STMICROELECTRONICS STPS2L60RL

STPS2L60
®
POWER SCHOTTKY RECTIFIER
Table 1: Main Product Characteristics
IF(AV)
2A
VRRM
60 V
Tj (max)
150°C
VF(max)
0.55 V
FEATURES AND BENEFITS
■
■
■
■
SMA
(JEDEC DO-214AC)
STPS2L60A
Negligible switching losses
Low forward voltage drop
Surface mount miniature package
Avalanche capability specified
Table 2: Order Codes
Part Number
STPS2L60A
STPS2L60
STPS2L60RL
DESCRIPTION
Axial and Surface Mount Power Schottky rectifiers
suited to Switched Mode Power Supplies and high
frequency DC to DC converters.
Packaged in SMA and DO-41, this device is
especially intended for use in low voltage, high
frequency inverters and small battery chargers.
DO-41
STPS2L60
Marking
S26
STPS2L60
STPS2L60
Table 3: Absolute Ratings (limiting values)
Symbol
Parameter
VRRM Repetitive peak reverse voltage
IF(RMS) RMS forward voltage
A
DO-41
TL = 110°C δ = 0.5
2
A
Surge non repetitive forward current
tp = 10ms sinusoidal
75
A
Repetitive peak avalanche power
tp = 1µs Tj = 25°C
1600
W
-65 to + 150
°C
150
10000
°C
V/µs
IFSM
PARM
dV/dt
10
TL = 115°C δ = 0.5
Average forward current
Tj
Unit
V
SMA
IF(AV)
Tstg
Value
60
Storage temperature range
Maximum operating junction temperature *
Critical rate of rise of reverse voltage
dPt ot
1
* : --------------- > -------------------------- thermal runaway condition for a diode on its own heatsink
dTj
Rth ( j – a )
August 2004
REV. 3
1/6
STPS2L60
Table 4: Thermal Resistance
Symbol
Parameter
Rth(j-l)
Junction to lead
Value
25
30
SMA
DO-41
Lead length = 10 mm
Unit
°C/W
Table 5: Static Electrical Characteristics
Symbol
Parameter
Tests conditions
Tj = 25°C
VR = VRRM
Reverse leakage current
Tj = 100°C
IR *
Tj = 25°C
VF **
Tj = 125°C
Forward voltage drop
Tj = 25°C
Tj = 125°C
Min.
Typ
Max.
100
2
10
Unit
µA
mA
0.60
IF = 2A
0.51
0.55
V
0.77
IF = 4A
0.62
0.67
* tp = 380 µs, δ < 2%
Pulse test:
2
To evaluate the conduction losses use the following equation: P = 0.43 x IF(AV) + 0.06 IF (RMS)
Figure 1: Average forward power dissipation
versus average forward current
Figure 2: Average forward current versus
ambient temperature (δ = 0.5)
PF(AV)(W)
IF(AV)(A)
1.4
δ = 0.1
1.3
δ = 0.2
2.2
δ = 0.5
Rth(j-a)=Rth(j-I)
2.0
δ = 0.05
1.2
1.8
1.1
DO-41
1.6
δ=1
1.0
SMA
0.9
1.4
0.8
1.2
Rth(j-a)=100°C/W
0.7
1.0
0.6
0.8
0.5
0.4
0.6
T
0.3
T
0.4
0.2
δ=tp/T
IF(AV)(A)
0.1
δ=tp/T
0.2
tp
tp
Tamb(°C)
0.0
0.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
Figure 3: Normalized avalanche
derating versus pulse duration
2.2
0
2.4
power
25
50
75
100
125
Figure 4: Normalized avalanche
derating versus junction temperature
PARM(tp)
PARM(1µs)
150
power
PARM(tp)
PARM(25°C)
1
1.2
1
0.1
0.8
0.6
0.4
0.01
0.2
0.01
2/6
Tj(°C)
tp(µs)
0.001
0.1
1
0
10
100
1000
25
50
75
100
125
150
STPS2L60
Figure 5: Non repetitive surge peak forward
current versus overload duration (maximum
values) (SMA)
Figure 6: Non repetitive surge peak forward
current versus overload duration (maximum
values) (DO-41)
IM(A)
IM(A)
10
10
9
9
8
8
7
7
Ta=25°C
6
6
Ta=25°C
5
5
Ta=75°C
4
4
Ta=75°C
3
3
2
IM
2
Ta=125°C
1
t
t(s)
δ=0.5
1.E-02
1.E-01
1.E+00
Figure 7: Relative variation of thermal
impedance junction to ambient versus pulse
