TSH344 340MHz Single-Supply Triple Video Buffer ■ Bandwidth: 340MHz ■ 5V single-supply operation ■ Low output rail guaranteed at 60mV max. ■ Internal gain of 6dB for a matching between 3 channels ■ Very low harmonic distortion ■ Slew rate: 740V/µs ■ Specified for 150Ω and 100Ω loads ■ Tested on 5V power supply ■ Data min. and max. are tested during production Pin Connections (top view) Pin1 identification Top View IN1 1 6dB 8 OUT1 IN2 2 6dB 7 OUT2 IN3 3 6dB 6 OUT3 Description The TSH344 is a triple single-supply video buffer featuring an internal gain of 6dB and a large bandwidth of 340MHz. The main advantage of this buffer is its very low output rail very close to GND when supplied in single supply 0/5V. This output rail is guaranteed by test at 60mV from GND on 150Ω. Chapter 4 of this datasheet gives technical support when using the TSH344 as RGB driver for video DAC output on a video line (see TSH343 for Y-Pb-Pr signals). The TSH344 is available in the compact SO8 plastic package for optimum space-saving. 5 GND +Vcc 4 SO8 Applications ■ High-end video systems ■ High Definition TV (HDTV) ■ Broadcast and graphic video ■ Multimedia products Order Codes Part Number Temperature Range Package -40°C to +85°C SO-8 TSH344ID TSH344IDT January 2006 Rev. 2 Packing Marking Tube TSH344I Tape & Reel TSH344I 1/14 www.st.com 14 Absolute Maximum Ratings TSH344 1 Absolute Maximum Ratings Table 1. Key parameters and their absolute maximum ratings Symbol Parameter (1) VCC Supply voltage Vin Input Voltage Range (2) Value Unit 6 V 0 to +2 V Toper Operating Free Air Temperature Range -40 to +85 °C Tstd Storage Temperature -65 to +150 °C Maximum Junction Temperature 150 °C Rthjc SO8 Thermal Resistance Junction to Case 28 °C/W Rthja SO8 Thermal Resistance Junction to Ambient Area 157 °C/W Pmax. Maximum Power Dissipation (@Ta=25°C) for Tj=150°C 800 mW ESD CDM: Charged Device Model HBM: Human Body Model MM: Machine Model 2 1.5 200 kV kV V Value Unit 3 to 5.5 V Tj 1. All voltage values, except differential voltage, are with respect to network terminal. 2. The magnitude of input and output voltage must never exceed VCC +0.3V. Table 2. Operating conditions Symbol VCC Parameter Power Supply Voltage (1) 1. Tested in full production at 0V/5V single power supply 2/14 Rev. 2 TSH344 Electrical Characteristics 2 Electrical Characteristics Table 3. VCC = +5V Single Supply, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. -35 -8 +35 Unit DC Performance VOS Output Offset Voltage(1) Input Bias Current Iib no Load, Tamb mV -40°C < Tamb < +85°C -8.6 Tamb, input to GND 5.5 -40°C < Tamb < +85°C 6 16 µA Rin Input Resistance Tamb 4 GΩ Cin Input Capacitance Tamb 1 pF PSR Power Supply Rejection Ratio 20 log (∆Vcc/∆Vout) input to GND, F=1MHz, ∆Vcc=200mV -90 dB Supply Current per Buffer no Load, input to GND 10.1 -40°C < Tamb < +85°C 10.3 ICC DC Voltage Gain RL = 150Ω, Vin=1V MG1 Gain Matching between 3 channels MG0.3 Gain Matching between 3 channels G 13 mA 1.92 2 2.05 V/V Input = 1V 0.5 2 % Input = 0.3V 0.5 2 % Dynamic Performance and Output Characteristics -3dB Bandwidth Small Signal Vout=20mVp