DATA SHEET MOS INTEGRATED CIRCUIT µPD75116H,75117H 4-BIT SINGLE-CHIP MICROCOMPUTER DESCRIPTION The µPD75117H is a 75X Series 4-bit single-chip microcomputer. The µPD75117H is a product which has the same functions as those of the µPD751××F, with the minimum operating voltage reduced from the previous 2.7 V to 1.8 V, and achieving 1.91 µs operation at 1.8 V. Therefore, it facilitates low-voltage operation for a set requiring high-speed operation. Functions are described in detail in the following User’s Manual, which should be read when carrying out design work. µPD75117H User’s Manual : IEU-799 FEATURES • Memory capacity ROM : 24448 × 8 bits (µPD75117H) : 16256 × 8 bits (µPD75116H) RAM : 768 × 4 bits • High-speed low voltage operation Minimum instruction execution time : • Operating voltage range • Input/output ports : 58 • Timer/counter : 3 channels • Timer/event counter × 2 channels • Basic interval timer × 1 channel • 8-bit serial interface on chip • Programmable threshold port • On-chip PROM product available 1.91 µs (VDD = 1.8 V) 0.95 µs (VDD = 2.7 V) : 1.8 to 5.5 V (Ta = –40 to +60 °C) : : 4-bit resolution × 4 channels µPD75P117H (One-time PROM) ★ APPLICATIONS Cordless telephone subsets, portable radio equipment, pager, etc. "Unless there are any particular functional differences, the µPD75117H is described in this document as a representative product." The information in this document is subject to change without notice. Document No. IC-3120 (O.D.No. IC-8502) Date Published May 1994P Printed in Japan The mark ★ shows major revised points. © NEC Corporation 1994 µPD75116H,75117H ORDERING INFORMATION Ordering Code Package µPD75116HGC-×××-AB8 µPD75116HGK-×××-8A8 µPD75117HGC-×××-AB8 µPD75117HGK-×××-8A8 Remarks 64-pin 64-pin 64-pin 64-pin plastic plastic plastic plastic QFP QFP QFP QFP Quality Grade ( ( ( ( 14 12 14 12 mm) mm) mm) mm) Standard Standard Standard Standard ×××: ROM code number OVERVIEW OF FUNCTIONS Item Contents Basic instructions 43 Instruction cycle 0.95 µs, 1.91 µs, 15.3 µs (4.19 MHz operation) 3-stage switching capability ROM 24448 × 8 bits (µPD75117H), 16256 × 8 bits (µPD75116H) RAM 768 × 4 bits On-chip memory General register 4 bits × 8 × 4 banks (memory mapping) Total 58 • CMOS input pins • CMOS input/output pins Input/output port ★ : 10 : 32 (pins with LED direct drive capability*1) • N-ch open-drain input/output pins : 12 (pins with LED direct drive capability*2) (A pull-up resistor can be incorporated bit-wise.) • Comparator input pins (4-bit precision) : 4 Timer/counter • 8-bit timer/event counter × 2 • 8-bit basic interval timer (watchdog timer applicable) Serial interface • 8 bits • LSB-first/MSB-first switchable • 2 transfer modes (transmission/reception and dedicated reception modes) Vectored interrupt • External : • Internal : 3 4 Test input • External : 2 Standby • STOP/HALT mode Instruction set • • • • Others • Bit manipulation memory (bit sequential buffer: 16 bits) on chip Package • 64-pin plastic QFP ( 14 mm) • 64-pin plastic QFP ( 12 mm) Various bit manipulation instructions (set, reset, test, Boolean operation) 8-bit data transfer, comparison, operation, increment/decrement instructions 1-byte relative branch instruction GETI instruction that can implement arbitrary 2-byte/3-byte instructions with 1 byte ★ * 1. When VDD = 5 V, IOL = 15 mA. ★ 2. When VDD = 5 V, IOL = 10 mA. 2 µPD75116H,75117H DIFFERENCES BETWEEN µPD75116H AND µPD75117H Item ROM ★ µPD75116H µPD75117H 16256 × 8 bits (Mask ROM) 24448 × 8 bits (Mask ROM) 768 × 4 bits RAM SBS register No Yes Memory bank 0 Memory banks 0, 1, 2 2-byte stack 3-byte stack CALL instruction machine cycle 3 machine cycles 4 machine cycles CALLF instruction machine cycle 2 machine cycles 3 machine cycles Undefined operation Normal operation Stack Stack area Stack operation when subroutine call instruction is executed BRA instruction CALLA instruction MOVT XA, BCDE MOVT XA, BCXA BR BCDE BR BCXA 3 µPD75116H,75117H CONTENTS 1. PIN CONFIGURATION (TOP VIEW) ...................................................................................................... 