STMICROELECTRONICS TDA7498

TDA7498
100-watt + 100-watt dual BTL class-D audio amplifier
Features
■
100-W + 100-W output power at
THD = 10% with RL = 6 Ω and VCC = 36 V
■
80-W + 80-W output power at
THD = 10% with RL = 8 Ω and VCC = 34 V
■
Wide-range single-supply operation (14 - 39 V)
■
High efficiency (η = 90%)
■
Four selectable, fixed gain settings of
nominally 25.6 dB, 31.6 dB, 35.1 dB and
37.6 dB
■
Differential inputs minimize common-mode
noise
■
Standby and mute features
■
Short-circuit protection
■
Thermal overload protection
■
Externally synchronizable
PowerSSO36
with exposed pad up
Description
The TDA7498 is a dual BTL class-D audio
amplifier with single power supply designed for
home systems and active speaker applications.
It comes in a 36-pin PowerSSO package with
exposed pad up (EPU) to facilitate mounting a
separate heatsink.
Table 1.
Device summary
Order code
Operating temp. range
Package
Packaging
TDA7498
-40 to 85 °C
PowerSSO36 (EPU)
Tube
TDA7498TR
-40 to 85 °C
PowerSSO36 (EPU)
Tape and reel
September 2011
Doc ID 16107 Rev 8
1/28
www.st.com
28
Contents
TDA7498
Contents
1
2
3
4
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.1
Pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2
Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.1
Test circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2
Characterization curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2.1
For RL = 6 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
3.2.2
For RL = 8 Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Applications information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
Applications circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3
Gain setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.4
Input resistance and capacitance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.5
Internal and external clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.1
Master mode (internal clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.5.2
Slave mode (external clock) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.6
Output low-pass filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.7
Protection functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.8
Diagnostic output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
5
Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2/28
Doc ID 16107 Rev 8
TDA7498
List of figures
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Internal block diagram (showing one channel only) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Pin connections (top view, PCB view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Test circuit for characterizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Test board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Output power (THD = 10%) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
FFT performance (0 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
FFT performance (-60 dBFS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Output power (THD = 10%) vs. supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD vs. output power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
THD vs. frequency (1 W) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
THD vs. frequency (100 mW) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
FFT performance (0 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
FFT performance (-60 dB) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Applications circuit for 6- or 8-Ω speakers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Standby and mute circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Turn on/off sequence for minimizing speaker “pop” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Input circuit and frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Master and slave connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Typical LC filter for a 8-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Typical LC filter for a 6-Ω speaker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Behavior of pin DIAG for various protection conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
PowerSSO36 EPU outline drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Doc ID 16107 Rev 8
3/28
List of tables
TDA7498
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
4/28
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Pin description list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Recommended operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Electrical specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Mode settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Gain settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
How to set up SYNCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PowerSSO36 EPU dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Doc ID 16107 Rev 8
TDA7498
Device block diagram
Device block diagram
Figure 1 shows the block diagram of one of the two identical channels of the TDA7498.
Figure 1.
Internal block diagram (showing one channel only)
Doc ID 16107 Rev 8
5/28
Pin description
TDA7498
1
Pin description
1.1
Pinout
Figure 2.
Pin connections (top view, PCB view)
SUB_GND
1
SVCC
OUTPB
2
34 VREF
OUTPB
3
33 INNB
PGNDB
4
32 INPB
PGNDB
5
31 GAIN1
PVCCB
6
30 GAIN0
PVCCB
7
29 SVR
OUTNB
8
28 DIAG
OUTNB
9
27 SGND
OUTNA 10
26 VDDS
OUTNA 11
25 SYNCLK
PVCCA 12
24 ROSC
PVCCA 13
23 INNA
PGNDA 14
36 VSS
35
22 INPA
EP, exposed pad
Connect to ground
21 MUTE
OUTPA 16
OUTPA 17
20 STBY
19 VDDPW
6/28
PGNDA 15
Doc ID 16107 Rev 8
PGND 18
TDA7498
1.2
Pin description
Pin list
Table 2.
