TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 D D D D Low rDS(on): 0.25 Ω Typ (Full H-Bridge) 0.4 Ω Typ (Triple Half H-Bridge) Pulsed Current . . . 4 A Per Channel Matched Sense Transistors for Class A-B Linear Operation Fast Commutation Speed DW PACKAGE (TOP VIEW) OUTPUT3 SOURCE GND GATE3B GATE2B GATE2C OUTPUT2 GATE4B GATE2A GATE5B VDD2 SOURCE description The TPIC1502 is a monolithic power DMOS array that consists of ten electrically isolated N-channel enhancement-mode power DMOS transistors, four of which are configured as a full H-bridge and six as a triple half H-bridge. The lower stage of the full H-bridge is provided with an integrated sense-FET to allow biasing of the bridge in class A-B operation. 1 24 2 23 3 22 4 21 5 20 6 19 7 18 8 17 9 16 10 15 11 14 12 13 VDD3 GND GATE3A GATE1B SENSE OUTPUT1 GATE4A GATE1A GATE5A VDD1 OUTPUT4 OUTPUT5 The TPIC1502 is offered in a 24-pin wide-body surface-mount (DW) package and is characterized for operation over the case temperature range of – 40°C to 125°C. schematic VDD1 VDD2 15 11 Q2A Q1A 17 GATE1A Q3A 22 GATE3A 9 GATE2A 19 OUTPUT1 D1 D2 Q1B 21 GATE1B 7 OUTPUT2 1 OUTPUT3 Q2B 5 GATE2B SENSE 6 VDD3 24 D3 Q3B 4 GATE3B 20 Q4A 18 GATE4A Q5A 16 GATE5A 14 OUTPUT4 13 OUTPUT5 Q4B 8 GATE4B Q5B 10 GATE5B 2, 12 SOURCE Q2C GATE2C 6V 3, 23 GND NOTES: A. Terminals 3 and 23 must be externally connected. B. Terminals 2 and 12 must be externally connected. C. No output may be taken greater than 0.5 V below GND. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 1996, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 absolute maximum ratings, TC = 25°C (unless otherwise noted)† Supply-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Source-to-GND voltage (Q3A, Q4A, Q5A) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Output-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Sense-to-GND voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 V Gate-to-source voltage range, VGS (Q1A, Q1B, Q2A, Q2B, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . ± 20 V Gate-to-source voltage, VGS (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 0.7 V to 6 V Continuous gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±10 mA Pulsed gate-to-source zener-diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±50 mA Continuous drain current, each output (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous drain current, each output (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous drain current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Continuous source-to-drain diode current (Q1A, Q1B, Q2A, Q2B) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous source-to-drain diode current (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) . . . . . . . . . . . . . . . . . . . . . 1.5 A Continuous source-to-drain diode current (Q2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 mA Pulsed drain current, each output, Imax (Q1A, Q1B, Q2A, Q2B) (see Note 1 and Figure 24) . . . . . . . . . . 4 A Pulsed drain current, each output, Imax (Q3A, Q3B, Q4A, Q4B, Q5A, Q5B) (see Note 1 and Figure 25) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 A Pulsed drain current, each output, Imax (Q2C) (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 mA Continuous total power dissipation, TC = 70°C (see Note 2 and Figures 24 and 25) . . . . . . . . . . . . . . 