7 29/98 Pinouts and pin descriptions STM32F100xC, STM32F100xD, STM32F100xE 2. FT = 5 V tolerant. 3. Function availability depends on the chosen device. 4. If several peripherals share the same I/O pin, to avoid conflict between these alternate functions only one peripheral should be enabled at a time through the peripheral clock enable bit (in the corresponding RCC peripheral clock enable register). 5. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: the speed should not exceed 2 MHz with a maximum load of 30 pF and these IOs must not be used as a current source (e.g. to drive an LED). 6. Main function after the first backup domain power-up. Later on, it depends on the contents of the Backup registers even after reset (because these registers are not reset by the main reset). For details on how to manage these IOs, refer to the Battery backup domain and BKP register description sections in the STM32F100xx reference manual, available from the STMicroelectronics website: www.st.com. 7. For the LQFP64 package, the pins number 5 and 6 are configured as OSC_IN/OSC_OUT after reset, however the functionality of PD0 and PD1 can be remapped by software on these pins. For the LQFP100 and LQFP144 packages, PD0 and PD1 are available by default, so there is no need for remapping. For more details, refer to Alternate function I/O and debug configuration section in the STM32F100xx reference manual. 8. This alternate function can be remapped by software to some other port pins (if available on the used package). For more details, refer to the Alternate function I/O and debug configuration section in the STM32F100xx reference manual, available from the STMicroelectronics website: www.st.com. 9. For devices delivered in LQFP64 packages, the FSMC function is not available. Table 5. FSMC pin definition FSMC LQFP100(1) Pins 30/98 NOR/PSRAM/SRAM NOR/PSRAM Mux PE2 A23 A23 Yes PE3 A19 A19 Yes PE4 A20 A20 Yes PE5 A21 A21 Yes PE6 A22 A22 Yes PF0 A0 - PF1 A1 - PF2 A2 - PF3 A3 - PF4 A4 - PF5 A5 - PF6 - PF7 - PF8 - PF9 - PF10 - PF11 - PF12 A6 - PF13 A7 - Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 5. Pinouts and pin descriptions FSMC pin definition (continued) FSMC LQFP100(1) Pins NOR/PSRAM/SRAM NOR/PSRAM Mux PF14 A8 - PF15 A9 - PG0 A10 - PG1 A11 - PE7 D4 DA4 Yes PE8 D5 DA5 Yes PE9 D6 DA6 Yes PE10 D7 DA7 Yes PE11 D8 DA8 Yes PE12 D9 DA9 Yes PE13 D10 DA10 Yes PE14 D11 DA11 Yes PE15 D12 DA12 Yes PD8 D13 DA13 Yes PD9 D14 DA14 Yes PD10 D15 DA15 Yes PD11 A16 A16 Yes PD12 A17 A17 Yes PD13 A18 A18 Yes PD14 D0 DA0 Yes PD15 D1 DA1 Yes PG2 A12 - PG3 A13 - PG4 A14 - PG5 A15 - PG6 - PG7 - PD0 D2 DA2 Yes PD1 D3 DA3 Yes PD3 CLK CLK Yes PD4 NOE NOE Yes PD5 NWE NWE Yes PD6 NWAIT NWAIT Yes Doc ID 15081 Rev 7 31/98 Memory mapping STM32F100xC, STM32F100xD, STM32F100xE Table 5. FSMC pin definition (continued) FSMC LQFP100(1) Pins NOR/PSRAM/SRAM NOR/PSRAM Mux PD7 NE1 NE1 Yes PG9 NE2 NE2 - PG10 NE3 NE3 - PG11 - PG12 NE4 NE4 - PG13 A24 A24 - PG14 A25 A25 - PB7 NADV NADV Yes PE0 NBL0 NBL0 Yes PE1 NBL1 NBL1 Yes 1. Ports F and G are not available in devices delivered in 100-pin packages. 4 Memory mapping The memory map is shown in Figure 6. 32/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Figure 6. Memory map APB memory space 0xFFFF FFFF 0x4002 3400 0x4002 3000 0x4002 2400 0xFFFF FFFF 7 0xE010 0000 Flash interface 0x4002 1400 reserved 0x4002 1000 RCC 0x4002 0400 DMA2 0x4001 4C00 0x4001 4800 0x4001 4400 6 CRC reserved 0x4002 2000 0x4002 0000 Cortex-M3 internal peripherals 0xE000 0000 reserved 0x4001 4000 DMA1 reserved TIM17 TIM16 TIM15 reserved 0x4001 3C00 0xC000 0000 0x4001 3800 0x4001 3400 0x4001 3000 5 0x4001 2C00 0xA000 0000 FSMC regs 0x4001 2800 0x4001 2400 0x4001 2000 4 0x1FFF FFFF reserved 0x1FFF F80F 0x8000 0000 Option Bytes 0x1FFF F800 3 0x7000 0000 0x6000 0000 System memory FSMC external memory 0x1FFF F000 0x4000 0000 Peripherals 0x4001 1000 Port C 0x4001 0C00 Port B 0x4001 0800 Port A 0x4001 0400 EXTI 0x4001 0000 AFIO 0x4000 7C00 reserved 0x4000 7000 0x4000 5800 SRAM Flash memory 0x0000 0000 Reserved Aliased to Flash or system memory depending on 0x0000 0000 BOOT pins BKP I2C2 reserved I2C1 0x4000 5000 0x4000 4400 0x4000 3C00 0x0800 0000 PWR UART5 UART4 0x4000 4800 0 CEC DAC 0x4000 5400 0x4000 4C00 0x0801 FFFF Port G Port F Port E 0x4000 5C00 0x2000 0000 ADC1 Port D 0x4000 6C00 1 TIM1 reserved 0x4001 1400 0x4000 7400 reserved SPI1 0x4001 1C00 0x4001 1800 0x4000 7800 2 USART1 reserved 0x4000 3800 0x4000 3400 USART3 USART2 SPI3 SPI2 reserved 0x4000 3000 IWDG 0x4000 2C00 WWDG 0x4000 2800 0x4000 2000 0x4000 1C00 0x4000 1800 0x4000 1400 0x4000 1000 RTC TIM14 TIM13 TIM12 TIM7 TIM6 0x4000 0C00 TIM5 0x4000 0800 TIM4 0x4000 0400 TIM3 0x4000 0000 TIM2 ai18400 Doc ID 15081 Rev 7 33/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE 5 Electrical characteristics 5.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 5.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 °C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean±3Σ). 5.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 3.3 V (for the 2 V ≤VDD ≤3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean±2Σ). 5.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 5.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 7. 5.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 8. 34/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Figure 7. Pin loading conditions Electrical characteristics Figure 8. Pin input voltage STM32F10xxx pin STM32F10xxx pin C = 50 pF VIN ai14124b ai14123b 5.1.6 Power supply scheme Figure 9. Power supply scheme 9%$7 %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV 287 *3 ,2V ,1 /HYHOVKLIWHU 3R ZHU VZL WFK 9 ,2 /RJLF 9'' 9'' îQ) î) 9'' 5HJXODWRU 966 9''$ 95() Q) ) .HUQHOORJLF &38 'LJLWDO 0HPRULHV Q) ) 95() 95() $'&'$& $QDORJ 5&V3// 966$ DLH Caution: In Figure 9, the 4.7 µF capacitor must be connected to VDD3. Doc ID 15081 Rev 7 35/98 Electrical characteristics 5.1.7 STM32F100xC, STM32F100xD, STM32F100xE Current consumption measurement Figure 10. Current consumption measurement scheme IDD_VBAT VBAT IDD VDD VDDA ai14126 5.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 6: Voltage characteristics, Table 7: Current characteristics, and Table 8: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 6. Symbol VDD −VSS VIN(2) |ΔVDDx| |VSSX − VSS| VESD(HBM) Voltage characteristics Ratings Min Max –0.3 4.0 Input voltage on five volt tolerant pin VSS −0.3 VDD +4.0 Input voltage on any other pin VSS − 0.3 4.0 External main supply voltage (including VDDA and VDD)(1) Variations between different VDD power pins 50 Variations between all the different ground pins 50 Electrostatic discharge voltage (human body model) Unit V mV see Section 5.3.12: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum must always be respected. Refer to Table 7: Current characteristics for the maximum allowed injected current values. 36/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 7. Electrical characteristics Current characteristics Symbol Ratings Max. Total current into VDD/VDDA power lines (source)(1) IVDD Total current out of VSS ground lines (sink) IVSS IIO 150 (1) 150 Output current sunk by any I/O and control pin 25 Output current source by any I/Os and control pin −25 (3) Injected current on five volt tolerant pins IINJ(PIN)(2) Injected current on any other pin ΣIINJ(PIN) Unit mA -5 / +0 (4) ±5 Total injected current (sum of all I/O and control pins) (5) ± 25 1. All main power (VDD, VDDA) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. Negative injection disturbs the analog performance of the device. See Note: on page 82. 3. Positive injection is not possible on these I/Os. A negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage values. 4. A positive injection is induced by VIN>VDD while a negative injection is induced by VIN<VSS. IINJ(PIN) must never be exceeded. Refer to Table 6: Voltage characteristics for the maximum allowed input voltage values. 5. When several inputs are submitted to a current injection, the maximum ΣIINJ(PIN) is the absolute sum of the positive and negative injected currents (instantaneous values). Table 8. Thermal characteristics Symbol TSTG TJ Ratings Storage temperature range Maximum junction temperature 5.3 Operating conditions 5.3.1 General operating conditions Table 9. Value Unit –65 to +150 °C 150 °C General operating conditions Symbol Parameter fHCLK Min Max Internal AHB clock frequency 0 24 fPCLK1 Internal APB1 clock frequency 0 24 fPCLK2 Internal APB2 clock frequency 0 24 Standard operating voltage 2 3.6 2 3.6 2.4 3.6 1.8 3.6 VDD VDDA (1) VBAT Analog operating voltage (ADC not used) Analog operating voltage (ADC used) Conditions Must be the same potential as VDD Backup operating voltage Doc ID 15081 Rev 7 Unit MHz V V V 37/98 Electrical characteristics Table 9. Symbol PD STM32F100xC, STM32F100xD, STM32F100xE General operating conditions (continued) Parameter Power dissipation at TA = 85 °C for suffix 6 or TA = 105 °C for suffix 7(2) Conditions Min Max LQFP144 666 LQFP100 434 LQFP64 444 Ambient temperature for 6 suffix version Maximum power dissipation –40 85 Low power dissipation –40 105 Ambient temperature for 7 suffix version Maximum power dissipation –40 105 Low power dissipation –40 125 6 suffix version –40 105 7 suffix version –40 125 (3) Unit mW °C TA TJ (3) °C Junction temperature range °C 1. When the ADC is used, refer to Table 51: ADC characteristics. 2. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 6.2: Thermal characteristics on page 92). 