Pin description list
Number
Name
Type
Description
1
SUB_GND
PWR
Connect to the frame
2,3
OUTPB
O
Positive PWM for right channel
4,5
PGNDB
PWR
Power stage ground for right channel
6,7
PVCCB
PWR
Power supply for right channel
8,9
OUTNB
O
Negative PWM output for right channel
10,11
OUTNA
O
Negative PWM output for left channel
12,13
PVCCA
PWR
Power supply for left channel
14,15
PGNDA
PWR
Power stage ground for left channel
16,17
OUTPA
O
Positive PWM output for left channel
18
PGND
PWR
Power stage ground
19
VDDPW
O
3.3-V (nominal) regulator output referred to ground for power
stage
20
STBY
I
Standby mode control
21
MUTE
I
Mute mode control
22
INPA
I
Positive differential input of left channel
23
INNA
I
Negative differential input of left channel
24
ROSC
O
Master oscillator frequency-setting pin
25
SYNCLK
I/O
Clock in/out for external oscillator
26
VDDS
O
3.3-V (nominal) regulator output referred to ground for signal
blocks
27
SGND
PWR
Signal ground
28
DIAG
O
Open-drain diagnostic output
29
SVR
O
Supply voltage rejection
30
GAIN0
I
Gain setting input 1
31
GAIN1
I
Gain setting input 2
32
INPB
I
Positive differential input of right channel
33
INNB
I
Negative differential input of right channel
34
VREF
O
Half VDDS (nominal) referred to ground
35
SVCC
PWR
Signal power supply
36
VSS
O
3.3-V (nominal) regulator output referred to power supply
-
EP
-
Exposed pad for heatsink, to be connected to ground
Doc ID 16107 Rev 8
7/28
Electrical specifications
TDA7498
2
Electrical specifications
2.1
Absolute maximum ratings
Table 3.
Absolute maximum ratings
Symbol
2.2
Unit
DC supply voltage for pins PVCCA, PVCCB, SVCC
44
V
VI
Voltage limits for input pins STBY, MUTE, INNA, INPA,
INNB, INPB, GAIN0, GAIN1
-0.3 to 3.6
V
Tj
Operating junction temperature
-40 to 150
°C
Tstg
Storage temperature
-40 to 150
°C
Thermal data
Thermal data
Symbol
Parameter
Rth j-case
Thermal resistance, junction to case
Min
-
Typ
2
Max
3
Unit
°C/W
Recommended operating conditions
Table 5.
Recommended operating conditions
Symbol
2.4
Value
VCC
Table 4.
2.3
Parameter
Parameter
Min
Typ
Max
Unit
VCC
Supply voltage for pins PVCCA, PVCCB, SVCC
14
-
39
V
Tamb
Ambient operating temperature
-40
-
85
°C
Electrical specifications
Unless otherwise stated, the values in the table below are specified for the conditions:
VCC = 36 V, RL = 6 Ω, ROSC = R3 = 39 kΩ, C8 = 100 nF, f = 1 kHz, GV = 25.6 dB
Tamb = 25 °C.
Table 6.
Symbol
8/28
Electrical specifications
Parameter
Condition
Min
Typ
Max
Unit
Iq
Total quiescent current
No LC filter, no load
-
40
60
mA
IqSTBY
Quiescent current in standby
-
-
1
10
µA
Play mode
-100
-
100
VOS
Output offset voltage
Mute mode
-60
-
60
IOCP
Overcurrent protection threshold RL = 0 Ω
6
7
-
mV
Doc ID 16107 Rev 8
A
TDA7498
Electrical specifications
Table 6.