2.86 W Operating virtual junction temperature range, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 150°C Operating case temperature range, TC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 125°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. Pulse duration = 10 ms, duty cycle = 2% 2. Package mounted in intimate contact with infinite heat sink. 2 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 electrical characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS V(BR)DSX Drain-to-source breakdown voltage VGS(th) Gate-to-source threshold voltage VGS(th)match Gate-to-source threshold voltage matching V(BR) Reverse drain-to-GND breakdown voltage V(BR)GS V(BR)SG Gate-to-source breakdown voltage, Q2C Source-to-gate breakdown voltage, Q2C ID = 250 µA, ID = 1 mA, See Figure 5 VGS = 0 VDS = VGS, ID = 1 mA, VDS = VGS Drain-to-GND current = 250 µA (D1, D2) IGS = 100 µA IGS = 100 µA V(DS)on Drain-to-source on-state voltage ID = 1.5 A, See Notes 3 and 4 VF Forward on-state voltage, GND-to-VDD1, GND-to-VDD2 ID = 1.5 A (D1, D2) See Notes 3 and 4 VF(SD) Forward on-state voltage, source-to-drain IS = 1.5 A, VGS = 0, See Notes 3 and 4 and Figure 19 IDSS Zero gate voltage drain current Zero-gate-voltage VDS = 16 V,, VGS = 0 TC = 25°C TC = 125°C IGSSF Forward gate current, drain short-circuited to source VGS = 16 V, IGSSR Reverse gate current, drain short-circuited to source Ilk lkg rDS(on) DS( ) MIN TYP MAX 20 1.5 UNIT V 1.85 2.2 V 40 mV 20 V 6 V 0.7 V VGS = 10 V, 0.375 0.45 1.5 0.93 V V 1.2 V 0.05 1 0.5 10 VDS = 0 10 100 nA VSG = 16 V, VDS = 0 10 100 nA Leakage g current,, VDD1-to-GND,, VDD2-to-GND, gate shorted to source VDGND = 16 V TC = 25°C TC = 125°C 0.05 1 0.5 10 VGS = 10 V, ID = 1.5 A,, See Notes 3 and 4 and Figure 9 TC = 25°C 0.25 0.3 drain to source on-state on state resistance Static drain-to-source TC = 125°C 0.38 0.51 VDS = 14 V, ID = 750 mA, See Notes 3 and 4 and Figure 13 gfs Forward transconductance Ciss Short-circuit input capacitance, common source Coss Short-circuit output capacitance, common source Crss Short-circuit reverse transfer capacitance, common source µA µA Ω 0.75 1.2 S 98 VDS = 14 V, f = 1 MHz, VGS = 0, See Figure 17 70 pF 54 αs Sense-FET drain current ratio VDS = 6 V, ID(Q2B) = 1.5 mA 100 150 NOTES: 3. Technique should limit TJ – TC to 10°C maximum. 4. These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. 200 source-to-drain diode characteristics, Q1A, Q2A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge TEST CONDITIONS IS = 750 mA, VGS = 0, VDS = 14 V, V di/dt = 100 A/µs A/µs, See Figures 1 and 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MIN TYP MAX UNIT 18 ns 14 nC 3 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 resistive-load switching characteristics, Q1A, Q1B, Q2A, Q2B, TC = 25°C PARAMETER TEST CONDITIONS MIN TYP td(on) td(off) Turn-on delay time tr tf Rise time Qg Total gate charge Qgs(th) Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 7 Internal source inductance 7 Rg Internal gate resistance MAX UNIT 12 Turn-off delay time VDD = 14 V,, tdis = 10 ns, RL = 18.7 Ω,, See Figure 3 13 ten = 10 ns,, ns 2.2 Fall time 6 VDS = 14 V, V ID = 750 mA, A See Figure 4 and Figure 21 VGS = 10 V, V 1.7 2.1 0.3 0.4 0.4 0.5 nC nH Ω 0.25 electrical characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS ID = 250 µA, ID = 1 mA, See Figure 6 TYP Drain-to-source breakdown voltage VGS(th) Gate-to-source threshold voltage V(BR) Reverse drain-to-GND breakdown voltage Drain-to-GND current = 250 µA (D3) V(DS)on Drain-to-source on-state voltage ID = 1.5 A, VGS = 10 V, See Notes 3 and 4 0.6 VF Forward on-state voltage, GND-to-VDD3 ID = 1.5 A (D3), 4 1.5 VF(SD) Forward on-state voltage, source-to-drain IS = 1.5 A, VGS = 0 See Notes 3 and 4 and Figure 20 IDSS Zero gate voltage drain current Zero-gate-voltage VDS = 16 V,, VGS = 0 TC = 25°C TC = 125°C IGSSF Forward gate current, drain short-circuited to source VGS = 16 V, IGSSR Reverse gate current, drain short-circuited to source Ilk lkg rDS( DS(on)) VGS = 0 VDS = VGS, MIN