3. In low power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see Section 6.2: Thermal characteristics on page 92). Note: It is recommended to power VDD and VDDA from the same source. A maximum difference of 300 mV between VDD and VDDA can be tolerated during power-up and operation 5.3.2 Operating conditions at power-up / power-down Subject to general operating conditions for TA. Table 10. Symbol tVDD 38/98 Operating conditions at power-up / power-down Parameter Min Max VDD rise time rate 0 ∞ VDD fall time rate 20 ∞ Doc ID 15081 Rev 7 Unit µs/V STM32F100xC, STM32F100xD, STM32F100xE 5.3.3 Electrical characteristics Embedded reset and power control block characteristics The parameters given in Table 11 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. . Table 11. Embedded reset and power control block characteristics Symbol Parameter Conditions Programmable voltage detector level selection VPVD VPVDhyst(2) PVD hysteresis VPOR/PDR Power on/power down reset threshold VPDRhyst (2) tRSTTEMPO(2) Min Typ Max Unit PLS[2:0]=000 (rising edge) 2.1 2.18 2.26 V PLS[2:0]=000 (falling edge) 2 2.08 2.16 V PLS[2:0]=001 (rising edge) 2.19 2.28 2.37 V PLS[2:0]=001 (falling edge) 2.09 2.18 2.27 V PLS[2:0]=010 (rising edge) 2.28 2.38 2.48 V PLS[2:0]=010 (falling edge) 2.18 2.28 2.38 V PLS[2:0]=011 (rising edge) 2.38 2.48 2.58 V PLS[2:0]=011 (falling edge) 2.28 2.38 2.48 V PLS[2:0]=100 (rising edge) 2.47 2.58 2.69 V PLS[2:0]=100 (falling edge) 2.37 2.48 2.59 V PLS[2:0]=101 (rising edge) 2.57 2.68 2.79 V PLS[2:0]=101 (falling edge) 2.47 2.58 2.69 V PLS[2:0]=110 (rising edge) 2.66 2.78 2.9 V PLS[2:0]=110 (falling edge) 2.56 2.68 2.8 V PLS[2:0]=111 (rising edge) 2.76 2.88 3 V PLS[2:0]=111 (falling edge) 2.66 2.78 2.9 V 100 mV Falling edge 1.8(1) 1.88 1.96 V Rising edge 1.84 1.92 2.0 V PDR hysteresis 40 Reset temporization 1.5 2.5 mV 4.5 ms 1. The product behavior is guaranteed by design down to the minimum VPOR/PDR value. 2. Guaranteed by design, not tested in production. Doc ID 15081 Rev 7 39/98 Electrical characteristics 5.3.4 STM32F100xC, STM32F100xD, STM32F100xE Embedded reference voltage The parameters given in Table 12 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 12. Symbol VREFINT Embedded internal reference voltage Parameter Internal reference voltage Conditions Min Typ Max Unit –40 °C < TA < +105 °C 1.16 1.20 1.26 V –40 °C < TA < +85 °C 1.16 1.20 1.24 V 5.1 17.1(2) µs 10 mV 100 ppm/°C ADC sampling time when TS_vrefint(1) reading the internal reference voltage Internal reference voltage VRERINT(2) spread over the temperature range TCoeff(2) VDD = 3 V ±10 mV Temperature coefficient 1. Shortest sampling time can be determined in the application by multiple iterations. 2. Guaranteed by design, not tested in production. 5.3.5 Supply current characteristics The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code. The current consumption is measured as described in Figure 10: Current consumption measurement scheme. All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to Dhrystone 2.1 code. Maximum current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● Prefetch in on (reminder: this bit must be set before clock setting and bus prescaling) ● When the peripherals are enabled fPCLK1 = fHCLK/2, fPCLK2 = fHCLK The parameters given in Table 13 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. 40/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 13. Electrical characteristics Maximum current consumption in Run mode, code with data processing running from Flash Max(1) Symbol Parameter Conditions External clock (2), all peripherals enabled External clock(2), all peripherals disabled IDD Supply current in Run mode fHCLK Unit TA = 85 °C TA = 105 °C 24 MHz 19.7 20 16 MHz 14.6 14.7 8 MHz 8.2 8.6 24 MHz 11.3 11.6 16 MHz 8.7 8.9 8 MHz 5.6 6 24 MHz 19 19 16 MHz 13.1 13.2 8 MHz 10.1 10.1 24 MHz 9.4 9.6 16 MHz 6.7 7 8 MHz 5.4 5.6 mA HSI clock(2), all peripherals enabled HSI clock(2), all peripherals disabled 1. Based on characterization, not tested in production. 2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz. Table 14. Maximum current consumption in Run mode, code with data processing running from RAM Max(1) Symbol Parameter Conditions External clock (2), all peripherals enabled External clock(2) all peripherals disabled IDD Supply current in Run mode fHCLK Unit TA = 85 °C TA = 105 °C 24 MHz 18.5 19 16 MHz 13.1 13.5 8 MHz 7.3 7.6 24 MHz 8.4 8.5 16 MHz 7.3 7.7 8 MHz 4.8 5.2 24 MHz 17.2 17.2 16 MHz 11.7 11.8 8 MHz 8.9 9 24 MHz 8.1 8.3 16 MHz 5.6 5.8 8 MHz 4.3 4.5 mA HSI clock(2), all peripherals enabled HSI clock(2), all peripherals disabled 1. Based on characterization, tested in production at VDD max, fHCLK max. 2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz. Doc ID 15081 Rev 7 41/98 Electrical characteristics Table 15. STM32F100xC, STM32F100xD, STM32F100xE STM32F100xxB maximum current consumption in Sleep mode, code running from Flash or RAM Max(1) Symbol Parameter Conditions External clock(2) all peripherals enabled External clock(2), all peripherals disabled IDD Supply current in Sleep mode fHCLK Unit TA = 85 °C TA = 105 °C 24 MHz 14.1 14.3 16 MHz 9.7 10.3 8 MHz 5.9 6.2 24 MHz 4.2 4.6 16 MHz 3.7 4.1 8 MHz 2.9 3.4 24 MHz 12.5 12.7 16 MHz 8.2 8.5 8 MHz 6.4 6.6 24 MHz 2.3 2.5 16 MHz 1.7 2 8 MHz 1.4 1.7 mA HSI clock(2), all peripherals enabled HSI clock(2), all peripherals disabled 1. Based on characterization, tested in production at VDD max and fHCLK max with peripherals enabled. 2. External clock or HSI frequency is 8 MHz and PLL is on when fHCLK > 8 MHz. 42/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 16. Electrical characteristics Typical and maximum current consumptions in Stop and Standby modes Typ(1) Symbol Parameter Conditions VDD/VBAT VDD/ VBAT VDD/VBAT TA = TA = = 2.0 V = 2.4 V = 3.3 V 85 °C 105 °C Regulator in Run mode, Low-speed and high-speed internal RC oscillators and highspeed oscillator OFF (no Supply current independent watchdog) in Stop mode Regulator in Low-Power mode, Low-speed and high-speed internal RC oscillators and highspeed oscillator OFF (no independent watchdog) IDD Low-speed internal RC oscillator and independent watchdog ON 31 320 670 24 305 650 Unit µA 3.2 Low-speed internal RC oscillator Supply current ON, independent watchdog OFF in Standby mode Low-speed internal RC oscillator and independent watchdog OFF, low-speed oscillator and RTC OFF Backup Low-speed oscillator and RTC IDD_VBAT domain supply ON current Max 3.1 1.0 1.2 2.2 3.9 5.7 1.4 2 2.3 1. Typical values are measured at TA = 25 °C. Typical current consumption The MCU is placed under the following conditions: ● All I/O pins are in input mode with a static value at VDD or VSS (no load) ● All peripherals are disabled except if it is explicitly mentioned ● When the peripherals are enabled fPCLK1 = fHCLK/4, fPCLK2 = fHCLK/2, fADCCLK = fPCLK2/4 The parameters given in Table 17 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Doc ID 15081 Rev 7 43/98 Electrical characteristics Table 17. STM32F100xC, STM32F100xD, STM32F100xE Typical current consumption in Run mode, code with data processing running from Flash Typical values(1) Symbol Parameter Conditions Running on high-speed external clock with an 8 MHz crystal(3) IDD Supply current in Run mode fHCLK All peripherals All peripherals enabled(2) disabled 24 MHz 14.1 9.5 16 MHz 10 6.85 8 MHz 5.8 4.05 4 MHz 3.6 2.65 2 MHz 2.3 1.85 1 MHz 1.7 1.46 500 kHz 1.4 1.3 125 kHz 1.15 1.1 24 MHz 13.4 8.7 16 MHz 9.3 6.2 8 MHz 5.2 3.45 4 MHz 2.95 2.1 2 MHz 1.7 1.3 1 MHz 1.1 0.9 500 kHz 0.8 0.7 125 kHz 0.6 0.55 Unit mA Running on high-speed internal RC (HSI) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency when fHCLK < 8 MHz, the PLL is used when fHCLK > 8 MHz. 44/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 18. Electrical characteristics Typical current consumption in Sleep mode, code running from Flash or RAM Typical values(1) Symbol Parameter Conditions Running on high-speed external clock with an 8 MHz crystal(3) IDD Supply current in Sleep mode fHCLK All peripherals All peripherals enabled(2) disabled 24 MHz 8.7 2.75 16 MHz 6.1 2.1 8 MHz 3.3 1.3 4 MHz 2.25 1.2 2 MHz 1.65 1.15 1 MHz 1.35 1.1 500 kHz 1.2 1.07 125 kHz 1.1 1.05 24 MHz 8 2.15 16 MHz 5.5 1.5 8 MHz 2.7 0.75 4 MHz 1.65 0.6 2 MHz 1.1 0.55 1 MHz 0.8 0.5 500 kHz 0.65 0.49 125 kHz 0.53 0.47 Unit mA Running on high-speed internal RC (HSI) 1. Typical values are measures at TA = 25 °C, VDD = 3.3 V. 2. Add an additional power consumption of 0.8 mA for the ADC and of 0.5 mA for the DAC analog part. In applications, this consumption occurs only while the ADC is on (ADON bit is set in the ADC_CR2 register). 3. An 8 MHz crystal is used as the external clock source. The AHB prescaler is used to reduce the frequency when fHCLK > 8 MHz, the PLL is used when fHCLK > 8 MHz. Doc ID 15081 Rev 7 45/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE On-chip peripheral current consumption The current consumption of the on-chip peripherals is given in Table 19. The MCU is placed under the following conditions: ● all I/O pins are in input mode with a static value at VDD or VSS (no load) ● all peripherals are disabled unless otherwise mentioned ● the given value is calculated by measuring the current consumption ● – with all peripherals clocked off – with only one peripheral clocked on ambient operating temperature and VDD supply voltage conditions summarized in Table 6. Table 19. Peripheral current consumption Peripheral Typical consumption at 25 °C(1) TIM2 0.48 TIM3 0.49 TIM4 0.48 TIM5 0.48 TIM6 0.2 TIM7 0.2 TIM12 0.32 TIM13 0.25 TIM14 0.25 1.06(2) DAC APB1 46/98 Unit mA WWDG 0.15 SPI2 0.2 SPI3 0.19 USART2 0.36 USART3 0.36 UART4 0.35 UART5 0.36 I2C1 0.34 I2C2 0.34 HDMI CEC 0.2 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 19. Electrical characteristics Peripheral current consumption (continued) Peripheral Typical consumption at 25 °C(1) GPIO A 0.26 GPIO B 0.26 GPIO C 0.26 GPIO D 0.26 GPIO E 0.26 GPIO F 0.24 GPIO G 0.25 (3) 1.28 APB2 ADC1 Unit mA SPI1 0.2 USART1 0.37 TIM1 0.63 TIM15 0.43 TIM16 0.34 TIM17 0.34 1. fHCLK = fAPB1 = fAPB2 = 24 MHz, default prescaler value for each peripheral. 