TS514 / TS514A Precision Quad Operational Amplifier ■ Low input offset voltage: 500µV max. ■ Low power consumption. ■ Short circuit protection. ■ Low distortion, low noise. ■ High gain-bandwidth product. ■ High channel separation. ■ ESD protection 2kV. ■ Macromodel included in this specification. N DIP14 (Plastic Package) D SO-14 (Plastic Micropackage) Description The TS514 is a high-performance quad operational amplifier with frequency and phase compensation built into the chip. The internal phase compensation allows stable operation as a voltage follower in spite of its high gain-bandwidth product. The circuit presents very stable electrical characteristics over the entire supply voltage range, and is particularly intended for professional and telecom applications (active filter, etc.). Pin Connections (top view) Output 1 1 Inverting Input 1 2 - - 13 Inverting Input 4 Non-inverting Input 1 3 + + 12 Non-inverting Input 4 V CC + 4 Non-inverting Input 2 5 + + 10 Non-inverting Input 3 Inverting Input 2 6 - - 9 Inverting Input 3 Output 2 7 8 Output 3 14 Output 4 11 VCC - Order Codes Part Number TS514IN TS514AIN TS514ID/IDT TS514AID/AIDT TS514IYD/IYDT TS514AIYD/AIYDT September 2005 Temperature Range -40, + 125°C Package Packing DIP14 Tube SO-14 Tube or Tape & Reel SO14 (automotive grade level) Marking 514IN 514AIN 514I 514AI 514IY 514AIY Rev. 3 1/10 www.st.com 10 Absolute Maximum Ratings 1 TS514 / TS514A Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol VCC Vi Vid(1) Parameter Value Unit ±18 V Input Voltage Positive Negative +VCC -Vcc - 0.5 V Differential Input Voltage ±(VCC - 1) V 400 mW -65 to +150 °C 103 66 °C/W 2 kV <200 V 1.5 kV Supply Voltage ptot Power Dissipation at Tamb = 70°C (2) Tstg Storage Temperature Range Thermal Resistance Junction to Ambient Rthja SO14 DIP14 HBM: Human Body Model(3) ESD MM: Machine Model(4) CDM: Charged Device Model 1. Differential voltages are with respect to the midpoint between Vcc+ and Vcc-. 2. Power dissipation must be considered to ensure maximum junction temperature (Tj) is not exceeded. 3. Human body model, 100pF discharged through a 1.5kΩ resistor into pin of device. 4. Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC with no external series resistor (internal resistor < 5Ω), into pin to pin of device. Table 2. Operating conditions Symbol Parameter VCC+ Min Max +3 +15 -3 -15 -40 +125 Supply voltage VCCToper 2/10 Operating Free Air Temperature Range Unit V °C TS514 / TS514A 2 Schematic Diagram Schematic Diagram Figure 1. Typical application schematic for 1/4 of the TS514 3/10 Electrical Characteristics 3 TS514 / TS514A Electrical Characteristics Table 3. VCC = ±15V, Tamb = 25°C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Unit Icc Supply Current 1.4 2.4 mA Iib Input Bias Current – at 25°C – at T min ≤Top ≤Tmax 50 150 300 nA Ri Input Resistance, f = 1kHz 1 MΩ Input Offset Voltage – at 25°C: Vio ∆Vio TS514 TS514A – at T min ≤Top ≤T max TS514 TS514A 0.5 2.5 0.5 mV 4 1.5 Input Offset Voltage Drift at Tmin ≤T op ≤Tmax µV/°C 5 Input Offset Current Iio at 25°C at T min ≤Top ≤Tmax ∆Iio Input Offset Current Drift Tmin ≤Top ≤Tmax Ios Output Short Circuit Current 5 20 40 nA 0.08 nA ------°C 23 mA 90 100 95 dB 1.8 3 MHz Large Signal Voltage Gain, RL = 2kΩ Avd GBP Vcc = ±15V Vcc = ± 4V Gain-bandwidth Product, f = 100kHz Equivalent Input Noise Voltage, f = 1kHz en THD Rs = 50Ω Rs = 1kΩ Rs = 10kΩ Total Harmonic Distortion Av = 20dB, RL = 2kΩ, Vo = 2V pp, f = 1kHz 8 10 18 15 nV ----------Hz 0.03 0.1 % Output Voltage Swing, R L = 2kΩ ±Vopp Vcc = ±15V Vcc = ± 4V ±3 Vopp Large Signal Voltage Swing, RL = 10kΩ, f = 10kHz SR Slew Rate, unity gain, RL = 2kΩ 0.8 CMR Common Mode Rejection Ratio, Vic = 10V 90 dB SVR Supply Voltage Rejection Ratio, dVic = 10V, f = 100Hz 90 dB Vo1/Vo2 Channel Separation, f = 1kHz 4/10 V ±13 28 Vpp 1.5 V/µs 120 dB TS514 / TS514A Macromodels 4 Macromodels 4.1 Important note concerning this macromodel Please consider following remarks before using this macromodel. ● All models are a trade-off between accuracy and complexity (i.e. simulation time). ● Macromodels are not a substitute to breadboarding; rather, they confirm the validity of a design approach and help to select surrounding component values. ● A macromodel emulates the NOMINAL performance of a TYPICAL device within SPECIFIED OPERATING CONDITIONS (i.e. temperature, supply voltage, etc.). Thus the macromodel is often not as exhaustive as the datasheet, its goal is to illustrate the main parameters of the product. ● Data issued from macromodels used outside of its specified conditions (Vcc, Temperature, etc.) or even worse: outside of the device operating conditions (Vcc, Vicm, etc.) are not reliable in any way. In Section 4.2, the electrical characteristics resulting from the use of this macromodel are presented. 