V(BR)DSX 1.5 V 1.85 2.2 20 See Notes 3 and UNIT V V 1 0.75 V V 1.2 V 0.05 1 0.5 10 VDS = 0 10 100 nA VSG = 16 V, VDS = 0 10 100 nA Leakage g current,, VDD3-to-GND,, g gate shorted to source VDGND = 16 V TC = 25°C TC = 125°C 0.05 1 0.5 10 TC = 25°C 0.4 0.5 drain to source on-state on state resistance Static drain-to-source VGS = 10 V, ID = 1.5 A, See Notes 3 and 4 and Figure 10 TC = 125°C 0.61 0.85 Forward transconductance Ciss Short-circuit input capacitance, common source Coss Short-circuit output capacitance, common source Crss Short-circuit reverse transfer capacitance, common source µA µA Ω VDS = 14 V, ID = 750 mA, See Notes 3 and 4 and Figure 14 gfs 0.4 0.74 S 73 VDS = 14 V, f = 1 MHz, VGS = 0, See Figure 18 65 43 NOTES: 3: Technique should limit TJ – TC to 10°C maximum. 4: These parameters are measured with voltage-sensing contacts separate from the current-carrying contacts. 4 MAX 20 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 pF F TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 source-to-drain diode characteristics, Q3A, Q4A, Q5A, TC = 25°C PARAMETER trr Reverse-recovery time QRR Total diode charge TEST CONDITIONS IS = 750 mA, VDS = 14 V V, See Figures 2 and 23 MIN VGS = 0, di/dt = 100 A/µs A/µs, TYP MAX UNIT 26 ns 17 nC resistive-load switching characteristics, Q3A, Q3B, Q4A, Q4B, Q5A, Q5B, TC = 25°C PARAMETER td(on) td(off) Turn-on delay time tr tf Rise time Qg Total gate charge TEST CONDITIONS MIN TYP MAX UNIT 13 Turn-off delay time VDD = 14 V,, tdis = 10 ns, RL = 18.7 Ω,, See Figure 3 13 ten = 10 ns,, ns 3 Fall time 7 VDS = 14 V, V ID = 750 mA, A See Figure 4 and Figure 22 VGS = 10 V, V 1 1.3 0.2 0.25 0.2 0.25 Qgs(th) Threshold gate-to-source charge Qgd Gate-to-drain charge LD LS Internal drain inductance 7 Internal source inductance 7 Rg Internal gate resistance nC nH Ω 0.25 thermal resistance PARAMETER TEST CONDITIONS MIN TYP RθJA Junction-to-ambient thermal resistance See Notes 5 and 8 90 RθJB Junction-to-board thermal resistance See Notes 6 and 8 52 See Notes 7 and 8 28 RθJP Junction-to-pin thermal resistance NOTES: 5. Package mounted on a FR4 printed-circuit board with no heatsink. 6. Package mounted on a 24 in2, 4-layer FR4 printed-circuit board. 7. Package mounted in intimate contact with infinite heatsink. 8. All outputs with equal power POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 MAX UNIT °C/W 5 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 2 VDS = 14 V VGS =0 TJ = 25°C Q1A and Q2A I S – Source-to-Drain Diode Current – A 1.5 1 Reverse di/dt = 100 A/µs 0.5 0 – 0.5 25% of IRM† –1 Shaded Area = QRR IRM† – 1.5 trr(SD) –2 0 10 20 30 40 † IRM = maximum recovery current 60 50 Time – ns 70 80 90 100 Figure 1. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes 6 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION 2 VDS = 14 V VGS =0 TJ = 25°C Q3A, Q4A, and Q5A I S – Source-to-Drain Diode Current – A 1.5 1 Reverse di/dt = 100 A/µs 0.5 0 – 0.5 25% of IRM† Shaded Area = QRR –1 IRM† – 1.5 trr(SD) –2 0 10 20 30 40 50 60 Time – ns 70 80 90 100 † IRM = maximum recovery current Figure 2. Reverse-Recovery-Current Waveform of Source-to-Drain Diodes VDD = 14 V RL Pulse Generator ten VDS 10 V VGS VGS 0V DUT Rgen tdis 50 Ω 50 Ω td(off) td(on) CL 30 pF (see Note A) tr tf VDD VDS VDS(on) VOLTAGE WAVEFORMS TEST CIRCUIT NOTE A: CL includes probe and jig capacitance. Figure 3. Resistive-Switching Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 PARAMETER MEASUREMENT INFORMATION Current Regulator 12-V Battery 0.2 µF Qg Same Type as DUT 50 kΩ 10 V 0.3 µF Qgs(th) VDD = 14 V VDS VGS DUT IG = 100 µA 0 Qgd Gate Voltage Time IG CurrentSampling Resistor ID CurrentSampling Resistor VOLTAGE WAVEFORM TEST CIRCUIT Figure 