2. Specific conditions for DAC: EN1 bit in DAC_CR register set to 1. 3. Specific conditions for ADC: fHCLK = 24 MHz, fAPB1 = fAPB2 = fHCLK, fADCCLK = fAPB2/2, ADON bit in the ADC_CR2 register is set to 1. 5.3.6 External clock source characteristics High-speed external user clock generated from an external source The characteristics given in Table 20 result from tests performed using an high-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Table 9. Table 20. Symbol High-speed external user clock characteristics Parameter Conditions Min Typ Max Unit 8 24 MHz fHSE_ext User external clock source frequency(1) 1 VHSEH OSC_IN input pin high level voltage(1) 0.7VDD VDD VHSEL OSC_IN input pin low level voltage(1) VSS 0.3VDD tw(HSE) tw(HSE) OSC_IN high or low time(1) 5 tr(HSE) tf(HSE) OSC_IN rise or fall time(1) V Cin(HSE) ns OSC_IN input capacitance(1) Doc ID 15081 Rev 7 20 5 pF 47/98 Electrical characteristics Table 20. STM32F100xC, STM32F100xD, STM32F100xE High-speed external user clock characteristics Symbol Parameter Conditions Min (1) DuCy(HSE) Duty cycle IL Typ 45 OSC_IN Input leakage current VSS ≤VIN ≤VDD Max Unit 55 % ±1 µA 1. Guaranteed by design, not tested in production. Low-speed external user clock generated from an external source The characteristics given in Table 21 result from tests performed using an low-speed external clock source, and under the ambient temperature and supply voltage conditions summarized in Table 9. Table 21. Symbol Low-speed external user clock characteristics Parameter Conditions Min fLSE_ext User external clock source frequency(1) VLSEH OSC32_IN input pin high level voltage(1) VLSEL OSC32_IN input pin low level voltage(1) VSS tw(LSE) tw(LSE) OSC32_IN high or low time(1) 450 Typ Max Unit 32.768 1000 kHz 0.7VDD VDD V tr(LSE) tf(LSE) Cin(LSE) ns OSC32_IN rise or fall time(1) 50 OSC32_IN input capacitance(1) 5 DuCy(LSE) Duty cycle(1) IL 30 OSC32_IN Input leakage current VSS ≤VIN ≤VDD 1. Guaranteed by design, not tested in production. 48/98 0.3VDD Doc ID 15081 Rev 7 pF 70 % ±1 µA STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 11. High-speed external clock source AC timing diagram VHSEH 90% VHSEL 10% tr(HSE) tf(HSE) tW(HSE) tW(HSE) t THSE External clock source fHSE_ext OSC _IN IL STM32F10xxx ai14127b Figure 12. Low-speed external clock source AC timing diagram VLSEH 90% VLSEL 10% tr(LSE) tf(LSE) tW(LSE) OSC32_IN IL tW(LSE) t TLSE External clock source fLSE_ext STM32F10xxx ai14140c High-speed external clock generated from a crystal/ceramic resonator The high-speed external (HSE) clock can be supplied with a 4 to 24 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 22. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). Doc ID 15081 Rev 7 49/98 Electrical characteristics Table 22. STM32F100xC, STM32F100xD, STM32F100xE HSE 4-24 MHz oscillator characteristics(1)(2) Symbol fOSC_IN RF Parameter Conditions Oscillator frequency RS = 30 Ω i2 HSE driving current VDD = 3.3 V VIN = VSS with 30 pF load gm Oscillator transconductance Startup Startup time VDD is stabilized tSU(HSE) (5) Typ Max Unit 4 8 24 MHz Feedback resistor Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(4) CL1 CL2(3) Min 200 kΩ 30 pF 1 25 mA mA/V 2 ms 1. Resonator characteristics given by the crystal/ceramic resonator manufacturer. 2. Based on characterization, not tested in production. 3. It is recommended to use high-quality external ceramic capacitors in the 5 pF to 25 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing CL1 and CL2. 4. The relatively low value of the RF resistor offers a good protection against issues resulting from use in a humid environment, due to the induced leakage and the bias condition change. However, it is recommended to take this point into account if the MCU is used in tough humidity conditions. 5. tSU(HSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer Figure 13. Typical application with an 8 MHz crystal Resonator with integrated capacitors CL1 fHSE OSC_IN 8 MH z resonator CL2 REXT(1) RF OSC_OU T Bias controlled gain STM32F10xxx ai14128b 1. REXT value depends on the crystal characteristics. Low-speed external clock generated from a crystal/ceramic resonator The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on characterization results obtained with typical external components specified in Table 23. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 50/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Note: For CL1 and CL2 it is recommended to use high-quality ceramic capacitors in the 5 pF to 15 pF range selected to match the requirements of the crystal or resonator. CL1 and CL2, are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of CL1 and CL2. Load capacitance CL has the following formula: CL = CL1 x CL2 / (CL1 + CL2) + Cstray where Cstray is the pin capacitance and board or trace PCB-related capacitance. Typically, it is between 2 pF and 7 pF. Caution: To avoid exceeding the maximum value of CL1 and CL2 (15 pF) it is strongly recommended to use a resonator with a load capacitance CL ≤ 7 pF. Never use a resonator with a load capacitance of 12.5 pF. Example: if you choose a resonator with a load capacitance of CL = 6 pF, and Cstray = 2 pF, then CL1 = CL2 = 8 pF. Table 23. LSE oscillator characteristics (fLSE = 32.768 kHz)(1) Symbol RF Parameter Conditions Min Feedback resistor Typ Max 5 Unit MΩ Recommended load capacitance versus equivalent serial resistance of the crystal (RS)(3) RS = 30 KΩ 15 pF I2 LSE driving current VDD = 3.3 V VIN = VSS 1.4 µA gm Oscillator transconductance CL1 CL2(2) tSU(LSE)(4) 5 VDD is stabilized Startup time µA/V TA = 50 °C 1.5 TA = 25 °C 2.5 TA = 10 °C 4 TA = 0 °C 6 TA = -10 °C 10 TA = -20 °C 17 TA = -30 °C 32 TA = -40 °C 60 s 1. Based on characterization, not tested in production. 2. Refer to the note and caution paragraphs above the table. 3. The oscillator selection can be optimized in terms of supply current using an high quality resonator with small RS value for example MSIV-TIN32.768 kHz. Refer to crystal manufacturer for more details 4. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer Doc ID 15081 Rev 7 51/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 14. Typical application with a 32.768 kHz crystal Resonator with integrated capacitors CL1 fLSE OSC32_IN 32.768 KH z resonator RF Bias controlled gain STM32F10xxx OSC32_OU T CL2 ai14129b 5.3.7 Internal clock source characteristics The parameters given in Table 24 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. High-speed internal (HSI) RC oscillator Table 24. HSI oscillator characteristics(1) Symbol fHSI Parameter Conditions Frequency Accuracy of HSI oscillator TA = –10 to 85 TA = 0 to 70 °C(2) °C(2) TA = 25 °C tsu(HSI)(3) HSI oscillator startup time IDD(HSI)(3) Typ Max 8 TA = –40 to 105 °C(2) ACCHSI Min Unit MHz -2.4 2.5 % -2.2 1.3 % -1.9 1.3 % -1 1 % 1 2 µs 100 µA HSI oscillator power consumption 80 1. VDD = 3.3 V, TA = –40 to 105 °C °C unless otherwise specified. 2. Based on characterization, not tested in production. 3. Guaranteed by design. Not tested in production Low-speed internal (LSI) RC oscillator Table 25. LSI oscillator characteristics (1) Symbol fLSI Parameter Frequency tsu(LSI)(2) LSI oscillator startup time IDD(LSI)(2) LSI oscillator power consumption 1. VDD = 3 V, TA = –40 to 105 °C °C unless otherwise specified. 2. Guaranteed by design, not tested in production. 52/98 Doc ID 15081 Rev 7 Min Typ Max Unit 30 40 60 kHz 85 µs 1.2 µA 0.65 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Wakeup time from low-power mode The wakeup times given in Table 26 are measured on a wakeup phase with an 8-MHz HSI RC oscillator. The clock source used to wake up the device depends from the current operating mode: ● Stop or Standby mode: the clock source is the RC oscillator ● Sleep mode: the clock source is the clock that was set before entering Sleep mode. All timings are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 26. Low-power mode wakeup timings Symbol Parameter tWUSLEEP(1) tWUSTOP(1) tWUSTDBY(1) Typ Unit Wakeup from Sleep mode 1.8 µs Wakeup from Stop mode (regulator in run mode) 3.6 Wakeup from Stop mode (regulator in low-power mode) 5.4 Wakeup from Standby mode 50 µs µs 1. The wakeup times are measured from the wakeup event to the point at which the user application code reads the first instruction. 5.3.8 PLL characteristics The parameters given in Table 27 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 27. PLL characteristics Value Symbol Parameter Unit Min(1) Typ Max(1) PLL input clock(2) 1 8.0 24 MHz PLL input clock duty cycle 40 60 % fPLL_OUT PLL multiplier output clock 16 24 MHz tLOCK PLL lock time 200 µs Jitter Cycle-to-cycle jitter 300 ps fPLL_IN 1. Based on device characterization, not tested in production. 2. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by fPLL_OUT. Doc ID 15081 Rev 7 53/98 Electrical characteristics 5.3.9 STM32F100xC, STM32F100xD, STM32F100xE Memory characteristics Flash memory The characteristics are given at TA = –40 to 105 °C unless otherwise specified. Table 28. Flash memory characteristics Symbol Parameter Conditions Min(1) Typ Max(1) Unit tprog 16-bit programming time TA = –40 to +105 °C 40 52.5 70 µs tERASE Page (2 KB) erase time TA = –40 to +105 °C 20 40 ms Mass erase time TA = –40 to +105 °C 20 40 ms Read mode fHCLK = 24 MHz, VDD = 3.3 V 20 mA Write / Erase modes fHCLK = 24 MHz, VDD = 3.3 V 5 mA Power-down mode / Halt, VDD = 3.0 to 3.6 V 50 µA 3.6 V tME IDD Vprog Supply current Programming voltage 2 1. Guaranteed by design, not tested in production. Table 29. Flash memory endurance and data retention Value Symbol NEND tRET Parameter Endurance Conditions Min(1) TA = –40 to +85 °C (6 suffix versions) TA = –40 to +105 °C (7 suffix versions) 10 1 kcycle(2) at TA = 85 °C 30 Data retention 1 kcycle(2) at TA = 105 °C 10 kcycles(2) at TA = 55 °C 10 Unit Typ Max kcycles Years 20 1. Based on characterization not tested in production. 2. Cycling performed over the whole temperature range. 5.3.10 FSMC characteristics Asynchronous waveforms and timings Figure 15 through Figure 18 represent asynchronous waveforms and Table 30 through Table 33 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: 54/98 ● AddressSetupTime = 0 ● AddressHoldTime = 1 ● DataSetupTime = 1 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 15. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms )60&B1( W Y12(B1( W Z12( W K1(B12( )60&B12( )60&B1:( WY$B1( )60&B$>@ W K$B12( $GGUHVV WY%/B1( W K%/B12( )60&B1%/>@ W K'DWDB1( W VX'DWDB12( WK'DWDB12( W VX'DWDB1( 'DWD )60&B'>@ W Y1$'9B1( WZ1$'9 )60&B1$'9 069 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Doc ID 15081 Rev 7 55/98 Electrical characteristics Table 30. STM32F100xC, STM32F100xD, STM32F100xE Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1) (2) Symbol Parameter Max Unit tw(NE) FSMC_NE low time 5THCLK – 1.5 5THCLK + 2 ns tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 0.5 1.5 ns tw(NOE) FSMC_NOE low time 5THCLK – 1.5 5THCLK + 1.5 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time –1.5 tv(A_NE) FSMC_NEx low to FSMC_A valid th(A_NOE) Address hold time after FSMC_NOE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 ns tsu(Data_NE) Data to FSMC_NEx high setup time 2THCLK + 25 ns 2THCLK + 25 ns tsu(Data_NOE) Data to FSMC_NOEx high setup time ns 0 0.1 ns ns 0 ns th(Data_NOE) Data hold time after FSMC_NOE high 0 ns th(Data_NE) Data hold time after FSMC_NEx high 0 ns tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 5 ns tw(NADV) FSMC_NADV low time THCLK + 1.5 ns 1. CL = 15 pF. 2. Preliminary values. 56/98 Min Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 16. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:0] th(A_NWE) Address tv(BL_NE) FSMC_NBL[1:0] th(BL_NWE) NBL tv(Data_NE) th(Data_NWE) Data FSMC_D[15:0] t v(NADV_NE) tw(NADV) FSMC_NADV(1) ai14990 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 31. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 3THCLK – 1 3THCLK + 2 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low THCLK – 0.5 THCLK + 1.5 ns tw(NWE) FSMC_NWE low time THCLK – 0.5 THCLK + 1.5 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK tv(A_NE) FSMC_NEx low to FSMC_A valid th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NE) FSMC_NEx low to Data valid th(Data_NWE) Data hold time after FSMC_NWE high tv(NADV_NE) FSMC_NEx low to FSMC_NADV low 5.5 ns tw(NADV) FSMC_NADV low time THCLK + 1.5 ns ns 7.5 THCLK ns ns 1.5 THCLK – 0.5 ns ns THCLK + 7 THCLK ns ns 1. CL = 15 pF. 2. Preliminary values. Doc ID 15081 Rev 7 57/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 17. Asynchronous multiplexed PSRAM/NOR read waveforms tw(NE) FSMC_NE tv(NOE_NE) t h(NE_NOE) FSMC_NOE t w(NOE) FSMC_NWE tv(A_NE) FSMC_A[25:16] t h(A_NOE) Address tv(BL_NE) th(BL_NOE) FSMC_NBL[1:0] NBL th(Data_NE) tsu(Data_NE) t v(A_NE) tsu(Data_NOE) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NOE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14892b Table 32. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Parameter Max 7THCLK + 2 Unit tw(NE) FSMC_NE low time 7THCLK – 2 tv(NOE_NE) FSMC_NEx low to FSMC_NOE low 3THCLK – 0.5 3THCLK + 1.5 ns tw(NOE) FSMC_NOE low time 4THCLK – 1 ns th(NE_NOE) FSMC_NOE high to FSMC_NE high hold time –1 tv(A_NE) FSMC_NEx low to FSMC_A valid tv(NADV_NE) FSMC_NEx low to FSMC_NADV low tw(NADV) 4THCLK + 2 ns ns 0 ns 3 5 ns FSMC_NADV low time THCLK –1.5 THCLK + 1.5 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high THCLK ns th(A_NOE) Address hold time after FSMC_NOE high THCLK ns th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid tsu(Data_NE) Data to FSMC_NEx high setup time 2THCLK + 24 ns tsu(Data_NOE) Data to FSMC_NOE high setup time 2THCLK + 25 ns th(Data_NE) Data hold time after FSMC_NEx high 0 ns th(Data_NOE) Data hold time after FSMC_NOE high 0 ns 1. CL = 15 pF. 2. Preliminary values. 58/98 Min Doc ID 15081 Rev 7 0 ns STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 18. Asynchronous multiplexed PSRAM/NOR write waveforms tw(NE) FSMC_NEx FSMC_NOE tv(NWE_NE) tw(NWE) t h(NE_NWE) FSMC_NWE tv(A_NE) FSMC_A[25:16] th(A_NWE) Address tv(BL_NE) th(BL_NWE) FSMC_NBL[1:0] NBL t v(A_NE) t v(Data_NADV) Address FSMC_AD[15:0] t v(NADV_NE) th(Data_NWE) Data th(AD_NADV) tw(NADV) FSMC_NADV ai14891B Table 33. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Parameter Min Max Unit tw(NE) FSMC_NE low time 5THCLK – 1 5THCLK + 2 ns tv(NWE_NE) FSMC_NEx low to FSMC_NWE low 2THCLK 2THCLK + 1 ns tw(NWE) FSMC_NWE low time 2THCLK – 1 2THCLK + 2 ns th(NE_NWE) FSMC_NWE high to FSMC_NE high hold time THCLK – 1 tv(A_NE) FSMC_NEx low to FSMC_A valid tv(NADV_NE) FSMC_NEx low to FSMC_NADV low tw(NADV) ns 7 ns 3 5 ns FSMC_NADV low time THCLK – 1 THCLK + 1 ns th(AD_NADV) FSMC_AD (address) valid hold time after FSMC_NADV high THCLK – 3 ns th(A_NWE) Address hold time after FSMC_NWE high 4THCLK ns tv(BL_NE) FSMC_NEx low to FSMC_BL valid th(BL_NWE) FSMC_BL hold time after FSMC_NWE high 1.6 THCLK – 1.5 tv(Data_NADV) FSMC_NADV high to Data valid th(Data_NWE) Data hold time after FSMC_NWE high ns THCLK + 1.5 THCLK – 5 ns ns ns 1. CL = 15 pF. 2. Preliminary values. Doc ID 15081 Rev 7 59/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Synchronous waveforms and timings Figure 19 through Figure 22 represent synchronous waveforms and Table 35 through Table 37 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: ● BurstAccessMode = FSMC_BurstAccessMode_Enable; ● MemoryType = FSMC_MemoryType_CRAM; ● WriteBurst = FSMC_WriteBurst_Enable; ● CLKDivision = 1; (0 is not supported, see the STM32F10xxx reference manual) ● DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM Figure 19. Synchronous multiplexed NOR/PSRAM read timings %867851 WZ&/. WZ&/. )60&B&/. 'DWDODWHQF\ WG&/./1([/ W G&/./1([+ )60&B1([ WG&/./1$'9/ WG&/./1$'9+ )60&B1$'9 WG&/./$,9 WG&/./$9 )60&B$>@ WG&/.+12(/ WG&/./12(+ )60&B12( WG&/./$',9 WVX$'9&/.+ WG&/./$'9 )60&B$'>@ $'>@ WK&/.+$'9 WVX$'9&/.+ ' WVX1:$,79&/.+ WK&/.+$'9 ' ' WK&/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ WK&/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ WK&/.+1:$,79 DLL 60/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 34. Electrical characteristics Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 ns tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 6 ns th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 0 ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 27.7 ns 1.5 2 ns ns 4 5 ns ns 0 2 ns ns 1 0.5 ns ns 12 ns 8 ns 2 ns 1. CL = 15 pF. 2. Preliminary values. Doc ID 15081 Rev 7 61/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 20. Synchronous multiplexed PSRAM write timings %867851 WZ&/. WZ&/. )60&B&/. 'DWDODWHQF\ WG&/./1([/ WG&/./1([+ )60&B1([ WG&/./1$'9/ WG&/./1$'9+ )60&B1$'9 WG&/./$9 WG&/./$,9 )60&B$>@ WG&/./1:(/ WG&/./1:(+ )60&B1:( WG&/./$',9 WG&/./$'9 )60&B$'>@ WG&/./'DWD WG&/./'DWD $'>@ ' ' )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ WK&/.+1:$,79 WG&/./1%/+ )60&B1%/ DLK 62/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 35. Electrical characteristics Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max Unit tw(CLK) FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_Nex low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid td(CLKL-Data) FSMC_A/D[15:0] valid after FSMC_CLK low tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 ns 27.7 ns 2 2 ns ns 4 5 ns ns 0 2 ns ns 1 1 ns ns 12 3 ns ns 6 ns 1. CL = 15 pF. 2. Preliminary values Doc ID 15081 Rev 7 63/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 21. Synchronous non-multiplexed NOR/PSRAM read timings %867851 WZ&/. WZ&/. )60&B&/. WG&/./1([/ WG&/./1([+ 'DWDODWHQF\ )60&B1([ WG&/./1$'9/ WG&/./1$'9+ )60&B1$'9 WG&/./$,9 WG&/./$9 )60&B$>@ WG&/.+12(/ WG&/./12(+ )60&B12( WVX'9&/.+ WK&/.+'9 WVX'9&/.+ )60&B'>@ WK&/.+'9 ' WVX1:$,79&/.+ ' ' WK&/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ W K&/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ WK&/.+1:$,79 DLK Table 36. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol Parameter Max FSMC_CLK period td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 0...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 0...25) td(CLKH-NOEL) FSMC_CLK high to FSMC_NOE low td(CLKL-NOEH) FSMC_CLK low to FSMC_NOE high 1.5 ns tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 6.5 ns th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 7 ns tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_SMCLK high 7 ns th(CLKH-NWAITV) 2 ns FSMC_NWAIT valid after FSMC_CLK high 2. Preliminary values. Doc ID 15081 Rev 7 27.7 Unit tw(CLK) 1. CL = 15 pF. 64/98 Min ns 1.5 2 ns ns 4 5 ns ns 0 4 ns ns 1.5 ns STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 22. Synchronous non-multiplexed PSRAM write timings WZ&/. %867851 WZ&/. )60&B&/. WG&/./1([/ WG&/./1([+ 'DWDODWHQF\ )60&B1([ WG&/./1$'9/ WG&/./1$'9+ )60&B1$'9 WG&/./$9 WG&/./$,9 )60&B$>@ WG&/./1:(/ WG&/./1:(+ )60&B1:( WG&/./'DWD )60&B'>@ WG&/./'DWD ' ' )60&B1:$,7 :$,7&)* E:$,732/E WVX1:$,79&/.