6 2. BLOCK DIAGRAM ................................................................................................................................... 8 3. PIN FUNCTIONS ..................................................................................................................................... 9 3.1 3.2 3.3 3.4 PORT PINS ....................................................................................................................................................... 9 OTHER PINS ..................................................................................................................................................... 10 PIN INPUT/OUTPUT CIRCUITS ..................................................................................................................... 11 RECOMMENDED CONNECTION OF UNUSED PINS ................................................................................... 12 4. MEMORY CONFIGURATION ................................................................................................................. 13 5. PERIPHERAL HARDWARE FUNCTIONS ............................................................................................... 18 5.1 5.2 5.3 PORT ................................................................................................................................................................. 18 CLOCK GENERATOR ....................................................................................................................................... 19 CLOCK OUTPUT CIRCUIT ............................................................................................................................... 20 5.4 5.5 5.6 5.7 BASIC INTERVAL TIMER ................................................................................................................................ TIMER/EVENT COUNTER ............................................................................................................................... SERIAL INTERFACE ......................................................................................................................................... PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) .............................................................. 5.8 BIT SEQUENTIAL BUFFER ............................................................................................................................. 26 21 21 23 25 6. INTERRUPT FUNCTION ........................................................................................................................ 27 7. STANDBY FUNCTION ............................................................................................................................ 29 8. RESET FUNCTION .................................................................................................................................. 30 9. INSTRUCTION SET ................................................................................................................................. 33 10. APPLICATION EXAMPLE ....................................................................................................................... 43 10.1 CORDLESS TELEPHONE (SUBSET) .............................................................................................................. 43 10.2 DISPLAY PAGER .............................................................................................................................................. 44 11. MASK OPTION SELECTION ................................................................................................................... 45 12. ELECTRICAL SPECIFICATIONS ............................................................................................................. 46 13. PACKAGE INFORMATION ..................................................................................................................... 57 14. RECOMMENDED SOLDERING CONDITIONS ...................................................................................... 