4. Gate-Charge Test Circuit and Voltage Waveform TYPICAL CHARACTERISTICS GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE 2.5 VDS = VGS Q1A, Q1B, Q2A, Q2B ID = 10 mA 2 1.5 ID = 100 µA ID = 1 mA 1 0.5 0 – 40 – 20 0 20 40 60 80 100 120 140 160 TJ – Junction Temperature – °C 2.5 VGS(th) – Gate-to-Source Threshold Voltage – V VGS(th) – Gate-to-Source Threshold Voltage – V GATE-TO-SOURCE THRESHOLD VOLTAGE vs JUNCTION TEMPERATURE ID = 10 mA 2 ID = 100 µA 1.5 ID = 1 mA 1 0.5 VDS = VGS Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0 – 40 – 20 20 40 60 Figure 6 POST OFFICE BOX 655303 80 100 120 140 160 TJ – Junction Temperature – °C Figure 5 8 0 • DALLAS, TEXAS 75265 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 TYPICAL CHARACTERISTICS STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs JUNCTION TEMPERATURE 0.400 VGS = 10 V 0.250 VGS = 12 V 0.200 VGS = 15 V 0.150 0.100 0.50 On-State Resistance – Ω 0.300 r DS(on) – Static Drain-to-Source On-State Resistance – Ω r DS(on) – Static Drain-to-Source 0.350 0.60 ID = 1.5 A Q1A, Q1B, Q2A, Q2B VGS = 10 V 0.40 VGS = 15 V 0.30 VGS = 12 V 0.20 0.10 ID = 1.5 A Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0.050 0 – 40 – 20 0 20 40 60 0 – 40 – 20 80 100 120 140 160 20 40 60 80 100 120 140 160 Figure 8 Figure 7 STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT STATIC DRAIN-TO-SOURCE ON-STATE RESISTANCE vs DRAIN CURRENT 1 1 TJ = 25°C Q3A, Q3B, Q4A Q4B, Q5A, Q5B VGS = 10 V VGS = 15 V VGS = 12 V 0.1 0.1 1 ID – Drain Current – A 10 On-State Resistance – Ω r DS(on) – Static Drain-to-Source On-State Resistance – Ω TJ = 25°C Q1A, Q1B, Q2A, Q2B r DS(on) – Static Drain-to-Source 0 TJ – Junction Temperature – °C TJ – Junction Temperature – °C VGS = 10 V VGS = 15 V 0.1 0.1 Figure 9 VGS = 12 V 1 ID – Drain Current – A 10 Figure 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 TYPICAL CHARACTERISTICS DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 4 DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE ∆VGS = 1 V (unless otherwise noted) TJ = 25°C Q1A, Q1B, Q2A, Q2B 3.5 4 VGS = 7 V 3.5 I D – Drain Current – A 2.5 VGS = 4 V 2 1.5 1 ∆VGS = 1 V (unless otherwise noted) TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 3 2.5 2 VGS = 5 V 1.5 1 VGS = 3 V 0.5 VGS = 3 V 0.5 0 0 7 8 9 2 3 4 5 6 VDS – Drain-to-Source Voltage – V 1 0 10 0 1 2 3 4 5 6 7 8 9 VDS – Drain-to-Source Voltage – V Figure 11 DISTRIBUTION OF FORWARD TRANSCONDUCTANCE DISTRIBUTION OF FORWARD TRANSCONDUCTANCE 40 Total Number of Units = 30 VDS = 14V TJ = 25°C ID = 750 mA Q1A, Q1B, Q2A, Q2B Percentage of Units – % 20 10 20 gfs – Forward Transconductance – S Figure 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 0.79 0.78 0.77 0.76 0.75 0.74 gfs – Forward Transconductance – S Figure 13 10 0.72 0 0.71 1.24 1.23 1.22 1.2 1.21 1.19 1.18 1.17 1.16 1.15 1.14 10 1.13 0 30 Total Number of Units = 30 VDS = 14V TJ = 25°C ID = 750 mA Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0.7 Percentage of Units – % 40 30 10 Figure 12 0.73 I D – Drain Current – A 3 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 TYPICAL CHARACTERISTICS DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE DRAIN CURRENT vs GATE-TO-SOURCE VOLTAGE 4 4 Q1A, Q1B, Q2A, Q2B TJ = – 40°C TJ = – 40°C TJ = 25°C TJ = 25°C 3 I D – Drain Current – A I D – Drain Current – A 3 TJ = 125°C 2 1 TJ = 125°C 2 1 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 0 0 0 1 2 3 4 5 6 7 8 9 0 2 VGS – Gate-to-Source Voltage – V 4 6 10 12 14 VGS – Gate-to-Source Voltage – V Figure 16 Figure 15 CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE CAPACITANCE vs DRAIN-TO-SOURCE VOLTAGE 115 84 79 108 Ciss Ciss 74 101 94 VGS = 0 f = 1 MHz TJ = 25°C Q1A, Q1B, Q2A, Q2B 