+ WG&/./1%/+ WK&/.+1:$,79 )60&B1%/ DLL Table 37. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max 27.7 Unit tw(CLK) FSMC_CLK period ns td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x = 0...2) td(CLKL-NExH) FSMC_CLK low to FSMC_NEx high (x = 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x = 16...25) td(CLKL-AIV) FSMC_CLK low to FSMC_Ax invalid (x = 16...25) td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low td(CLKL-NWEH) FSMC_CLK low to FSMC_NWE high td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low tsu(NWAITV-CLKH) FSMC_NWAIT valid before FSMC_CLK high 7 ns th(CLKH-NWAITV) FSMC_NWAIT valid after FSMC_CLK high 2 ns td(CLKL-NBLH) FSMC_CLK low to FSMC_NBL high 1 ns 2 2 ns ns 4 5 ns ns 0 2 ns ns 1 1 ns ns 6 ns 1. CL = 15 pF. 2. Preliminary values. Doc ID 15081 Rev 7 65/98 Electrical characteristics 5.3.11 STM32F100xC, STM32F100xD, STM32F100xE EMC characteristics Susceptibility tests are performed on a sample basis during device characterization. Functional EMS (Electromagnetic susceptibility) While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs: ● Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard. ● FTB: A Burst of Fast Transient voltage (positive and negative) is applied to VDD and VSS through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard. A device reset allows normal operations to be resumed. The test results are given in Table 38. They are based on the EMS levels and classes defined in application note AN1709. Table 38. EMS characteristics Symbol Parameter Conditions Level/Class VFESD Voltage limits to be applied on any I/O pin to induce a functional disturbance VDD = 3.3 V, TA = +25 °C, fHCLK = 24 MHz, LQFP144 package, conforms to IEC 61000-4-2 2B VEFTB VDD = 3.3 V, TA = +25 °C, Fast transient voltage burst limits to be fHCLK = 24 MHz, LQFP144 applied through 100 pF on VDD and VSS pins package, conforms to to induce a functional disturbance IEC 61000-4-4 4A Designing hardened software to avoid noise problems EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular. Therefore it is recommended that the user applies EMC software optimization and pre qualification tests in relation with the EMC level requested for his application. Software recommendations The software flowchart must include the management of runaway conditions such as: ● Corrupted program counter ● Unexpected reset ● Critical Data corruption (control registers...) Prequalification trials Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second. To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015). 66/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Electromagnetic Interference (EMI) The electromagnetic field emitted by the device is monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading. Table 39. EMI characteristics Symbol Parameter SEMI 5.3.12 Peak level Monitored frequency band Conditions VDD = 3.6 V, TA = 25°C, LQFP144 package compliant with SAE J1752/3 Max vs. [fHSE/fHCLK] Unit 8/24 MHz 0.1 MHz to 30 MHz 16 30 MHz to 130 MHz 25 130 MHz to 1GHz 25 SAE EMI Level 4 dBµV - Absolute maximum ratings (electrical sensitivity) Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity. Electrostatic discharge (ESD) Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts × (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard. Table 40. ESD absolute maximum ratings Symbol Ratings Conditions Class Maximum Unit value(1) VESD(HBM) Electrostatic discharge voltage (human body model) TA = +25 °C conforming to JESD22-A114 2 2000 VESD(CDM) Electrostatic discharge TA = +25 °C voltage (charge device model) conforming to JESD22-C101 II 500 V 1. Based on characterization results, not tested in production. Static latch-up Two complementary static tests are required on six parts to assess the latch-up performance: ● A supply overvoltage is applied to each power supply pin ● A current injection is applied to each input, output and configurable I/O pin These tests are compliant with EIA/JESD78 IC latch-up standard. Table 41. Symbol LU Electrical sensitivities Parameter Static latch-up class Conditions TA = +105 °C conforming to JESD78 Doc ID 15081 Rev 7 Class II level A 67/98 Electrical characteristics 5.3.13 STM32F100xC, STM32F100xD, STM32F100xE I/O current injection characteristics As a general rule, current injection to the I/O pins, due to external voltage below VSS or above VDD (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization. Functional susceptibilty to I/O current injection While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures. The failure is indicated by an out of range parameter: ADC error above a certain limit (>5 LSB TUE), out of spec current injection on adjacent pins or other functional failure (for example reset, oscillator frequency deviation). The test results are given in Table 42 Table 42. I/O current injection susceptibility Functional susceptibility Symbol IINJ 68/98 Description Negative injection Positive injection Injected current on OSC_IN32, OSC_OUT32, PA4, PA5, PC13 -0 +0 Injected current on all FT pins -5 +0 Injected current on any other pin -5 +5 Doc ID 15081 Rev 7 Unit mA STM32F100xC, STM32F100xD, STM32F100xE 5.3.14 Electrical characteristics I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 43 are derived from tests performed under the conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 43. Symbol VIL VIH Vhys Ilkg I/O static characteristics Parameter Conditions Min Typ Max Standard I/O input low level voltage –0.3 0.28*(VDD–2 V)+0.8 V I/O FT(1) input low level voltage –0.3 0.32*(VDD–2 V)+0.75 V Standard I/O input high level voltage 0.41*(VDD–2 V) +1.3 V VDD+0.3 I/O FT(1) input high level voltage Unit V VDD > 2 V 5.5 0.42*(VDD–2)+1 V VDD ≤2 V 5.2 Standard I/O Schmitt trigger voltage hysteresis(2) 200 mV I/O FT Schmitt trigger voltage hysteresis(2) 5% VDD(3) mV Input leakage current(4) VSS ≤VIN ≤VDD Standard I/Os ±1 µA VIN = 5 V I/O FT 3 RPU Weak pull-up equivalent resistor(5) VIN = VSS 30 40 50 kΩ RPD Weak pull-down equivalent resistor(5) VIN = VDD 30 40 50 kΩ CIO I/O pin capacitance 5 pF 1. FT = 5V tolerant. To sustain a voltage higher than VDD+0.3 the internal pull-up/pull-down resistors must be disabled. 2. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by design, not tested in production. 3. With a minimum of 100 mV. 4. Leakage could be higher than max. if negative current is injected on adjacent pins. 5. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in Figure 23 and Figure 24 for standard I/Os, and in Figure 25 and Figure 26 for 5 V tolerant I/Os. Doc ID 15081 Rev 7 69/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 23. Standard I/O input characteristics - CMOS port 9,+9,/9 PHQW9 ,+ TXLUH QGDUGUH WD &026V 7,+PLQ 7,/PD[ 9 9 ,+ '' 9 '' LUHPHQW9 ,/ UGUHTX &026VWDQGD 9 '' 9 9,/ '' ,QSXWUDQJH QRWJXDUDQWHHG 9''9 DLE Figure 24. Standard I/O input characteristics - TTL port 9,+9,/9 7,+PLQ 77/UHTXLUHPHQWV 9,+ 9 9 9 ,+ '' ,QSXWUDQJH QRWJXDUDQWHHG 7,/PD[ 9 ,/ 9 '' 77/UHTXLUHPHQWV 9,/ 9 9''9 DL 70/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 25. 5 V tolerant I/O input characteristics - CMOS port 9,+9,/9 WV9 ,+ XLUHPHQ UHT WDQGDUG &026V ,QSXWUDQJH QRWJXDUDQWHHG 9 ,/ 9 '' W9 ,/ 9 '' UHTXLUPHQ 26VWDQGDUG &0 9 ,+ 9 '' 9 '' 9''9 9'' DLE Figure 26. 5 V tolerant I/O input characteristics - TTL port 9,+9,/9 77/UHTXLUHPHQW9 ,+ 9 9 9 ,+ '' 7,+PLQ 7,/PD[ ,QSXWUDQJH QRWJXDUDQWHHG 9 ,/ 9 '' 77/UHTXLUHPHQWV9 ,/ 9 9''9 DL Output driving current The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 it can sink or source up to +/-3mA. When using the GPIOs PC13 to PC15 in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 5.2: ● The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 7). ● The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 7). Doc ID 15081 Rev 7 71/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Output voltage levels Unless otherwise specified, the parameters given in Table 44 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. All I/Os are CMOS and TTL compliant. Table 44. Output voltage characteristics Symbol Parameter VOL(1) VOH (3) VOL(1) VOH (3) VOL(1) VOH (3) VOL(1) VOH (3) Output Low level voltage for an I/O pin when 8 pins are sunk at the same time Output High level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Output low level voltage for an I/O pin when 8 pins are sunk at the same time Output high level voltage for an I/O pin when 8 pins are sourced at the same time Conditions CMOS port(2), IIO = +8 mA, 2.7 V < VDD < 3.6 V TTL port(2) IIO = +8 mA 2.7 V < VDD < 3.6 V IIO = +20 mA(4) 2.7 V < VDD < 3.6 V IIO = +6 mA(4) 2 V < VDD < 2.7 V Min Max Unit 0.4 V VDD–0.4 0.4 V 2.4 1.3 V VDD–1.3 0.4 V VDD–0.4 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 7 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Based on characterization data, not tested in production. 