59 APPENDIX A. FUNCTIONAL DIFFERENCES AMONG µPD751×× SERIES PRODUCTS ......................... 60 4 µPD75116H,75117H APPENDIX B. DEVELOPMENT TOOLS ........................................................................................................ 62 APPENDIX C. RELATED DOCUMENTS ........................................................................................................ 63 5 µPD75116H,75117H P70 P71 P72 P73 P60 P61 P62 P63 X1 X2 RESET P50 P51 P52 P53 P40 1. PIN CONFIGURATION (TOP VIEW) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 1 P41 P82 2 47 P42 P81 3 46 P43 P80 4 45 P30 P93 5 44 P31 P92 6 43 P32 P91 7 42 P33 P90 8 41 V DD V SS 9 40 IC* 39 P140 38 P141 P130 PTH02 15 34 P131 PTH01 16 17 P132 6 18 19 20 21 22 23 24 25 26 27 28 29 30 31 33 32 P133 35 P120 14 P121 PTH03 P122 P143 P123 36 P00/INT4 13 P01/SCK P10/INT0 P02/SO P142 P03/SI 37 P20/PTO0 12 P21/PTO1 P11/INT1 P22/PCL 11 P23 P12/INT2 TI1 10 TI0 P13/INT3 PTH00 * µPD75116HGC-×××-AB8 µPD75116HGK-×××-8A8 µPD75117HGC-×××-AB8 µPD75117HGK-×××-8A8 P83 Connect the IC (Internally Connected ) pin to VDD directly. µPD75116H,75117H Pin Name P00-P03 : Port 0 PCL : Programmable Clock Output P10-P13 P20-P23 P30-P33 P40-P43 : : : : Port Port Port Port 1 2 3 4 SCK SO SI PTH00-PTH03 : : : : Serial Clock Serial Data Output Serial Data Input Programmable Treshold Input P50-P53 P60-P63 P70-P73 P80-P83 : : : : Port Port Port Port 5 6 7 8 INT0, INT1, INT4 : INT2, INT3 : X1, X2 : RESET : External Vectored Interrupt Input 0, 1, 4 External Test Input 2, 3 System Clock Oscillation 1, 2 Reset P90-P93 P120-P123 P130-P133 P140-P143 : : : : Port Port Port Port 9 12 13 14 VDD VSS IC Positive Power Supply Ground Internally Connected TI0, TI1 PTO0, PTO1 : : Timer Input 0, 1 Programmable Timer Output 0, 1 : : : 7 INTBT BIT SEQ. BUFFER (16) SP(8) PROGRAM COUNTER (15) *1 ALU TIMER/EVENT COUNTER #0 TI0 PTO0/P20 CY TIMER/EVENT COUNTER #1 INTT1 SI/P03 SERIAL INTERFACE SO/P02 SCK/P01 4 P00-P03 PORT 1 4 P10-P13 PORT 2 4 P20-P23 PORT 3 4 P30-P33 PORT 4 4 P40-P43 PORT 5 4 P50-P53 PORT 6 4 P60-P63 PORT 7 4 P70-P73 PORT 8 4 P80-P83 PORT 9 4 P90-P93 PORT 12 4 P120-P123 PORT 13 4 P130-P133 PORT 14 4 P140-P143 SBS(2) *2 BANK INTT0 TI1 PTO1/P21 PORT 0 2. BLOCK DIAGRAM 8 BASIC INTERVAL TIMER ROM PROGRAM MEMORY 16256 × 8 BITS : µPD75116H 24448 × 8 BITS : µPD75117H GENERAL REG. DECODE AND CONTROL RAM DATA MEMORY 768 × 4 BITS INTSIO INT0/P10 INT1/P11 INT2/P12 INT3/P13 INT4/P00 INTERRUPT CONTROL N fX / 2 4 CLOCK OUTPUT CONTROL PCL/P22 CLOCK DIVIDER CLOCK GENERATOR X1 STAND BY CONTROL CPU CLOCK Φ X2 VDD VSS RESET * 1. The µPD75116H program counter is composed of 14 bits. 2. The µPD75117H incorporates the SBS register. µPD75116H,75117H PTH00-PTH03 PROGRAMMABLE THRESHOLD PORT #0 µPD75116H,75117H 3. PIN FUNCTIONS 3.1 PORT PINS Pin Name Input/Output DualFunction Pin P00 Input INT4 P01 Input/output SCK Function 8-bit I/O Input/output SO P03 Input SI P10 I/O Circuit Type *1 B F 4-bit input port (PORT 0). P02 Reset Input E B × INT0 P11 INT1 4-bit input port (PORT 1). Input P12 INT2 P13 INT3 P20 PTO0 P21 Input B Input E PTO1 4-bit input/output port (PORT 2). Input/output P22 PCL P23 — *2 — Programmable 4-bit input/output port (PORT 3). Input/output can be specified bit-wise. *2 Input E × P30 to P33 Input/output P40 to P43 Input/output — 4-bit input/output port (PORT 4). *2 Input E P50 to P53 Input/output — 4-bit input/output port (PORT 5). *2 Input E P60 to P63 Input/output — Programmable 4-bit input/output port (PORT 6). Input/output can be specified bit-wise. *2 Input E P70 to P73 Input/output — 4-bit input/output port (PORT 7). *2 Input E P80 to P83 Input/output — 4-bit input/output port (PORT 8). *2 Input E P90 to P93 Input/output — 4-bit input/output port (PORT 9). *2 Input E — N-ch open-drain 4-bit input/output port (PORT 12). On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: +6 V withstand voltage *3 Input *4 M — N-ch open-drain 4-bit input/output port (PORT 13). On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: +6 V withstand voltage *3 Input *4 M — N-ch open-drain 4-bit input/output port (PORT 14). On-chip pull-up resistor can be specified bitwise (mask option). Open-drain: +6 V withstand voltage *3 Input *4 M P120 to P123 P130 to P133 P140 to P143 Input/output Input/output Input/output — * 1. : Schmitt trigger input 2. Direct LED drive capability (When VDD = 5 V, IOL = 15 mA). ★ ★ 3. Direct LED drive capability (When VDD = 5 V, IOL = 10 mA). 