Electrical specifications (continued)
Symbol
Parameter
Condition
Min
Typ
Max
Unit
Tj
Junction temperature at thermal
shutdown
-
-
150
-
°C
Ri
Input resistance
Differential input
48
60
-
kΩ
VOVP
Overvoltage protection threshold -
42
43
-
V
VUVP
Undervoltage protection
threshold
-
-
-
8
V
High side
-
0.2
-
RdsON
Power transistor on resistance
Low side
-
0.2
-
THD = 10%
-
100
-
Po
Output power
THD = 1%
-
78
-
Po
Output power
RL = 8 Ω, THD = 10%
-
80
-
W
PD
Dissipated power
Po = 100 W + 100 W,
THD = 10%
-
20
-
W
η
Efficiency
Po = 100 W + 100 W
-
90
-
%
THD
Total harmonic distortion
Po = 1 W
-
0.1
-
%
GAIN0 = L, GAIN1 = L
24.6
25.6
26.6
GAIN0 = L, GAIN1 = H
30.6
31.6
32.6
GAIN0 = H, GAIN1 = L
34.1
35.1
36.1
GAIN0 = H, GAIN1 = H
36.6
37.6
38.6
GV
Ω
W
Closed-loop gain
dB
ΔGV
Gain matching
-
-1
-
1
dB
CT
Crosstalk
f = 1 kHz, Po = 1 W
50
70
-
dB
15
-
Total input noise
A Curve, GV = 20 dB
-
eN
f = 22 Hz to 22 kHz
-
25
50
µV
SVRR
Supply voltage rejection ratio
fr = 100 Hz, Vr = 0.5 Vpp,
CSVR = 10 µF
70
-
dB
Tr, Tf
Rise and fall times
-
-
50
-
ns
fSW
Switching frequency
Internal oscillator
290
310
330
kHz
250
-
400
250
-
400
2.3
-
-
-
-
0.8
fSWR
Output switching frequency
range
VinH
Digital input high (H)
VinL
Digital input low (L)
With internal oscillator
With external oscillator
(1)
(2)
kHz
-
Doc ID 16107 Rev 8
V
9/28
Electrical specifications
Table 6.
Symbol
TDA7498
Electrical specifications (continued)
Parameter
Condition
Pin STBY voltage high (H)
VSTBY
AMUTE
Typ
2.7
-
-
Pin STBY voltage low (L)
-
-
0.5
2.5
-
-
-
-
0.8
-
70
-
Pin MUTE voltage low (L)
Mute attenuation
VMUTE = L, VSTBY = H
2. fSW = fSYNCLK / 2 with the external oscillator.
Doc ID 16107 Rev 8
Unit
V
V
1. fSW = 106 / ((16 * ROSC + 182) * 4) kHz, fSYNCLK = 2 * fSW with R3 = 39 kΩ (see Figure 19.).
10/28
Max
Pin MUTE voltage high (H)
VMUTE
Min
dB
Characterizations
3.1
Test circuit
TDA7498
3
Figure 3 shows the test circuit with which the characterization curves, shown in the next sections, were measured. Figure 4 shows
the PCB layout.
Figure 3.
Test circuit for characterizations
1
SUB_GND
OUTPA 16
22
INPA
OUTPA 17
C3
1nF
23
INNA
PGNDA
14
PGNDA
15
C4
1nF
27
SGND
VDDS 26
VDDS
R1
DIAG
C1
1uF
C2
1uF
J1
C5
INPUT
100nF
Doc ID 16107 Rev 8
3
L-
4
L+
1
R-
2
R+
For
J7
Single-Ended
Input
28
R3
24
39K
J5 30
ROSC
GAIN0
31 GAIN1
32
C13
1nF
3V3
C12
S2
120k
R2
33k
IN
IC2
1 L4931CZ33 3
2 GND C9
100nF
R8 VCC
OUT
C29
2.2uF
C14
1nF
R4
S1 STBY
1
2
3
6.8k
D1
18V
11/28
3V3 POWER SUPPLY
TDA7498
+
+
220nF
OUTPB
2
7
PVCCB
6
8R
L3
33
C23+
50V
L1
R5
*
VCC
2
GND
22uH
*
C18
220nF
R17
8R
C42
C20
C31
100nF
PGNDB
5
PGNDB
4
OUTNB
9
OUTNB
1
J2
22R
8
VREF
34
SVR
29
21 MUTE
680nF
1uF
*
*
C43
220nF
220nF
R18
8R
L2
*
220nF
C22
C21
330pF
INNB
C15
2.2uF
20 STBY
16V
J3
OUTPUT
Load = 6 ohm
L+
1
L2
R3
R+
4
2200uF
22uH
3
PVCCB
C41
220nF
R16
330pF
*
OUTPB
*
C24
IC1
SVCC
INPB
C40
22uH
C17
C7
2.2uF
16V
TDA7498
CLASS-D AMPLIFIER
10uF
10V
C16
10uF
10V
LC FILTER COMPONENTS
Load
L1,L2,L3,L4
6 ohm
22 uH
680 nF
220 nF
8 ohm
22 uH
470 nF
220 nF
C20,C26
C18,C22,C24,C28
Characterizations
1uF
MUTE
1
2
3
680nF
OUTNA 11
C10
1uF
J4
1uF
C19
35
C11
FS
100nF
J6
100nF 36 VSS
3V3
C26
C27
18 PGND
For
Single-Ended
Input
*
C30
OUTNA 10
VDDS
J8
220nF
C25
19 VDDPW
25 SYNCLK
8R
C28
22R
PVCCA 12
C6
100nF
R15
*
PVCCA 13
DIAG
FREQUENCY SHIFT
R9
Q1
KTC3875(S) 180K
3
C8
R13
FS
100nF
1
47k
2
R14
100k
*
R6
220nF
100k
R7
22R
L4
22uH
Characterizations
Figure 4.