4.2 Electrical characteristics from macromodelization Table 4. Electrical characteristics resulting from macromodel simulation at V cc = ±15V, Tamb = 25°C (unless otherwise specified) Symbol Conditions Vio Value Unit 0 mV Avd RL = 2kΩ 94 V/mV Icc No load, per operator 325 µA -13.5 to 13.5 V Vicm VOH RL = 2kΩ +13 V VOL RL = 2kΩ -13 V Isink Vo = 0V 24 mA Isource Vo = 0V 24 mA GBP RL = 2kΩ, CL = 100pF 3 MHz SR RL = 2kΩ, CL = 100pF 1.4 V/µs ∅m RL = 2kΩ, CL = 100pF 55 Degrees 5/10 Macromodels 4.3 Macromodel code ** Standard Linear Ics Macromodels, 1993. ** CONNECTIONS : * 1 INVERTING INPUT * 2 NON-INVERTING INPUT * 3 OUTPUT * 4 POSITIVE POWER SUPPLY * 5 NEGATIVE POWER SUPPLY .SUBCKT TS514 1 3 2 4 5 (analog) ******************************************************** .MODEL MDTH D IS=1E-8 KF=6.647807E-16 CJO=10F * INPUT STAGE CIP 2 5 1.000000E-12 CIN 1 5 1.000000E-12 EIP 10 5 2 5 1 EIN 16 5 1 5 1 RIP 10 11 1.300000E+01 RIN 15 16 1.300000E+01 RIS 11 15 6.437882E+01 DIP 11 12 MDTH 400E-12 DIN 15 14 MDTH 400E-12 VOFP 12 13 DC 0 VOFN 13 14 DC 0 IPOL 13 5 2.000000E-05 CPS 11 15 9.75E-10 DINN 17 13 MDTH 400E-12 VIN 17 5 0.000000e+00 DINR 15 18 MDTH 400E-12 VIP 4 18 1.500000E+00 FCP 4 5 VOFP 1.525000E+01 FCN 5 4 VOFN 1.525000E+01 FIBP 2 5 VOFN 5.000000E-03 FIBN 5 1 VOFP 5.000000E-03 * AMPLIFYING STAGE FIP 5 19 VOFP 1.125000E+03 FIN 5 19 VOFN 1.125000E+03 RG1 19 5 6.512062E+05 RG2 19 4 6.512062E+05 CC 19 29 1.500000E-08 HZTP 30 29 VOFP 8.944787E+02 HZTN 5 30 VOFN 8.944787E+02 DOPM 19 22 MDTH 400E-12 DONM 21 19 MDTH 400E-12 HOPM 22 28 VOUT 6.521739E+03 VIPM 28 4 1.500000E+02 HONM 21 27 VOUT 6.521739E+03 VINM 5 27 1.500000E+02 GCOMP 5 4 4 5 7.485029E-04 RPM1 5 80 1E+09 RPM2 4 80 1E+09 6/10 TS514 / TS514A TS514 / TS514A Macromodels GAVPH 5 82 19 80 2.99E-03 RAVPHGH 82 4 668 RAVPHGB 82 5 668 RAVPHDH 82 83 1000 RAVPHDB 82 84 1000 CAVPHH 4 83 0.352E-09 CAVPHB 5 84 0.352E-09 EOUT 26 23 82 5 1 VOUT 23 5 0 ROUT 26 3 150 COUT 3 5 1.000000E-12 DOP 19 25 MDTH 400E-12 VOP 4 25 1.785252E+00 DON 24 19 MDTH 400E-12 VON 24 5 1.785252E+00 .ENDS 7/10 Package Mechanical Data 5 TS514 / TS514A Package Mechanical Data In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com. 5.1 DIP14 Package Plastic DIP-14 MECHANICAL DATA mm. inch DIM. MIN. a1 0.51 B 1.39 TYP MAX. MIN. TYP. MAX. 0.020 1.65 0.055 0.065 b 0.5 0.020 b1 0.25 0.010 D 20 0.787 E 8.5 0.335 e 2.54 0.100 e3 15.24 0.600 F 7.1 0.280 I 5.1 0.201 L Z 3.3 1.27 0.130 2.54 0.050 0.100 P001A 8/10 TS514 / TS514A 5.2 Package Mechanical Data SO-14 Package SO-14 MECHANICAL DATA DIM. mm. MIN. TYP A a1 inch MAX. MIN. TYP. 1.75 0.1 0.068 0.2 a2 0.003 0.007 0.46 0.013 0.018 0.25 0.007 1.65 b 0.35 b1 0.19 C MAX. 0.064 0.5 0.010 0.019 c1 45˚ (typ.) D 8.55 E 5.8 e 8.75 0.336 6.2 0.228 1.27 e3 0.344 0.244 0.050 7.62 0.300 F 3.8 4.0 0.149 0.157 G 4.6 5.3 0.181 0.208 L 0.5 1.27 0.019 0.050 M S 0.68 0.026 8 ˚ (max.) PO13G 9/10 Revision History 6 TS514 / TS514A Revision History Date Revision March 2001 1 Initial release June 2005 2 Automotive grade part references inserted in the datasheet (see Order Codes on page 1). 3 The following changes were made in this revision: – An error in the device description was corrected on page 1. – Order Codes on page 1 updated with complete list of markings. – Addition of supplementary data in Table 1: Key parameters and their absolute maximum ratings on page 2. – Addition of Table 2: Operating conditions on page 2. – Reorganization of Chapter 4: Macromodels on page 5. – Minor grammatical and formatting changes throughout. Sept. 2005 Changes Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2005 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 10/10