4. Open-drain … high impedance On-chip pull-up resistor … high level 9 µPD75116H,75117H 3.2 OTHER PINS Pin Name Input/Output DualFunction Pin PTH00 to PTH03 Input — Variable threshold voltage 4-bit analog input port. N Input — External event pulse input to timer/event counter. Or edge detection vectored interrupt input, or 1-bit input is also possible. B TI0 TI1 Input/output I/O Circuit Type *1 Timer/event counter output. Input E P21 PTO1 SCK Input/output P01 Serial clock input/output. Input F SO Input/output P02 Serial data output. Input E SI Input P03 Serial data input. Input B INT4 Input P00 Edge detection vector interrupt input (detection of both rising and falling edges) Input B Edge detection vector interrupt input (detection edge selectable) Input B Edge detection test input (rising edge detection) Input B Clock output Input E P10 INT0 Input P11 INT1 P12 INT2 Input P13 INT3 10 Reset P20 PTO0 * Function PCL Input/output P22 X1, X2 Input — System clock oscillation crystal/ceramic connection pin. When an external clock is used, the clock is input to X1 and the inverted clock is input to X2. RESET Input — System reset input (low-level active). IC — — Internally Connected. IC pin should be connected to VDD directly. VDD — — Positive power supply. VSS — — GND potential. : Schmitt trigger input B µPD75116H,75117H 3.3 PIN INPUT/OUTPUT CIRCUITS The input/output circuits of each pin of the µPD75117H are shown by in abbreviated form. Fig. 3-1 Pin Input/Output Circuit List Type F Type A VDD data IN/OUT Type D P-ch output disable IN Type B N-ch This is an input/output circuit made up of a Type D push-pull output and Type B Schmitt-triggered input. CMOS standard input buffer Type B VDD Type M Pull-Up Resistor (Mask Option) N-ch (+6 V Withstand Voltage) data IN output disable Middle-High Voltage Input Buffer (+6 V Withstand Voltage) Schmitt-trigger input with hysteresis characteristic Type D IN/OUT Type N Comparator VDD data P-ch + OUT – output disable N-ch VREF (Threshold Voltage) Push-pull output that can be made highimpedance output (P-ch and N-ch OFF) Type E data IN/OUT Type D output disable Type A This is an input/output circuit made up of a Type D push-pull output and Type A input buffer. 11 µPD75116H,75117H 3.4 RECOMMENDED CONNECTION OF UNUSED PINS Recommended Connection Pin PTH00 to PTH03 TI0 Connect to VSS or VDD. TI1 P00 Connect to VSS. P01 to P03 Connect to VSS or VDD. P10 to P13 Connect to VSS. P20 to P23 P30 to P33 P40 to P43 P50 to P53 Input status : Connect to VSS or VDD. Output status : Leave open. P60 to P63 P70 to P73 P80 to P83 P90 to P93 P120 to P123 P130 to P133 P140 to P143 IC 12 Connect to V DD directly. µPD75116H,75117H 4. MEMORY CONFIGURATION • Program memory (ROM) : 24448 × 8 bits (0000H to 5F7FH) : µPD75117H 16256 × 8 bits (0000H to 3F7FH) : µPD75116H • 0000H, 0001H : Vector table in which a program start address after reset is written. • 0002H to 000BH : Vector table in which program start addresses after interruption are written. • 0020H to 007FH : Table area referred by GETI instruction • Data memory • Data area : 768 × 4 bits (000H to 2FFH) • Peripheral hardware area : 128 × 4 bits (F80H to FFFH) 13 µPD75116H,75117H Fig. 4-1 Program Memory Map (1/2) (a) µPD75117H Address 7 0000H MBE 6 RBE 0 Internal Reset Start Address (High-Order 6 Bits) Internal Reset Start Address (Low-Order 8 Bits) MBE 0002H RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) MBE 0004H RBE INT0/INT1 Start Address (High-Order 6 Bits) CALLF ! faddr Instruction Entry Address INT0/INT1 Start Address (Low-Order 8 Bits) MBE 0006H RBE INTSIO Start Address (High-Order 6 Bits) INTSIO Start Address (Low-Order 8 Bits) MBE 0008H RBE BRCB ! caddr Instruction Branch Address INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) 