12/28
TDA7498
Test board
Doc ID 16107 Rev 8
TDA7498
3.2
Characterizations
Characterization curves
Unless otherwise stated the measurements were made under the following conditions:
VCC = 36 V, f = 1 kHz, GV = 25.6 dB, ROSC = 39 kΩ, COSC = 100 nF, Tamb = 25 °C
3.2.1
For RL = 6 Ω
Figure 5.
Output power (THD = 10%) vs. supply voltage
120
110
Output power (W)
100
90
80
70
60
50
40
30
20
10
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
+32
+34
+36
Supply voltage (V)
Figure 6.
THD vs. output power
10
5
THD+N (%)
2
1
0.5
0.2
f = 1 kHz
0.1
0.05
f = 100 Hz
0.02
0.01
0.005
100m
200m
500m
1
2
5
10
20
50
100
200
Output power (W)
Doc ID 16107 Rev 8
13/28
Characterizations
Figure 7.
TDA7498
THD vs. frequency (1 W)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
10k
20k
Frequency (Hz)
Figure 8.
THD vs. frequency (100 mW)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
Frequency (Hz)
Figure 9.
Frequency response
+3
+2.5
Ampl (dB)
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
10
20
50
100
200
500
Frequency (Hz)
14/28
Doc ID 16107 Rev 8
1k
2k
5k
TDA7498
Characterizations
Figure 10. FFT performance (0 dBFS)
+0
-10
-20
FFT (dB)
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Figure 11. FFT performance (-60 dBFS)
+0
-10
-20
FFT (dB)
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Doc ID 16107 Rev 8
15/28
Characterizations
3.2.2
TDA7498
For RL = 8 Ω
Figure 12. Output power (THD = 10%) vs. supply voltage
120
110
Output power (W)
100
90
80
70
60
50
40
30
20
10
+10
+12
+14
+16
+18
+20
+22
+24
+26
+28
+30
+32
+34
+36
Supply voltage (V)
Figure 13. THD vs. output power
10
5
THD+N (%)
2
1
0.5
0.2
f = 1 kHz
0.1
0.05
0.02
f = 100 Hz
0.01
0.005
100m
200m
500m
1
2
5
Output power (W)
16/28
Doc ID 16107 Rev 8
10
20
50
100
200
TDA7498
Characterizations
Figure 14. THD vs. frequency (1 W)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
2k
5k
10k
20k
2k
5k
10k
20k
Frequency (Hz)
Figure 15. THD vs. frequency (100 mW)
2
1
THD+N (%)
0.5
0.2
0.1
0.05
0.02
0.01
20
50
100
200
500
1k
Frequency (Hz)
Figure 16. Frequency response
+3
+2.5
Ampl (dB)
+2
+1.5
+1
+0.5
+0
-0.5
-1
-1.5
-2
-2.5
-3
10
20
50
100
200
500
1k
2k
5k
10k
20k
Frequency (Hz)
Doc ID 16107 Rev 8
17/28
Characterizations
TDA7498
Figure 17. FFT performance (0 dB)
))7G%
N
N
N
N
N
)UHTXHQF\+]
Figure 18. FFT performance (-60 dB)
+0
-10
FFT (dB)
-20
-30
-40
-50
-60
-70
-80
-90
-100
-110
-120
-130
-140
-150
-160
-170
-180
20
50
100
200
500
1k
Frequency (Hz)
18/28
Doc ID 16107 Rev 8
2k
5k
10k
20k
Applications information
4.1
Applications circuit
