STPS2L60 ® POWER SCHOTTKY RECTIFIER Table 1: Main Product Characteristics IF(AV) 2A VRRM 60 V Tj (max) 150°C VF(max) 0.55 V FEATURES AND BENEFITS ■ ■ ■ ■ SMA (JEDEC DO-214AC) STPS2L60A Negligible switching losses Low forward voltage drop Surface mount miniature package Avalanche capability specified Table 2: Order Codes Part Number STPS2L60A STPS2L60 STPS2L60RL DESCRIPTION Axial and Surface Mount Power Schottky rectifiers suited to Switched Mode Power Supplies and high frequency DC to DC converters. Packaged in SMA and DO-41, this device is especially intended for use in low voltage, high frequency inverters and small battery chargers. DO-41 STPS2L60 Marking S26 STPS2L60 STPS2L60 Table 3: Absolute Ratings (limiting values) Symbol Parameter VRRM Repetitive peak reverse voltage IF(RMS) RMS forward voltage A DO-41 TL = 110°C δ = 0.5 2 A Surge non repetitive forward current tp = 10ms sinusoidal 75 A Repetitive peak avalanche power tp = 1µs Tj = 25°C 1600 W -65 to + 150 °C 150 10000 °C V/µs IFSM PARM dV/dt 10 TL = 115°C δ = 0.5 Average forward current Tj Unit V SMA IF(AV) Tstg Value 60 Storage temperature range Maximum operating junction temperature * Critical rate of rise of reverse voltage dPt ot 1 * : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink dTj Rth ( j – a ) August 2004 REV. 3 1/6 STPS2L60 Table 4: Thermal Resistance Symbol Parameter Rth(j-l) Junction to lead Value 25 30 SMA DO-41 Lead length = 10 mm Unit °C/W Table 5: Static Electrical Characteristics Symbol Parameter Tests conditions Tj = 25°C VR = VRRM Reverse leakage current Tj = 100°C IR * Tj = 25°C VF ** Tj = 125°C Forward voltage drop Tj = 25°C Tj = 125°C Min. Typ Max. 100 2 10 Unit µA mA 0.60 IF = 2A 0.51 0.55 V 0.77 IF = 4A 0.62 0.67 * tp = 380 µs, δ < 2% Pulse test: 2 To evaluate the conduction losses use the following equation: P = 0.43 x IF(AV) + 0.06 IF (RMS) Figure 1: Average forward power dissipation versus average forward current Figure 2: Average forward current versus ambient temperature (δ = 0.5) PF(AV)(W) IF(AV)(A) 1.4 δ = 0.1 1.3 δ = 0.2 2.2 δ = 0.5 Rth(j-a)=Rth(j-I) 2.0 δ = 0.05 1.2 1.8 1.1 DO-41 1.6 δ=1 1.0 SMA 0.9 1.4 0.8 1.2 Rth(j-a)=100°C/W 0.7 1.0 0.6 0.8 0.5 0.4 0.6 T 0.3 T 0.4 0.2 δ=tp/T IF(AV)(A) 0.1 δ=tp/T 0.2 tp tp Tamb(°C) 0.0 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 Figure 3: Normalized avalanche derating versus pulse duration 2.2 0 2.4 power 25 50 75 100 125 Figure 4: Normalized avalanche derating versus junction temperature PARM(tp) PARM(1µs) 150 power PARM(tp) PARM(25°C) 1 1.2 1 0.1 0.8 0.6 0.4 0.01 0.2 0.01 2/6 Tj(°C) tp(µs) 0.001 0.1 1 0 10 100 1000 25 50 75 100 125 150 STPS2L60 Figure 5: Non repetitive surge peak forward current versus overload duration (maximum values) (SMA) Figure 6: Non repetitive surge peak forward current versus overload duration (maximum values) (DO-41) IM(A) IM(A) 10 10 9 9 8 8 7 7 Ta=25°C 6 6 Ta=25°C 5 5 Ta=75°C 4 4 Ta=75°C 3 3 2 IM 2 