72/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 27 and Table 45, respectively. Unless otherwise specified, the parameters given in Table 45 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 45. MODEx [1:0] bit value(1) I/O AC characteristics(1) Symbol Parameter fmax(IO)out Maximum frequency(2) 10 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) 01 tf(IO)out Output high to low level fall time tr(IO)out Output low to high level rise time fmax(IO)out Maximum frequency(2) tf(IO)out Output high to low level fall time 11 tr(IO)out - tEXTIpw Output low to high level rise time Conditions CL = 50 pF, VDD = 2 V to 3.6 V Max Unit 2(3) MHz 125(3) CL = 50 pF, VDD = 2 V to 3.6 V ns (3) 125 CL= 50 pF, VDD = 2 V to 3.6 V 10(3) MHz 25(3) CL= 50 pF, VDD = 2 V to 3.6 V ns 25(3) CL = 50 pF, VDD = 2 V to 3.6 V 24 CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) CL = 30 pF, VDD = 2.7 V to 3.6 V 5(3) CL = 50 pF, VDD = 2.7 V to 3.6 V 8(3) CL = 50 pF, VDD = 2 V to 2.7 V 12(3) Pulse width of external signals detected by the EXTI controller 10(3) MHz ns ns 1. The I/O speed is configured using the MODEx[1:0] bits. Refer to the STM32F100xx reference manual for a description of GPIO Port configuration register. 2. The maximum frequency is defined in Figure 27. 3. Guaranteed by design, not tested in production. Doc ID 15081 Rev 7 73/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 27. I/O AC characteristics definition 90% 10% 50% 50% 90% 10% tr(I O)out EXT ERNAL OUTPUT ON 50pF tr(I O)out T Maximum frequency is achieved if (tr + tf) 2/3)T and if the duty cycle is (45-55%) when loaded by 50pF ai14131 5.3.15 NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 43). Unless otherwise specified, the parameters given in Table 46 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 9. Table 46. NRST pin characteristics Symbol Parameter VIL(NRST)(1) VIH(NRST) (1) Conditions Min –0.5 0.8 NRST Input high level voltage 2 VDD+0.5 Unit V Weak pull-up equivalent resistor(2) RPU Max NRST Input low level voltage NRST Schmitt trigger voltage hysteresis Vhys(NRST) Typ VF(NRST)(1) NRST Input filtered pulse VNF(NRST)(1) NRST Input not filtered pulse 200 VIN = VSS 30 40 mV 50 kΩ 100 ns 300 ns 1. Guaranteed by design, not tested in production. 2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). Figure 28. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW 1567 538 ,QWHUQDOUHVHW )LOWHU ) 670)[ DLG 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 46. Otherwise the reset will not be taken into account by the device. 74/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE 5.3.16 Electrical characteristics TIMx characteristics The parameters given in Table 47 are guaranteed by design. Refer to Section 5.3.13: I/O current injection characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 47. Symbol TIMx characteristics Parameter tres(TIM) Timer resolution time fEXT Timer external clock frequency on CHx(2) ResTIM tCOUNTER Conditions(1) fTIMxCLK = 24 MHz fTIMxCLK = 24 MHz Min tTIMxCLK 41.7 ns 0 fTIMxCLK/2 MHz 0 12 MHz 16 bit 65536 tTIMxCLK 2730 µs tMAX_COUNT Maximum possible count 65536 × 65536 tTIMxCLK 178 s 1 fTIMxCLK = 24 MHz fTIMxCLK = 24 MHz Unit 1 Timer resolution 16-bit counter clock period when the internal clock is selected Max 1. TIMx is used as a general term to refer to the TIM1, TIM2, TIM3, TIM4, TIM5, TIM15, TIM16 and TIM17 timers. 2. CHx is used as a general term to refer to CH1 to CH4 for TIM1, TIM2, TIM3, TIM4 and TIM5, to the CH1 to CH2 for TIM15, and to CH1 for TIM16 and TIM17. 5.3.17 Communications interfaces I2C interface characteristics Unless otherwise specified, the parameters given in Table 48 are preliminary values derived from tests performed under the ambient temperature, fPCLK1 frequency and VDD supply voltage conditions summarized in Table 9. The STM32F100xx value line I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not “true” open-drain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 48. Refer also to Section 5.3.13: I/O current injection characteristics for more details on the input/output alternate function characteristics (SDA and SCL). Doc ID 15081 Rev 7 75/98 Electrical characteristics Table 48. STM32F100xC, STM32F100xD, STM32F100xE I2C characteristics Standard mode I2C(1) Fast mode I2C(1)(2) Symbol Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.7 1.3 tw(SCLH) SCL clock high time 4.0 0.6 tsu(SDA) SDA setup time 250 100 th(SDA) SDA data hold time 0 0 tr(SDA) tr(SCL) SDA and SCL rise time 1000 300 tf(SDA) tf(SCL) SDA and SCL fall time 300 300 th(STA) Start condition hold time 4.0 0.6 tsu(STA) Repeated Start condition setup time 4.7 0.6 tsu(STO) Stop condition setup time 4.0 0.6 µs tw(STO:STA) Stop to Start condition time (bus free) 4.7 1.3 µs Cb Capacitive load for each bus line µs 900(3) µs 400 400 1. Guaranteed by design, not tested in production. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies. It must be a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The maximum Data hold time has only to be met if the interface does not stretch the low period of SCL signal. 76/98 ns Doc ID 15081 Rev 7 pF STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 29. I2C bus AC waveforms and measurement circuit 9'' N! 9'' N! ! ! ,ð&EXV 670)[ 6'$ 6&/ 6WDUWUHSHDWHG 6WDUW 6WDUW WVX67$ 6'$ WI6'$ WU6'$ WK67$ WVX6'$ WZ6&// 6&/ WZ6&/+ WU6&/ WVX67267$ 6WRS WK6'$ WVX672 WI6&/ DLG 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Table 49. SCL frequency (fPCLK1= 24 MHz, VDD = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz)(3) RP = 4.7 kΩ 400 0x8011 300 0x8016 200 0x8021 100 0x0064 50 0x00C8 20 0x01F4 1. RP = External pull-up resistance, fSCL = I2C speed, 2. For speeds around 400 kHz, the tolerance on the achieved speed is of ±2%. For other speed ranges, the tolerance on the achieved speed ±1%. These variations depend on the accuracy of the external components used to design the application. 3. Guaranteed by design, not tested in production. Doc ID 15081 Rev 7 77/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE SPI interface characteristics Unless otherwise specified, the parameters given in Table 50 are preliminary values derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 9. Refer to Section 5.3.13: I/O current injection characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO). Table 50. SPI characteristics Symbol fSCK 1/tc(SCK) Parameter Conditions Min 12 Slave mode 12 8 ns 70 % MHz SPI clock rise and fall time Capacitive load: C = 30 pF DuCy(SCK) SPI slave input clock duty cycle Slave mode 30 tsu(NSS)(1) NSS setup time Slave mode 4tPCLK th(NSS)(1) NSS hold time Slave mode 2tPCLK SCK high and low time Master mode, fPCLK = 24 MHz, presc = 4 50 Master mode 5 Slave mode 5 Master mode 5 Slave mode 4 tsu(MI) (1) tsu(SI)(1) th(MI) ta(SO) (1)(2) 60 Data input setup time (1) th(SI)(1) Data input hold time Data output access time Slave mode, fPCLK = 24 MHz tdis(SO)(1)(3) Data output disable time Slave mode ns 0 3tPCLK 2 10 (1) Data output valid time Slave mode (after enable edge) 25 tv(MO)(1) Data output valid time Master mode (after enable edge) 5 tv(SO) th(SO)(1) th(MO)(1) Unit Master mode SPI clock frequency tr(SCK) tf(SCK) tw(SCKH)(1) tw(SCKL)(1) Max Data output hold time Slave mode (after enable edge) 15 Master mode (after enable edge) 2 1. Preliminary values. 2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z 78/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics Figure 30. SPI timing diagram - slave mode and CPHA = 0 NSS input tc(SCK) th(NSS) SCK Input tSU(NSS) CPHA= 0 CPOL=0 tw(SCKH) tw(SCKL) CPHA= 0 CPOL=1 tv(SO) ta(SO) MISO OUT P UT tr(SCK) tf(SCK) th(SO) MS B O UT BI T6 OUT tdis(SO) LSB OUT tsu(SI) MOSI I NPUT B I T1 IN M SB IN LSB IN th(SI) ai14134c Figure 31. SPI timing diagram - slave mode and CPHA = 1 NSS input SCK Input tSU(NSS) CPHA=1 CPOL=0 CPHA=1 CPOL=1 tc(SCK) tw(SCKH) tw(SCKL) tv(SO) ta(SO) MISO OUT P UT MS B O UT tsu(SI) MOSI I NPUT th(NSS) th(SO) BI T6 OUT tr(SCK) tf(SCK) tdis(SO) LSB OUT th(SI) B I T1 IN M SB IN LSB IN ai14135 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. Doc ID 15081 Rev 7 79/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 32. SPI timing diagram - master mode High NSS input SCK output SCK output tc(SCK) CPHA= 0 CPOL=0 CPHA= 0 CPOL=1 CPHA=1 CPOL=0 CPHA=1 CPOL=1 tsu(MI) MISO INP UT tw(SCKH) tw(SCKL) tr(SCK) tf(SCK) MS BIN BI T6 IN LSB IN th(MI) MOSI OUTUT M SB OUT B I T1 OUT tv(MO) LSB OUT th(MO) ai14136 1. Measurement points are done at CMOS levels: 0.3VDD and 0.7VDD. HDMI consumer electronics control (CEC) Refer to Section 5.3.13: I/O current injection characteristics for more details on the input/output alternate function characteristics. 5.3.18 12-bit ADC characteristics Unless otherwise specified, the parameters given in Table 51 are preliminary values derived from tests performed under the ambient temperature, fPCLK2 frequency and VDDA supply voltage conditions summarized in Table 9. Note: 80/98 It is recommended to perform a calibration after each power-up. Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 51. ADC characteristics Symbol Parameter Conditions Electrical characteristics Min Typ Max Unit VDDA Power supply 2.4 3.6 V VREF+ Positive reference voltage 2.4 VDDA V IVREF Current on the VREF input pin 220(1) µA fADC ADC clock frequency 0.6 12 MHz fS(2) Sampling rate 0.05 1 MHz 823 kHz 17 1/fADC VREF+ V 50 kΩ 160(1) fADC = 12 MHz fTRIG(2) External trigger frequency VAIN(3) Conversion voltage range RAIN(2) External input impedance RADC(2) Sampling switch resistance 1 kΩ CADC(2) Internal sample and hold capacitor 8 pF tCAL(2) Calibration time 0 (VSSA tied to ground) See Equation 1 and Table 52 for details fADC = 12 MHz tlat(2) Injection trigger conversion latency fADC = 12 MHz tlatr(2) Regular trigger conversion latency fADC = 12 MHz tS(2) Sampling time fADC = 12 MHz tSTAB(2) Power-up time tCONV(2) Total conversion time (including sampling time) 5.9 µs 83 1/fADC 0.214 (4) 3 1/fADC 0.143 µs 2(4) 1/fADC 0.125 17.1 µs 1.5 239.5 1/fADC 1 µs 21 µs 0 fADC = 12 MHz µs 1.17 0 14 to 252 (tS for sampling +12.5 for successive approximation) 1/fADC 1. Preliminary values. 