duration (epoxy printed circuit board,
e(Cu)=35µm, recommended pad layout) (SMA)
1.E-03
Zth(j-a)/Rth(j-a)
1.E-01
1.E+00
Zth(j-a)/Rth(j-a)
1.0
0.9
0.9
0.8
0.8
0.7
0.7
0.6
δ = 0.5
0.5
0.5
0.4
0.4
0.1
1.E-02
Figure 8: Relative variation of thermal
impedance junction to ambient versus pulse
duration (DO-41)
1.0
0.2
t(s)
0
1.E-03
0.3
t
δ=0.5
0
0.6
Ta=125°C
IM
1
δ = 0.2
0.3
δ = 0.2
0.2
δ = 0.1
T
δ = 0.1
Single pulse
δ=tp/T
tp(s)
δ = 0.5
T
0.1
tp
Single pulse
tp(s)
δ=tp/T
tp
0.0
0.0
1.E-02
1.E-01
1.E+00
1.E+01
1.E+02
Figure 9: Reverse leakage current versus
reverse voltage applied (typical values)
1.E-01
1.E+00
1.E+01
1.E+02
1.E+03
Figure 10: Junction capacitance versus
reverse voltage applied (typical values)
IR(µA)
C(pF)
1.E+05
1000
F=1MHz
VOSC=30mV
Tj=25°C
Tj=150°C
1.E+04
Tj=125°C
Tj=100°C
1.E+03
100
Tj=75°C
1.E+02
Tj=50°C
Tj=25°C
1.E+01
VR(V)
VR(V)
10
1.E+00
0
10
20
30
40
50
60
1
10
100
3/6
STPS2L60
Figure 11: Forward voltage drop versus
forward current (maximum values, low level)
Figure 12: Thermal resistance junction to
ambient versus copper surface under each
lead (Epoxy printed circuit board FR4, copper
thickness: 35µm) (SMA)
Rth(j-)(°C/W)
IFM(A)
130
10
120
Tj=125°C
(maximum values)
9
110
8
100
7
90
80
Tj=125°C
(typical values)
6
70
5
60
Tj=25°C
(maximum values)
4
50
40
3
30
2
20
1
VFM(V)
S(Cu)(cm²)
10
0
0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
Figure 13: Thermal resistance versus lead
length (DO-41)
Rth(°C/W)
120
Rth(j-a)
100
80
60
Rth(j-I)
40
20
Lleads(mm)
0
5
4/6
10
15
20
25
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
STPS2L60
Figure 14: SMA Package Mechanical Data
DIMENSIONS
REF.
E1
D
E
A1
A2
C
L
b
Millimeters
Inches
Min.
Max.
Min.
Max.
A1
1.90
2.03
0.075
0.080
A2
0.05
0.20
0.002
0.008
b
1.25
1.65
0.049
0.065
c
0.15
0.41
0.006
0.016
E
4.80
5.60
0.189
0.220
E1
3.95
4.60
0.156
0.181
D
2.25
2.95
0.089
0.116
L
0.75
1.60
0.030
0.063
Figure 15: SMA Foot Print Dimensions
(in millimeters)
1.65
1.45
2.40
1.45
5/6
STPS2L60
Figure 16: DO-41 Package Mechanical Data
C
A
C
/ B
O
O
/D
O
/D
DIMENSIONS
Millimeters
Inches
Min.
Max.
Min.
Max.
4.07
5.20
0.160
0.205
2.04
2.71
0.080
0.107
28
1.102
0.712
0.863
0.028
0.034
REF.
A
B
C
D
Table 6: Ordering Information
Ordering type
STPS2L60A
STPS2L60
STPS2L60RL
■
■
Marking
S26
STPS2L60
STPS2L60
Package
SMA
DO-41
DO-41
Weight
0.068 g
0.34 g
0.34 g
Base qty
5000
2000
5000
Delivery mode
Tape & reel
Ammopack
Tape & reel
Band indicates cathode
Epoxy meets UL94, V0
Table 7: Revision History
Date
Jul-2003
Revision
2A
Aug-2004
3
Description of Changes
Last update.
SMA package dimensions update. Reference A1 max.
changed from 2.70mm (0.106inc.) to 2.03mm (0.080).
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences
of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted
by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject
to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not
authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
The ST logo is a registered trademark of STMicroelectronics.
All other names are the property of their respective owners
© 2004 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
6/6