TDA7498
4
Figure 19. Applications circuit for 6- or 8-Ω speakers
1
C1
22
1uF
C3
1nF
C2
1uF
C4
1nF
J1
C5
INPUT
100nF
Doc ID 16107 Rev 8
3
L-
4
L+
1
R-
2
R+
23
For
J7
Single-Ended
Input
27
SUB_GND
OUTPA 16
INPA
OUTPA 17
INNA
PGNDA
14
PGNDA
15
VDDS
R1
DIAG
DIAG
R3
24
ROSC
J5 30
GAIN0
VDDS
J8
31 GAIN1
32
3V3
C12
S2
1uF
MUTE
1
2
3
120k
R2
33k
IN
IC2
1 L4931CZ33 3
2 GND C9
100nF
R8 VCC
OUT
C29
2.2uF
C14
1nF
R4
S1 STBY
1
2
3
6.8k
D1
18V
19/28
3V3 POWER SUPPLY
220nF
TDA7498
2
PVCCB
7
PVCCB
6
+
+
2200uF
22uH
C23+
50V
L1
3
OUTPB
8R
L3
*
OUTPB
R5
*
33
5
*
C18
220nF
C20
PGNDB
4
9
8
*
*
R17
8R
C43
C22
220nF
R18
8R
L2
*
220nF
220nF
C21
330pF
34
21 MUTE
680nF
1uF
INNB
C15
2.2uF
20 STBY
16V
GND
C42
PGNDB
VREF
VCC
2
22uH
C31
OUTNB
1
J2
22R
100nF
OUTNB
C41
220nF
R16
330pF
IC1
SVCC
INPB
J3
OUTPUT
Load = 6 ohm
L+
1
L2
R3
R+
4
22uH
C17
SVR
29
C7
2.2uF
16V
TDA7498
CLASS-D AMPLIFIER
10uF
10V
C16
10uF
10V
LC FILTER COMPONENTS
Load
L1,L2,L3,L4
6 ohm
22 uH
680 nF
220 nF
8 ohm
22 uH
470 nF
220 nF
C20,C26
C18,C22,C24,C28
Applications information
C13
1nF
C40
*
C24
PVCCA 13
C10
1uF
J4
680nF
C19
35
C11
FS
1uF
J6
For
Single-Ended
Input
100nF 36 VSS
3V3
100nF
PVCCA 12
OUTNA 11
18 PGND
25 SYNCLK
*
C26
C27
C6
39K
220nF
C30
19 VDDPW
100nF
8R
C28
22R
C25
OUTNA 10
FREQUENCY SHIFT
R9
Q1
KTC3875(S) 180K
3
C8
R13
FS
100nF
1
47k
2
R14
100k
R15
*
220nF
100k
R7
22R
*
R6
SGND
VDDS 26
28
L4
22uH
Applications information
4.2
TDA7498
Mode selection
The three operating modes of the TDA7498 are set by the two inputs, STBY (pin 20) and
MUTE (pin 21).
●
Standby mode: all circuits are turned off, very low current consumption.
●
Mute mode: inputs are connected to ground and the positive and negative PWM
outputs are at 50% duty cycle.
●
Play mode: the amplifiers are active.
The protection functions of the TDA7498 are enabled by pulling down the voltages of the
STBY and MUTE inputs shown in Figure 20. The input current of the corresponding pins
must be limited to 200 µA.
Table 7.
Mode settings
Mode
STBY
MUTE
L (1)
Standby
Mute
H
Play
H
X (don’t care)
(1)
L
H
1. Drive levels defined in Table 6: Electrical specifications on page 8
Figure 20. Standby and mute circuits
Standby
3.3 V
0V
STBY
R2
30 kΩ
C7
2.2 µF
R4
30 kΩ
C15
2.2 µF
Mute
MUTE
3.3 V
0V
TDA7498
Figure 21. Turn on/off sequence for minimizing speaker “pop”
VCC
0
t
STBY
0
t
MUTE
0
Input
t
0
t
Output
0
t
Standby Mute
Play
Mute
Standby
Iq
0
20/28
t
Doc ID 16107 Rev 8
TDA7498
4.3
Applications information
Gain setting
The gain of the TDA7498 is set by the two inputs, GAIN0 (pin 30) and GAIN1 (pin31).