87 Coss 80 Capacitance – pF Capacitance – pF 8 73 69 Coss 64 VGS = 0 f = 1 MHz TJ = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 59 54 49 66 Crss Crss 59 44 39 52 45 34 0 2 4 6 8 10 12 14 16 0 2 VDS – Drain-to-Source Voltage – V 4 6 8 10 12 14 16 VDS – Drain-to-Source Voltage – V Figure 18 Figure 17 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 TYPICAL CHARACTERISTICS SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE SOURCE-TO-DRAIN DIODE CURRENT vs SOURCE-TO-DRAIN VOLTAGE 10 VGS = 0 Q1A, Q1B, Q2A, Q2B TJ = 150°C TJ = 25°C TJ = – 40°C 1 0.1 1 TJ = 25°C TJ = – 40°C 10 Figure 20 DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE DRAIN-TO-SOURCE VOLTAGE AND GATE-TO-SOURCE VOLTAGE vs GATE CHARGE 14 14 12 12 10 10 VDD = 10 V 8 8 6 6 VDD = 12 V 4 4 VDD = 14 V 2 VDD = 12 V 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 VDS – Drain-to-Source Voltage – V 16 VGS – Gate-to-Source Voltage – V 14 16 10 14 12 10 VDD = 10 V 8 8 6 6 VDD = 14 V 4 2 0 0 4 VDD = 12 V VDD = 12 V VDD = 10 V 0 0.1 0.2 0.3 0 0.4 0.5 0.6 0.7 0.8 Qg – Gate Charge – nC Figure 21 Figure 22 • DALLAS, TEXAS 75265 2 VDD = 14 V Qg – Gate Charge – nC POST OFFICE BOX 655303 16 ID = 0.75 A TJ = 25°C See Figure 4 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 12 2 2 10 1 VSD – Source-to-Drain Voltage – V Figure 19 ID = 0.75 A TJ = 25°C Q1A, Q1B, Q2A, Q2B See Figure 4 0 0.1 0.9 1 VGS – Gate-to-Source Voltage – V 1 VSD – Source-to-Drain Voltage – V 16 VDS – Drain-to-Source Voltage – V TJ = 150°C 0.1 0.1 12 VGS = 0 Q3A, Q3B, Q4A, Q4B, Q5A, Q5B I SD – Source-to-Drain Diode Current – A I SD – Source-to-Drain Diode Current – A 10 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 TYPICAL CHARACTERISTICS REVERSE RECOVERY TIME vs REVERSE di/dt 70 trr – Reverse Recovery Time – ns TJ = 25°C See Figures 1 and 2 60 50 IS = 750 mA Q3A, Q4A, Q5A 40 30 20 IS = 750 mA Q1A, Q1B 10 0 0 20 40 60 80 100 120 140 160 180 200 Reverse di/dt – A/µs Figure 23 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 13 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 THERMAL INFORMATION MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 100 I D – Maximum Drain Current – A TC = 25°C Q1A, Q1B, Q2A, Q2B 500 µs† 10 ms¶ 1 ms† 1 ÁÁ ÁÁ θJC§ 0.1 0.1 DC Conditions θJA‡ 1 10 100 VDS – Drain-to-Source Voltage – V Figure 24 MAXIMUM DRAIN CURRENT vs DRAIN-TO-SOURCE VOLTAGE 100 I D – Maximum Drain Current – A TC = 25°C Q3A, Q3B, Q4A, Q4B, Q5A, Q5B 500 µs† 10 ms¶ 1 ms† 1 ÁÁ ÁÁ θJC§ θJA‡ DC Conditions 0.1 0.1 1 10 VDS – Drain-to-Source Voltage – V Figure 25 † Less than 10% duty cycle ‡ Device is mounted on a 24 in2, 4 layer FR4 printed-circuit board. § Device is mounted in intimate contact with infinite heatsink. ¶ Less than 2% duty cycle 14 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 100 TPIC1502 QUAD AND HEX POWER DMOS ARRAY SLIS054 – OCTOBER 1996 THERMAL INFORMATION DW PACKAGE† JUNCTION-TO-BOARD THERMAL RESISTANCE vs PULSE DURATION 100 DC Conditions RθJB – Junction-to-Board Thermal Resistance – °C/W d = 0.5 d = 0.2 10 d = 0.1 d = 0.05 d = 0.02 d = 0.01 1 Single Pulse tc tw ID 0 0.1 0.0001 0.001 0.01 0.1 1 10 100 tw – Pulse Duration – s † Device is mounted on 24 in2, 4-layer FR4 printed circuit board with no heat sink. NOTE A: ZθB(t) = r(t) RθJB tw = pulse duration tc = cycle time d = duty cycle = tw/tc Figure 26 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 15 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER’S RISK. In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI’s publication of information regarding any third party’s products or services does not constitute TI’s approval, warranty or endorsement thereof. Copyright 1998, Texas Instruments Incorporated