2. Guaranteed by design, not tested in production. 3. VREF+ is internally connected to VDDA 4. For external triggers, a delay of 1/fPCLK2 must be added to the latency specified in Table 51. Equation 1: RAIN max formula: TS - – R ADC R AIN < --------------------------------------------------------------N+2 f ADC × C ADC × ln ( 2 ) The above formula (Equation 1) is used to determine the maximum external impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution). Doc ID 15081 Rev 7 81/98 Electrical characteristics Table 52. STM32F100xC, STM32F100xD, STM32F100xE RAIN max for fADC = 12 MHz(1) Ts (cycles) tS (µs) RAIN max (kΩ) 1.5 0.125 0.4 7.5 0.625 5.9 13.5 1.125 11.4 28.5 2.375 25.2 41.5 3.45 37.2 55.5 4.625 50 71.5 5.96 NA 239.5 20 NA 1. Guaranteed by design, not tested in production. Table 53. Symbol ADC accuracy - limited test conditions(1)(2) Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Test conditions Typ Max fPCLK2 = 24 MHz, fADC = 12 MHz, RAIN < 10 kΩ, VDDA = 3 V to 3.6 V VREF+ = VDDA TA = 25 °C Measurements made after ADC calibration ±1.5 ±2.5 ±1 ±2 ±0.5 ±1.5 ±1.5 ±2 ±1.5 ±2 Test conditions Typ Max fPCLK2 = 24 MHz, fADC = 12 MHz, RAIN < 10 kΩ, VDDA = 2.4 V to 3.6 V TA = Full operating range Measurements made after ADC calibration ±2 ±5 ±1.5 ±2.5 ±1.5 ±3 ±1.5 ±2.5 ±1.5 ±4.5 Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Preliminary values. Table 54. Symbol ADC accuracy(1) (2) (3) Parameter ET Total unadjusted error EO Offset error EG Gain error ED Differential linearity error EL Integral linearity error Unit LSB 1. ADC DC accuracy values are measured after internal calibration. 2. Better performance could be achieved in restricted VDD, frequency, VREF and temperature ranges. 3. Preliminary values. Note: 82/98 ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Note: Electrical characteristics Any positive injection current within the limits specified for IINJ(PIN) and ΣIINJ(PIN) in Section 5.3.13 does not affect the ADC accuracy. Figure 33. ADC accuracy characteristics V V [1LSBIDEAL = REF+ (or DDA depending on package)] 4096 4096 EG (1) Example of an actual transfer curve (2) The ideal transfer curve (3) End point correlation line 4095 4094 4093 (2) ET 7 (1) 6 5 4 ET=Total Unadjusted Error: maximum deviation between the actual and the ideal transfer curves. EO=Offset Error: deviation between the first actual transition and the first ideal one. EG=Gain Error: deviation between the last ideal transition and the last actual one. ED=Differential Linearity Error: maximum deviation between actual steps and the ideal one. EL=Integral Linearity Error: maximum deviation between any actual transition and the end point correlation line. (3) EO EL 3 ED 2 1 LSBIDEAL 1 0 1 VSSA 2 3 4 5 6 7 4093 4094 4095 4096 VDDA ai14395b Figure 34. Typical connection diagram using the ADC STM32F10xxx VDD RAIN(1) Sample and hold ADC converter VT 0.6 V RADC(1) AINx VT 0.6 V VAIN Cparasitic IL±1 µA 12-bit converter CADC(1) ai14139d 1. Refer to Table 51 for the values of RAIN, RADC and CADC. 2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high Cparasitic value will downgrade conversion accuracy. To remedy this, fADC should be reduced. General PCB design guidelines Power supply decoupling should be performed as shown in Figure 35 or Figure 36, depending on whether VREF+ is connected to VDDA or not. The 10 nF capacitors should be ceramic (good quality). They should be placed them as close as possible to the chip. Doc ID 15081 Rev 7 83/98 Electrical characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 35. Power supply and reference decoupling (VREF+ not connected to VDDA) STM32F10xxx V REF+ 1 µF // 10 nF V DDA 1 µF // 10 nF V SSA/V REF- ai14380b 1. VREF+ is available on 100-pin packages and on TFBGA64 packages. VREF- is available on 100-pin packages only. Figure 36. Power supply and reference decoupling (VREF+ connected to VDDA) STM32F10xxx VREF+/VDDA 1 µF // 10 nF VREF–/VSSA ai14381b 1. VREF+ and VREF- inputs are available only on 100-pin packages. 84/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Electrical characteristics 5.3.19 DAC electrical specifications Table 55. DAC characteristics Symbol Parameter Min Typ Max(1) Unit VDDA Analog supply voltage 2.4 3.6 V VREF+ Reference supply voltage 2.4 3.6 V Ground 0 0 V Resistive load with buffer ON 5 VSSA RLOAD (1) Comments VREF+ must always be below VDDA kΩ RO(1) Impedance output with buffer OFF 15 kΩ When the buffer is OFF, the Minimum resistive load between DAC_OUT and VSS to have a 1% accuracy is 1.5 MΩ CLOAD(1) Capacitive load 50 pF Maximum capacitive load at DAC_OUT pin (when the buffer is ON). DAC_OUT min(1) Lower DAC_OUT voltage with buffer ON DAC_OUT max(1) Higher DAC_OUT voltage with buffer ON DAC_OUT min(1) Lower DAC_OUT voltage with buffer OFF DAC_OUT max(1) Higher DAC_OUT voltage with buffer OFF IDDVREF+ DAC DC current consumption in quiescent mode (Standby mode) IDDA DNL(1) INL(1) 0.2 V VDDA – V 0.2 0.5 mV VREF+ V – 1LSB It gives the maximum output excursion of the DAC. 220 µA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs 380 µA With no load, middle code (0x800) on the inputs 480 µA With no load, worst code (0xF1C) at VREF+ = 3.6 V in terms of DC consumption on the inputs ±0.5 LSB Given for the DAC in 10-bit configuration ±2 LSB Given for the DAC in 12-bit configuration ±1 LSB Given for the DAC in 10-bit configuration ±4 LSB Given for the DAC in 12-bit configuration DAC DC current consumption in quiescent mode (2) Differential non linearity Difference between two consecutive code-1LSB) Integral non linearity (difference between measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023) It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xF1C) at VREF+ = 3.6 V and (0x155) and (0xEAB) at VREF+ = 2.4 V Doc ID 15081 Rev 7 85/98 Electrical characteristics Table 55. DAC characteristics (continued) Symbol Offset(1) Gain error(1) STM32F100xC, STM32F100xD, STM32F100xE Parameter Min Offset error (difference between measured value at Code (0x800) and the ideal value = VREF+/2) Gain error Settling time (full scale: for a 10-bit input code transition between the tSETTLING(1) lowest and the highest input codes when DAC_OUT reaches final value ±1LSB Max(1) Unit ±10 mV Given for the DAC in 12-bit configuration ±3 LSB Given for the DAC in 10-bit at VREF+ = 3.6 V ±12 LSB Given for the DAC in 12-bit at VREF+ = 3.6 V ±0.5 % Given for the DAC in 12-bit configuration 4 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ 1 MS/s CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ Typ 3 Comments Update rate(1) Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB) tWAKEUP(1) Wakeup time from off state (Setting the ENx bit in the DAC Control register) 6.5 10 µs CLOAD ≤ 50 pF, RLOAD ≥ 5 kΩ input code between lowest and highest possible ones. PSRR+ (1) Power supply rejection ratio (to VDDA) (static DC measurement –67 –40 dB No RLOAD, CLOAD = 50 pF 1. Preliminary values. 2. Quiescent mode refer to the state of the DAC keeping steady value on the output, so no dynamic consumption is involved. Figure 37. 12-bit buffered /non-buffered DAC Buffered/Non-buffered DAC Buffer(1) R LOAD 12-bit digital to analog converter DACx_OUT C LOAD ai17157 1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 86/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE 5.3.20 Temperature sensor characteristics Table 56. TS characteristics Symbol TL(1) Parameter Electrical characteristics Min VSENSE linearity with temperature (1) Typ Max Unit ±1 ±2 °C Average slope 4.0 4.3 4.6 mV/°C V25(1) Voltage at 25°C 1.32 1.41 1.50 V tSTART(2) Startup time 10 µs TS_temp(3)(2) ADC sampling time when reading the temperature 17.1 µs Avg_Slope 4 1. Guaranteed by characterization, not tested in production. 2. Guaranteed by design, not tested in production. 3. Shortest sampling time can be determined in the application by multiple iterations. Doc ID 15081 Rev 7 87/98 Package characteristics STM32F100xC, STM32F100xD, STM32F100xE 6 Package characteristics 6.1 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark. 88/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Package characteristics Figure 38. LQFP144, 20 x 20 mm, 144-pin thin quad flat package outline Figure 39. Recommended footprint Seating plane C A A2 A1 c b ccc 0.25 mm gage plane C D 108 109 k 1.35 73 72 0.35 D1 A1 D3 108 73 L 0.5 L1 17.85 72 109 19.9 E1 144 E E3 22.6 37 1 36 19.9 22.6 ai14 144 Pin 1 identification 37 36 1 e ME_1A 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 57. LQFP144, 20 x 20 mm, 144-pin thin quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 21.80 D1 19.80 D3 Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 22.00 22.20 0.8583 0.8661 0.874 20.00 20.20 0.7795 0.7874 0.7953 17.50 0.0059 0.0079 0.689 E 21.80 22.00 22.20 0.8583 0.8661 0.874 E1 19.80 20.00 20.20 0.7795 0.7874 0.7953 E3 17.50 0.689 e 0.50 0.0197 L 0.45 L1 k ccc 0.60 0.75 0.0177 1.00 0° 3.5° 0.0236 0.0295 0.0394 7° 0.08 0° 3.5° 7° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 15081 Rev 7 89/98 Package characteristics STM32F100xC, STM32F100xD, STM32F100xE Figure 40. LQFP100 – 14 x 14 mm, 100-pin low-profile Figure 41. Recommended footprint quad flat package outline 0.25 mm 0.10 inch GAGE PLANE 75 k 51 D 76 L D1 50 0.5 L1 D3 51 75 C 0.3 76 50 16.7 14.3 b E3 E1 E 100 26 1.2 100 1 26 Pin 1 1 identification 25 12.3 C ccc 25 16.7 e A1 ai14906b A2 A SEATING PLANE C 1L_ME 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 58. LQPF100 – 14 x 14 mm, 100-pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 D 15.80 D1 13.80 D3 Max 0.063 0.15 0.002 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 16.00 16.20 0.622 0.6299 0.6378 14.00 14.20 0.5433 0.5512 0.5591 12.00 0.0059 0.0079 0.4724 E 15.80 16.00 16.20 0.622 0.6299 0.6378 E1 13.80 14.00 14.20 0.5433 0.5512 0.5591 E3 12.00 0.4724 e 0.50 0.0197 L 0.45 L1 k ccc 0.60 0.75 0.0177 1.00 0° 3.5° 0.0236 0.0295 0.0394 7° 0.08 0° 3.5° 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 90/98 Min Doc ID 15081 Rev 7 7° STM32F100xC, STM32F100xD, STM32F100xE Package characteristics Figure 42. LQFP64 – 10 x 10 mm, 64 pin low-profile quad Figure 43. Recommended flat package outline footprint A A2 48 A1 33 0.3 49 E 32 0.5 b E1 12.7 10.3 10.3 e 64 17 1.2 1 16 7.8 D1 c 12.7 L1 D ai14909 L ai14398b 1. Drawing is not to scale. 