Internally, the gain is set by changing the feedback resistors of the amplifier.
Table 8.
Gain settings
GAIN0
4.4
GAIN1
Nominal gain, Gv (dB)
L
L
25.6
L
H
31.6
H
L
35.6
H
H
37.6
Input resistance and capacitance
The input impedance is set by an internal resistor Ri = 60 kΩ (typical). An input capacitor
(Ci) is required to couple the AC input signal.
The equivalent circuit and frequency response of the input components are shown in
Figure 22. For Ci = 470 nF the high-pass filter cutoff frequency is below 20 Hz:
fC = 1 / (2 * π * Ri * Ci)
Figure 22. Input circuit and frequency response
Rf
Input
signal
Ci
Input
pin
Ri
Doc ID 16107 Rev 8
21/28
Applications information
4.5
TDA7498
Internal and external clocks
The clock of the class-D amplifier can be generated internally or can be driven by an
external source.
If two or more class-D amplifiers are used in the same system, it is recommended that all
devices operate at the same clock frequency. This can be implemented by using one
TDA7498 as master clock, while the other devices are in slave mode, that is, externally
clocked. The clock interconnect is via pin SYNCLK of each device. As explained below,
SYNCLK is an output in master mode and an input in slave mode.
4.5.1
Master mode (internal clock)
Using the internal oscillator, the output switching frequency, fSW, is controlled by the
resistor, ROSC, connected to pin ROSC:
fSW = 106 / ((ROSC * 16 + 182) * 4) kHz
where ROSC is in kΩ.
In master mode, pin SYNCLK is used as a clock output pin whose frequency is:
fSYNCLK = 2 * fSW
For master mode to operate correctly then resistor ROSC must be less than 60 kΩ as given
below in Table 9.
4.5.2
Slave mode (external clock)
In order to accept an external clock input the pin ROSC must be left open, that is, floating.
This forces pin SYNCLK to be internally configured as an input as given in Table 9.
The output switching frequency of the slave devices is:
fSW = fSYNCLK / 2
Table 9.
How to set up SYNCLK
Mode
ROSC
SYNCLK
Master
ROSC < 60 kΩ
Output
Slave
Floating (not connected)
Input
Figure 23. Master and slave connection
Master
Slave
TDA7498
TDA7498
ROSC
SYNCLK
Output
Cosc
100 nF
22/28
Rosc
39 kΩ
Doc ID 16107 Rev 8
SYNCLK
Input
ROSC
TDA7498
4.6
Applications information
Output low-pass filter
To avoid EMI problems, it may be necessary to use a low-pass filter before the speaker. The
cutoff frequency should be larger than 22 kHz and much lower than the output switching
frequency. It is necessary to choose the L and C component values depending on the
loud-speaker impedance. Some typical values, which give a cutoff frequency of 27 kHz, are
shown in Figure 24 and Figure 25 below.
Figure 24. Typical LC filter for a 8-Ω speaker
Figure 25. Typical LC filter for a 6-Ω speaker
Doc ID 16107 Rev 8
23/28
Applications information
4.7
TDA7498
Protection functions
The TDA7498 is fully protected against overvoltages, undervoltages, overcurrents and
thermal overloads as explained here.
Overvoltage protection (OVP)
If the supply voltage exceeds the value for VOVP given in Table 6: Electrical specifications on
page 8 the overvoltage protection is activated which forces the outputs to the
high-impedance state. When the supply voltage falls back to within the operating range the
device restarts.
Undervoltage protection (UVP)
If the supply voltage drops below the value for VUVP given in Table 6: Electrical
specifications on page 8 the undervoltage protection is activated which forces the outputs to
the high-impedance state. When the supply voltage recovers to within the operating range
the device restarts.