000AH MBE RBE INTT1 Start Address (High-Order 6 Bits) INTT1 Start Address (Low-Order 8 Bits) ≈ ≈ BR !addr Instruction Branch Address CALL !addr Instruction Branch Address 0020H Branch/Call Address by GETI GETI Instruction Reference Table 007FH 0080H 07FFH 0800H 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H 3FFFH 4000H 4FFFH 5000H ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ ≈ BR BCDE BR BCXA Branch Address BRA !addr1 Instruction Branch Address CALLA !addr1 Instruction Branch Address BRCB !caddr Instruction Branch Address BR $addr1 Instruction Relative Branch Address (-15 to -1, +2 to +16) BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address 5F7FH Note Since the above interrupt vector start address is a 14-bit address, set it in a 16K space (0000H to 3FFFH). Remarks Apart from the above instructions, branching is possible to an address at which only the PC loworder 8 bits have been changed by the BR PCDE or BR PCXA instruction. 14 µPD75116H,75117H Fig. 4-1 Program Memory Map (2/2) (b) µPD75116H Address 7 0000H 6 MBE RBE 0 Internal Reset Start Address (High-Order 6 Bits) Internal Reset Start Address (Low-Order 8 Bits) 0002H 0004H 0006H 0008H 000AH MBE MBE MBE MBE MBE RBE RBE RBE RBE RBE INTBT/INT4 Start Address (High-Order 6 Bits) INTBT/INT4 Start Address (Low-Order 8 Bits) INT0/INT1 Start Address (High-Order 6 Bits) INT0/INT1 Start Address (Low-Order 8 Bits) INTSIO Start Address (High-Order 6 Bits) INTSIO Start Address (Low-Order 8 Bits) INTT0 Start Address (High-Order 6 Bits) INTT0 Start Address (Low-Order 8 Bits) INTT1 Start Address (High-Order 6 Bits) INTT1 Start Address (Low-Order 8 Bits) CALLF ! faddr Instruction Entry Address BRCB ! caddr Instruction Branch Address CALL ! addr Instruction Subroutine Entry Address BR ! addr Instruction Branch Address BR $ addr Instruction Relative Branch Address –15 to –1, +2 to +16 0020H GETI Instruction Reference Table 007FH 0080H 07FFH 0800H 0FFFH 1000H 1FFFH 2000H 2FFFH 3000H Branch Destination Address and Subroutine Entry Address by GETI Instruction BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address BRCB !caddr Instruction Branch Address 3F7FH Remarks Apart from the above instructions, branching is possible to an address at which only the PC loworder 8 bits have been changed by the BR PCDE or BR PCXA instruction. 15 µPD75116H,75117H Fig. 4-2 Data Memory Map (1/2) (a) µPD75117H Data Memory General Register Area Memory Bank 000H (32 × 4) 01FH Bank 0 020H 256 × 4 0FFH 100H Data Area Static RAM (768 × 4) 256 × 4 Bank 1 256 × 4 Bank 2 Stack Area 1FFH 200H 2FFH Not On-Chip F80H 128 × 4 Peripheral Hardware Area FFFH 16 Bank 15 µPD75116H,75117H Fig. 4-2 Data Memory Map (2/2) (b) µPD75116H Data Memory General Register Area Stack Area Memory Bank 000H (32 × 4) 01FH Bank 0 020H 256 × 4 0FFH 100H Data Area Static RAM (768 × 4) 256 × 4 Bank 1 256 × 4 Bank 2 1FFH 200H 2FFH Not On-Chip F80H 128 × 4 Peripheral Hardware Area Bank 15 FFFH 17 µPD75116H,75117H 5. PERIPHERAL HARDWARE FUNCTIONS 5.1 PORT There are the following three digital input/output ports. • CMOS input (PORT0, PORT1) : 8 • CMOS input/output (PORT2 to PORT9) : 32 • N-ch open-drain input/output (PORT12 to PORT14) : 12 Total : 52 Table 5-1 Port Function Port Name Function PORT 0 4-bit input PORT 1 Operation/Features Regardless of the operating mode of the shared pin, reading or test is always possible. Remarks These pins are shared with SI, SO, SCK, INT0 to INT4. PORT 3 *1 Can be set in the input or output bit-wise. PORT 6 *1 PORT 2 *1 PORT 4 *1 4-bit input/output PORT 5 *1 PORT 7 *1 Can be set in the input or output mode as a 4bit unit. Ports 4 and 5, 6 and 7, and 8 and 9 are paired and data input/output is possible as an 8-bit unit. Port 2, PTO0, PTO1, and PCL share the same pins. PORT 8 *1 PORT 9 *1 PORT12 *2 4-bit input/output PORT13 *2 (N-ch open-drain +6 V withstand voltage) PORT14 *2 ★ * 1. When VDD = 5 V, IOL = 15 mA. ★ 2. When VDD = 5 V, IOL = 10 mA. 18 Can be set to input or output mode as a 4-bit unit. Ports 12 and 13 are paired and data input/ output is possible as an 8-bit