2. Dimensions are in millimeters. Table 59. LQFP64 – 10 x 10 mm, 64 pin low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ A Max Min Typ 1.60 A1 0.05 A2 1.35 b 0.17 c 0.09 Max 0.0630 0.15 0.0020 0.0059 1.40 1.45 0.0531 0.0551 0.0571 0.22 0.27 0.0067 0.0087 0.0106 0.20 0.0035 0.0079 D 12.00 0.4724 D1 10.00 0.3937 E 12.00 0.4724 E1 10.00 0.3937 e 0.50 0.0197 θ 0° 3.5° 7° 0° 3.5° 7° L 0.45 0.60 0.75 0.0177 0.0236 0.0295 L1 1.00 0.0394 Number of pins N 64 1. Values in inches are converted from mm and rounded to 4 decimal digits. Doc ID 15081 Rev 7 91/98 Package characteristics 6.2 STM32F100xC, STM32F100xD, STM32F100xE Thermal characteristics The maximum chip junction temperature (TJmax) must never exceed the values given in Table 9: General operating conditions on page 37. The maximum chip-junction temperature, TJ max, in degrees Celsius, may be calculated using the following equation: TJ max = TA max + (PD max x ΘJA) Where: ● TA max is the maximum ambient temperature in ° C, ● ΘJA is the package junction-to-ambient thermal resistance, in ° C/W, ● PD max is the sum of PINT max and PI/O max (PD max = PINT max + PI/Omax), ● PINT max is the product of IDD and VDD, expressed in Watts. This is the maximum chip internal power. PI/O max represents the maximum power dissipation on output pins where: PI/O max = Σ (VOL × IOL) + Σ((VDD – VOH) × IOH), taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low and high level in the application. Table 60. Package thermal characteristics Symbol ΘJA 6.2.1 Parameter Value Thermal resistance junction-ambient LQFP 144 - 20 × 20 mm / 0.5 mm pitch 35 Thermal resistance junction-ambient LQFP 100 - 14 × 14 mm / 0.5 mm pitch 40 Thermal resistance junction-ambient LQFP 64 - 10 × 10 mm / 0.5 mm pitch 49 Unit °C/W Reference document JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org. 92/98 Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE 6.2.2 Package characteristics Selecting the product temperature range When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in Table 61: Ordering information scheme. Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature. As applications do not commonly use the STM32F100xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application. The following examples show how to calculate the temperature range needed for a given application. Example: high-performance application Assuming the following application conditions: Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2), IDDmax = 50 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V and maximum 8 I/Os used at the same time in output mode at low level with IOL = 20 mA, VOL= 1.3 V PINTmax = 50 mA × 3.5 V= 175 mW PIOmax = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW This gives: PINTmax = 175 mW and PIOmax = 272 mW PDmax = 175 + 272 = 447 mW Thus: PDmax = 447 mW Using the values obtained in Table 60 TJmax is calculated as follows: – For LQFP64, 49 °C/W TJmax = 82 °C + (49 °C/W × 447 mW) = 82 °C + 20.1 °C = 102.1 °C This is within the range of the suffix 6 version parts (–40 < TJ < 105 °C). In this case, parts must be ordered at least with the temperature range suffix 6 (see Table 61: Ordering information scheme). Example 2: High-temperature application Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature TJ remains within the specified range. Assuming the following application conditions: Maximum ambient temperature TAmax = 115 °C (measured according to JESD51-2), IDDmax = 20 mA, VDD = 3.5 V, maximum 20 I/Os used at the same time in output at low level with IOL = 8 mA, VOL= 0.4 V PINTmax = 20 mA × 3.5 V= 70 mW PIOmax = 20 × 8 mA × 0.4 V = 64 mW This gives: PINTmax = 70 mW and PIOmax = 64 mW: PDmax = 70 + 64 = 134 mW Thus: PDmax = 134 mW Doc ID 15081 Rev 7 93/98 Package characteristics STM32F100xC, STM32F100xD, STM32F100xE Using the values obtained in Table 60 TJmax is calculated as follows: – For LQFP100, 40 °C/W TJmax = 115 °C + (40 °C/W × 134 mW) = 115 °C + 5.4 °C = 120.4 °C This is within the range of the suffix 7 version parts (–40 < TJ < 125 °C). In this case, parts must be ordered at least with the temperature range suffix 7 (see Table 61: Ordering information scheme). Figure 44. LQFP100 PD max vs. TA 700 PD (mW) 600 500 Suffix 6 400 Suffix 7 300 200 100 0 65 75 85 95 105 115 TA (°C) 94/98 Doc ID 15081 Rev 7 125 135 STM32F100xC, STM32F100xD, STM32F100xE 7 Ordering information scheme Ordering information scheme Table 61. Ordering information scheme Example: STM32 F 100 V C T 6 B xxx Device family STM32 = ARM-based 32-bit microcontroller Product type F = General-purpose Device subfamily 100 = value line Pin count R = 64 pins V = 100 pins Z = 144 pins Flash memory size C = 256 Kbytes of Flash memory D = 384 Kbytes of Flash memory E = 512 Kbytes of Flash memory Package T = LQFP Temperature range 6 = Industrial temperature range, –40 to 85 °C 7 = Industrial temperature range, –40 to 105 °C Internal code B Options xxx = programmed parts TR = tape and real For a list of available options (speed, package, etc.) or for further information on any aspect of this device, please contact your nearest ST sales office. Doc ID 15081 Rev 7 95/98 Revision history 8 STM32F100xC, STM32F100xD, STM32F100xE Revision history Table 62. Document revision history Date Revision 09-Oct-2008 1 Initial release. 31-Mar-2009 2 I/O information clarified on page 1. Table 5: High-density STM32F100xx pin definitions modified. Figure 5: Memory map on page 26 modified. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Table 20: High-speed external user clock characteristics and Table 21: Low-speed user external clock characteristics modified. ACCHSI max values modified in Table 24: HSI oscillator characteristics. Note modified in Table 13: Maximum current consumption in Run mode, code with data processing running from Flash and Table 15: Maximum current consumption in Sleep mode, code running from Flash or RAM. Figure 10, Figure 11 and Figure 12 show typical curves (titles changed). Small text changes. 01-Sep-2010 3 Major revision of whole document. Added LQFP144 package and additional peripherals (SPI3, UART4, UART, TIM5, 12, 14, 13, FSMC). 18-Oct-2010 4 Updated Power consumption data in Table 13 to Table 16 Updated Section 5.3.11: EMC characteristics on page 66 5 Added Section 2.2.6: LCD parallel interface on page 13 In Table 4 on page 24 moved TIM15_BKIN and TIM17_BKIN from remap to default column. Updated description of PA3, PA5 and PF6 to PF10. Updated footnotes below Table 6: Voltage characteristics on page 36 and Table 7: Current characteristics on page 37 Added VBAT values in Table 16: Typical and maximum current consumptions in Stop and Standby modes on page 43 Updated tw min in Table 20: High-speed external user clock characteristics on page 47 Updated startup time in Table 23: LSE oscillator characteristics (fLSE = 32.768 kHz) on page 51 Added HSI clock accuracy values in Table 24: HSI oscillator characteristics on page 52 Updated FSMC Synchronous waveforms and timings on page 60 Updated Table 43: I/O static characteristics on page 69 Added Section 5.3.13: I/O current injection characteristics on page 68 Corrected TTL and CMOS designations in Table 44: Output voltage characteristics on page 72 11-Apr-2011 96/98 Changes Doc ID 15081 Rev 7 STM32F100xC, STM32F100xD, STM32F100xE Table 62. Revision history Document revision history (continued) Date 08-Jun-2012 17-Sep-2012 Revision Changes 6 Updated Table 7: Current characteristics on page 37 Corrected “CLKL-NOEL” in Section 5.3.10: FSMC characteristics on page 54 Updated Table 48: I2C characteristics on page 76 Corrected note “non-robust “ in Section 5.3.18: 12-bit ADC characteristics on page 80 Updated Figure 1: STM32F100xx value line block diagram on page 11 Updated Section 5.3.14: I/O port characteristics on page 69 Updated Section 2.2.22: GPIOs (general-purpose inputs/outputs) on page 20 Updated Table 4: High-density STM32F100xx pin definitions on page 24 Updated Section 5.3.1: General operating conditions on page 37 Updated PD0 and PD1 in Table 4: High-density STM32F100xx pin definitions on page 24 7 Updated PD max specifications in Table 9: General operating conditions Added footnote to IDDA parameter description in Table 55: DAC characteristics Doc ID 15081 Rev 7 97/98 STM32F100xC, STM32F100xD, STM32F100xE Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST’s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. © 2012 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 98/98 Doc ID 15081 Rev 7