Ta=125°C 1 t t(s) δ=0.5 1.E-02 1.E-01 1.E+00 Figure 7: Relative variation of thermal impedance junction to ambient versus pulse duration (epoxy printed circuit board, e(Cu)=35µm, recommended pad layout) (SMA) 1.E-03 Zth(j-a)/Rth(j-a) 1.E-01 1.E+00 Zth(j-a)/Rth(j-a) 1.0 0.9 0.9 0.8 0.8 0.7 0.7 0.6 δ = 0.5 0.5 0.5 0.4 0.4 0.1 1.E-02 Figure 8: Relative variation of thermal impedance junction to ambient versus pulse duration (DO-41) 1.0 0.2 t(s) 0 1.E-03 0.3 t δ=0.5 0 0.6 Ta=125°C IM 1 δ = 0.2 0.3 δ = 0.2 0.2 δ = 0.1 T δ = 0.1 Single pulse δ=tp/T tp(s) δ = 0.5 T 0.1 tp Single pulse tp(s) δ=tp/T tp 0.0 0.0 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 Figure 9: Reverse leakage current versus reverse voltage applied (typical values) 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 Figure 10: Junction capacitance versus reverse voltage applied (typical values) IR(µA) C(pF) 1.E+05 1000 F=1MHz VOSC=30mV Tj=25°C Tj=150°C 1.E+04 Tj=125°C Tj=100°C 1.E+03 100 Tj=75°C 1.E+02 Tj=50°C Tj=25°C 1.E+01 VR(V) VR(V) 10 1.E+00 0 10 20 30 40 50 60 1 10 100 3/6 STPS2L60 Figure 11: Forward voltage drop versus forward current (maximum values, low level) Figure 12: Thermal resistance junction to ambient versus copper surface under each lead (Epoxy printed circuit board FR4, copper thickness: 35µm) (SMA) Rth(j-)(°C/W) IFM(A) 130 10 120 Tj=125°C (maximum values) 9 110 8 100 7 90 80 Tj=125°C (typical values) 6 70 5 60 Tj=25°C (maximum values) 4 50 40 3 30 2 20 1 VFM(V) S(Cu)(cm²) 10 0 0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Figure 13: Thermal resistance versus lead length (DO-41) Rth(°C/W) 120 Rth(j-a) 100 80 60 Rth(j-I) 40 20 Lleads(mm) 0 5 4/6 10 15 20 25 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 STPS2L60 Figure 14: SMA Package Mechanical Data DIMENSIONS REF. E1 D E A1 A2 C L b Millimeters Inches Min. Max. Min. Max. A1 1.90 2.03 0.075 0.080 A2 0.05 0.20 0.002 0.008 b 1.25 1.65 0.049 0.065 c 0.15 0.41 0.006 0.016 E 4.80 5.60 0.189 0.220 E1 3.95 4.60 0.156 0.181 D 2.25 2.95 0.089 0.116 L 0.75 1.60 0.030 0.063 Figure 15: SMA Foot Print Dimensions (in millimeters) 1.65 1.45 2.40 1.45 5/6 STPS2L60 Figure 16: DO-41 Package Mechanical Data C A C / B O O /D O /D DIMENSIONS Millimeters Inches Min. Max. Min. Max. 4.07 5.20 0.160 0.205 2.04 2.71 0.080 0.107 28 1.102 0.712 0.863 0.028 0.034 REF. A B C D Table 6: Ordering Information Ordering type STPS2L60A STPS2L60 STPS2L60RL ■ ■ Marking S26 STPS2L60 STPS2L60 Package SMA DO-41 DO-41 Weight 0.068 g 0.34 g 0.34 g Base qty 5000 2000 5000 Delivery mode Tape & reel Ammopack Tape & reel Band indicates cathode Epoxy meets UL94, V0 Table 7: Revision History Date Jul-2003 Revision 2A Aug-2004 3 Description of Changes Last update. SMA package dimensions update. Reference A1 max. changed from 2.70mm (0.106inc.) to 2.03mm (0.080). Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2004 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 6/6