Overcurrent protection (OCP)
If the output current exceeds the value for IOCP given in Table 6: Electrical specifications on
page 8 the overcurrent protection is activated which forces the outputs to the
high-impedance state. Periodically, the device attempts to restart. If the overcurrent
condition is still present then the OCP remains active. The restart time, TOC, is determined
by the R-C components connected to pin STBY.
Thermal protection (OTP)
If the junction temperature, Tj, reaches 145 °C (nominally), the device goes to mute mode
and the positive and negative PWM outputs are forced to 50% duty cycle. If the junction
temperature reaches the value for Tj given in Table 6: Electrical specifications on page 8 the
device shuts down and the output is forced to the high-impedance state. When the device
cools sufficiently the device restarts.
4.8
Diagnostic output
The output pin DIAG is an open drain transistor. When any protection is activated it switches
to the high-impedance state. The pin can be connected to a power supply (< 39 V) by a
pull-up resistor whose value is limited by the maximum sinking current (200 µA) of the pin.
Figure 26. Behavior of pin DIAG for various protection conditions
VDD
TDA7498
R1
DIAG
Protection logic
VDD
Restart
Restart
Overcurrent
protection
24/28
OV, UV, OT
protection
Doc ID 16107 Rev 8
TDA7498
5
Package mechanical data
Package mechanical data
The TDA7498 comes in a 36-pin PowerSSO package with exposed pad up.
Figure 27 shows the package outline and Table 10 gives the dimensions.
Table 10.
PowerSSO36 EPU dimensions
Dimensions in mm
Dimensions in inches
Symbol
Min
Typ
Max
Min
Typ
Max
A
2.15
-
2.45
0.085
-
0.096
A2
2.15
-
2.35
0.085
-
0.093
a1
0
-
0.10
0
-
0.004
b
0.18
-
0.36
0.007
-
0.014
c
0.23
-
0.32
0.009
-
0.013
D
10.10
-
10.50
0.398
-
0.413
E
7.40
-
7.60
0.291
-
0.299
e
-
0.5
-
-
0.020
-
e3
-
8.5
-
-
0.335
-
F
-
2.3
-
-
0.091
-
G
-
-
0.10
-
-
0.004
H
10.10
-
10.50
0.398
-
0.413
h
-
-
0.40
-
-
0.016
k
0
-
8 degrees
-
-
8 degrees
L
0.60
-
1.00
0.024
-
0.039
M
-
4.30
-
-
0.169
-
N
-
-
10 degrees
-
-
10 degrees
O
-
1.20
-
-
0.047
-
Q
-
0.80
-
-
0.031
-
S
-
2.90
-
-
0.114
-
T
-
3.65
-
-
0.144
-
U
-
1.00
-
-
0.039
-
X
4.10
-
4.70
0.161
-
0.185
Y
4.90
-
7.10
0.193
-
0.280
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Doc ID 16107 Rev 8
25/28
h x 45°
Package mechanical data
26/28
Figure 27. PowerSSO36 EPU outline drawing
Doc ID 16107 Rev 8
TDA7498
TDA7498
6
Revision history
Revision history
Table 11.
Document revision history
Date
Revision
11-Aug-2009
1
Initial release.
27-Aug-2009
2
Updated supply voltage range on page 1
Updated package exposed pad dimension Y (Min) in Table 10 on
page 25.
3
Updated first feature on page 1
Updated order code name in Table 1 on page 1
Updated Table 5: Electrical specifications on page 8
Updated Section 3.2: Characterization curves on page 13
Removed tables for standby, mute and gain after Figure 19 on
page 19.
30-Jun-2010
4
Removed datasheet preliminary status, updated features list and
updated Device summary table on page 1
Added Table 5: Recommended operating conditions on page 8 with
updated minimum supply voltage.
27-Jan-2011
5
Updated applications circuit in Figure 19 on page 19.
11-Feb-2011
6
Updated test circuit for characterizations in Figure 3 on page 11.
29-Mar-2011
7
Updated IOCP in Table 6: Electrical specifications.
12-Sep-2011
8
Updated OUTNA in Table 2: Pin description list
23-Oct-2009
Changes
Doc ID 16107 Rev 8
27/28
TDA7498
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
28/28
Doc ID 16107 Rev 8