Vicm=0.6V, RL = 150 Ω Gain Flatness @ 0.1dB Small Signal Vout=20mVp Vicm=0.6V, RL = 150 Ω Full Power Bandwidth Vicm=0.6V, VOUT = 2Vp-p, RL = 150Ω Delay between each channel 0 to 30MHz SR Slew Rate (2) Vicm=0.6V, VOUT = 2Vp-p, RL = 150Ω VOH High Level Output Voltage RL = 150Ω VOL Low Level Output Voltage RL = 150Ω Output Current Vout=2Vp, Tamb Bw FPBW D IOUT -40°C < Tamb < +85°C Output Short Circuit Current (Isource) 190 340 MHz 65 130 200 MHz 0.5 ns 500 740 V/µs 3.7 3.9 V 40 45 mV 93 mA 83 100 Rev. 2 60 mA 3/14 Electrical Characteristics Table 3. TSH344 VCC = +5V Single Supply, Tamb = 25°C (unless otherwise specified) Symbol Parameter Test Condition Min. Typ. Max. Unit Noise and Distortion F = 100kHz, Rin = 50 Ω Total Input Voltage Noise eN 2nd Harmonic Distortion HD2 3rd Harmonic Distortion HD3 8 nV/√Hz Rin = 50Ω Bw=30MHz Bw=100MHz 55 100 µVrms VOUT = 2Vp-p, RL = 150 Ω F= 10MHz F= 30MHz -57 -42 dBc VOUT = 2Vp-p, RL = 150 Ω F= 10MHz F= 30MHz -72 -51 dBc 1. Output Offset Voltage is determined from the following expression: VOUT =G.VIN+VOS 2. Non-tested value. Guaranteed value by design. 4/14 Rev. 2 TSH344 Figure 1. Electrical Characteristics Frequency response Figure 2. 10 6,2 8 6,1 6 6,0 4 5,9 2 Gain (dB) Gain (dB) Gain flatness 0 -2 -4 5,8 5,7 5,6 5,5 -6 5,4 Vcc=5V Load=150Ω -8 -10 1M Vcc=5V Load=150 Ω 5,3 10M 100M 5,2 1M 1G 10M Figure 3. Cross-talk vs. frequency (amp1) Figure 4. -20 1G Cross-talk vs. frequency (amp2) 0 0 -10 100M Frequency (Hz) Frequency (Hz) Small Signal Vcc=5V Load=150 Ω Small Signal Vcc=5V Load=150 Ω -20 Gain (dB) Gain (dB) -30 -40 -50 1/2 -60 -40 2/1 -60 -70 -80 -80 1/3 2/3 -90 -100 1M 10M -100 1M 100M 10M Figure 5. 100M Frequency (Hz) Frequency (Hz) Cross-talk vs. frequency (amp3) Figure 6. Input noise vs. frequency 0 Vcc=5V DC input = 1.5V (Battery) Input Noise (nV/VHz) Gain (dB) -20 Small Signal Vcc=5V Load=150 Ω -40 -60 3/1 -80 -100 1M 3/2 10M 100 10 100M 10 Frequency (Hz) 100 1k 10k 100k 1M 10M Frequency (Hz) Rev. 2 5/14 Electrical Characteristics Figure 7. TSH344 Distortion on 150Ω load - 10MHz Figure 8. -30 -35 -35 Vcc=5V F=10MHz input DC component = 1.15V Load=150Ω -45 -50 -45 -55 -60 -65 HD2 -70 Vcc=5V F=10MHz input DC component = 1.15V Load=100 Ω -40 -50 HD2 & HD3 (dBc) -40 HD2 & HD3 (dBc) Distortion on 100Ω load - 10MHz -30 -75 -80 -55 -60 -65 -70 HD2 -75 -80 -85 -85 HD3 -90 HD3 -90 -95 -95 -100 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 -100 0,0 4,0 0,5 1,0 Output Amplitude (Vp-p) Figure 9. Distortion on 150Ω load - 30MHz -15 Vcc=5V F=30MHz input DC component = 1.15V Load=150 Ω 3,0 3,5 4,0 -25 -30 -25 -35 -40 -45 -50 HD2 -55 Vcc=5V F=30MHz input DC component = 1.15V Load=100 Ω -20 HD2 & HD3 (dBc) -20 HD2 & HD3 (dBc) 2,5 -10 -15 -60 -65 -30 -35 -40 -45 -50 HD2 -55 -60 -65 HD3 -70 HD3 -70 -75 -75 -80 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 -80 0,0 4,0 0,5 1,0 Output Amplitude (Vp-p) 2,0 2,5 3,0 3,5 4,0 Figure 12. Slew rate 4,0 0 -10 +5V 3,5 VOH without load -20 Output Response (V) -30 Isource -40 V -50 0V -60 -70 -80 -90 SR+ 3,0 2,5 2,0 SR- 1,5 1,0 -100 Vcc=5V Load=150Ω 0,5 -110 -120 0,0 1,5 Output Amplitude (Vp-p) Figure 11. Output current Isource (mA) 2,0 Figure 10. Distortion on 100Ω load - 30MHz -10 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0 -2 -1 0 1 2 3 Time (ns) V (V) 6/14 1,5 Output Amplitude (Vp-p) Rev. 2 4 5 6 7 8 TSH344 Electrical Characteristics Figure 13. Reverse isolation vs. frequency Figure 14. Output swing vs. frequency 5 0 Vcc=5V Load=150 Ω -10 4 -20 Vout max. (Vp-p) Gain (dB) -30 -40 -50 -60 -70 3 2 1 -80 Vcc=5V Load=100 Ω or Load=150Ω -90 -100 1M 10M 0 1M 100M 10M Figure 15. Quiescent current vs. Supply Figure 16. Output swing vs. supply 5 30 Vcc=5V no load 4 Vout peak-peak (Vp-p) Total Icc (mA) 25 100M Frequency (Hz) Frequency (Hz) 20 15 10 3 2 1 5 0 0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 Vcc=5V F=30MHz Load=100 Ω or 150 Ω 0 3,00 5,0 3,25 3,50 3,75 4,00 4,25 4,50 4,75 5,00 Vcc (V) Vcc (V) Figure 17. Bandwidth vs. temperature Figure 18. Voltage gain vs. temperature 500 2,05 450 2,04 2,03 400 Gain (dB) Bw (MHz) 2,02 350 300 250 2,01 2,00 1,99 1,98 200 1,97 150 100 -40 Vcc=5V Load=150Ω -20 1,96 0 20 40 60 80 Temperature (°C) 1,95 -40 Vcc=5V Load=150Ω -20 0 20 40 60 80 Temperature (°C) Rev. 2 7/14 Electrical Characteristics TSH344 Figure 19. Ibias vs. temperature Figure 20. Gain matching vs. temperature 1,0 2 3 0,8 4 0,6 GM (%) IBIAS (µA) Vcc=5V Load=150 Ω 5 0,4 0,2 6 7 -40 Gain Matching between 3 channels Vcc=5V Load=150Ω Vin=0.3V and 1V -20 0 20 40 60 0,0 -40 80 -20 0 20 40 60 80 Temperature (°C) Temperature (°C) Figure 21. Supply current vs. temperature Figure 22. Output current vs. temperature 100 Isource (mA) ICC (mA) 11 10 9 8 7 -40 Vcc=5V no Load -20 90 80 70 60 0 20 40 60 50 -40 80 Vcc=5V Load=150 Ω -20 0 20 40 60 80 Temperature (°C) Temperature (°C) Figure 23. Output higher rail vs. temperature Figure 24. Output lower rail vs. temperature 50 4,2 45 4,1 40 VOL (V) VOH (V) 4,0 3,9 35 3,8 30 3,7 25 3,6 3,5 -40 Vcc=5V Load=150Ω Vcc=5V Load=150Ω -20 0 20 40 60 80 -20 0 20 40 Temperature (°C) Temperature (°C) 8/14 20 -40 Rev. 2 60 80 TSH344 Power Supply Considerations and improvement of the PSRR Correct power supply bypassing is very important for optimizing performance in low and high-frequency ranges. Bypass capacitors should be placed as close as possible to the IC pin (pin 4) to improve high-frequency bypassing. A capacitor (C LF) greater than 100uF is necessary to improve the PSRR in low frequencies. For better quality bypassing, a capacitor of 470nF (C HF) is added using the same implementation conditions to improve the PSRR in the higher frequencies. Figure 25. Circuit for power supply bypassing +VCC CLF + CHF 4 R G B TSH344 5 The following graph in Figure 26 shows the evolution of the PSRR against the frequency when the power supply decoupling is achieved carefuly or not. Figure 26. PSRR improvement 0 -10 Vcc=5V Load=150Ω PSRR=20 log ( ∆VCC/∆Vout) -20 PSRR (dB) 3 Power Supply Considerations and improvement of the PSRR without capacitor -30 -40 CLF=100uF CHF=470nF -50 -60 -70 -80 10k 100k 1M 10M 100M Frequency (Hz) Rev. 2 9/14 Using the TSH344 to Drive RGB Video Components 4 TSH344 Using the TSH344 to Drive RGB Video Components Figure 27. Shapes of video signals coming from DACs DAC Outputs: RGB 100 IRE White Level Image Content 30 IRE Black Level 1Vp-p 300mV 0 IRE 0Volt Figure 28. Implementation of the video driver on output video DACs (1) DAC output (2) Amplifier output (3) On the line Amplifier output rail (3.7V min.) Content of the video signal 2.6V 1.4Vp-p 0.7Vp-p 0.7Vp-p 600mV 300mV 0V Amplifier output rail (70mV max.) 0V 300mV 0V +5V Video DAC R Reconstruction Filtering LPF 75Ω +6dB 75Ω Cable 0.7Vpp 75Ω 0.7Vpp 1.4Vpp Video DAC G Reconstruction Filtering LPF 75Ω +6dB 75Ω Cable 0.7Vpp 75Ω 0.7Vpp 1.4Vpp Video DAC B Reconstruction Filtering LPF 75Ω +6dB 0.7Vpp 75Ω 0.7Vpp TSH344 -5V 10/14 75Ω Cable Rev. 2 1.4Vpp TV TSH344 Using the TSH344 to Drive RGB Video Components Figure 28 shows a schematic diagram of the use of the TSH344 to drive video output from DACs. The TSH344 is used to drive high definition video signals up to 30MHz on 75-ohm video lines. It is dedicated to driving RGB signals typically between 300mV and 1V, as seen in (1). With a very low output rail (VOL) guaranteed in test of production at 60mV maximum, it is possible to drive the signal in single supply without any saturation of the driver against the lower rail. Assuming that we lose half of the signal by output impedance-matching in order to properly drive the video line, the shifted signal is multiplied by a gain of 2 or +6dB (3). 4.1 Delay between channels Figure 29. Measurement of the delay between each channel 5V 75Ω +6dB 75Ω Cable V1 75Ω Vin 75Ω +6dB 75Ω Cable V2 75Ω 75Ω 75Ω +6dB 75Ω Cable V3 75Ω Delay between each video component is an important aspect in high definition video systems. To drive porperly the three video components without any relative delay, the dice of the TSH344 is layouted out with a very symetrical geometry. The effect is direct on the synchronization of each channel, as shown in Figure 30. No delay appears between each channel when the same Vin signal is applied on the three inputs. Note that the delay from the inputs the outputs equals 4ns. Rev. 2 11/14 Using the TSH344 to Drive RGB Video Components TSH344 3 Output responses Figure 30. Relative delay between each channel Input Vcc=5V Load=150 Ω -4ns -2ns 0s 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns Time 12/14 Rev. 2 TSH344 5 Package Mechanical Data Package Mechanical Data SO-8 MECHANICAL DATA DIM. mm. MIN. TYP inch MAX. MIN. TYP. MAX. A 1.35 1.75 0.053 0.069 A1 0.10 0.25 0.04 0.010 A2 1.10 1.65 0.043 0.065 B 0.33 0.51 0.013 0.020 C 0.19 0.25 0.007 0.010 D 4.80 5.00 0.189 0.197 E 3.80 4.00 0.150 e 1.27 0.157 0.050 H 5.80 6.20 0.228 0.244 h 0.25 0.50 0.010 0.020 L 0.40 1.27 0.016 0.050 k ddd 8˚ (max.) 0.1 0.04 0016023/C Rev. 2 13/14 Revision History TSH344 6 Revision History Table 4. Document revision history Date Revision Description of Changes Dec. 2005 1 First release of datasheet. Jan. 2006 2 Capa-load option paragraph deleted in page 11. Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2006 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com 14/14 Rev. 2