unit. On-chip pull-up resistor specifiable bit-wise by mask option. µPD75116H,75117H 5.2 CLOCK GENERATOR The clock generator operation is determined by the processor clock control register (PCC). This circuit can also change the instruction execution time. • 0.95 µs/1.91 µs/15.3 µs (4.19 MHz operation) Fig. 5-1 Clock Generator Block Diagram • Basic Interval Timer (BT) • Clock Output Circuit • Timer/Event Counter • Serial Interface X1 1/8 to 1/4096 System Clock Oscillation Circuit fXX or fX Frequency Divider 1/2 1/16 X2 Frequency Divider Selector Oscillation Stop 1/4 Φ • CPU • Clock Output Circuit PCC Internal Bus PCC0 PCC1 4 HALT * HALT F/F PCC2 S PCC3 STOP * R PCC2, PCC3 Clear Q Wait Release Signal from BT STOP F/F Q S RESET Signal (Internal Reset) R * Standby Release Signal from Interrupt Control Circuit Instruction execution Remarks 1. fXX = Crystal/ceramic oscillator frequency 2. fX = External clock frequency 3. Φ = CPU Clock 4. PCC : Processor clock control register 5. One Φ clock cycle (t CY) is one machine cycle. See "AC ★ CHARACTERISTICS" in 12. "ELECTRICAL SPECIFICATIONS" for tCY. 19 µPD75116H,75117H 5.3 CLOCK OUTPUT CIRCUIT The clock output circuit is a circuit which outputs a clock pulse from P22/PCL and is used to supply clock pulses to remote control outputs or peripheral LSI’s. • Clock output (PCL) : Φ , 524 kHz, 262 kHz (4.19 MHz operation) Fig. 5-2 Configuration of Clock Output Circuit From Clock Generator Φ Output Buffer fXX/2 3 Selector PCL/P22 fXX/2 4 PORT2.2 CLOM3 CLOM2 CLOM1 CLOM0 CLOM P22 Output Latch 4 Internal Bus 20 Bit 2 of PMGB Bit Specified in Port 2 Input/Output Mode µPD75116H,75117H 5.4 BASIC INTERVAL TIMER The basic interval timer includes the following functions. • It operates as an interval timer which generates reference time interrupts. • It can be applied as a watchdog timer which detects when a program is out of control. • Selects and counts wait times when the standby mode is released. • It reads count contents. Fig. 5-3 Basic Interval Timer Configuration From Clock Generator fXX/2 fXX/2 Clear 5 7 fXX/2 Set Basic Interval Timer (8-Bit Frequency Divider) MPX fXX/2 Clear 9 BT 12 BT Interrupt Request Flag IRQBT Vector Interrupt Request Signal 3 BTM3 SET1* BTM2 BTM1 BTM0 Wait Release Signal during Standby Release BTM 8 4 Internal Bus * SET1 indicates instruction execution. 5.5 TIMER/EVENT COUNTER The µPD75117H incorporates two internal timer/event counter channels. Timer/event counter channel 0 and channel 1 differ only in selectable count pulse (CP) and clock supply function to serial interface and are the same in other configurations and functions. • Operates as a programmable interval timer. • Outputs square waves in the desired frequency to the PTOn pin. • Operates as an event counter. • Use of TIn pin as an external interrupt input pin. • Divides the TIn pin input into N divisions and outputs it to the PTOn pin (frequency divider operation). • Supplies a serial shift clock to the serial interface circuit. (channel 0 only) • Count status read function. 21 22 Fig. 5-4 Timer/Event Counter Block Diagram (n = 0, 1) Internal Bus *1 SET1 8 8 8 TMn TMODn Modulo Register (8) TMn7 TMn6 TMn5 TMn4 TMn3 TMn2 TMn1 TMn0 TOFn 8 TIn Match TOUT F/F Comparator (8) 8 Input Buffer TOEn TO Enable Flag PORT2.n Bit 2 of PGMB TOn Port 2 P2n Input/ Output Output Latch Mode To Serial Interface (Channel 0 only) TO Selector P2n/PTOn Output Buffer Tn TIn From Clock Generator CP INTTn IRQTn Set Signal Clear TMn1 Timer Operation Start RESET SET1 : Instruction execution. TMn0 IRQTn Clear Signal µPD75116H,75117H * Edge Detector Count Register (8) MPX µPD75116H,75117H 5.6 SERIAL INTERFACE The serial interface has the following functions. • Clock 8-bit transmission/reception operation (simultaneous transmission/reception) • Clock 8-bit reception operation (SO output high impedance) • Half-duplex asynchronous transfer (software control) • LSB-first/MSB-first switchable These functions facilitate serial bus data communications with other computers such as µPD7500 series, 78K series, etc., or conjunction with a peripheral device. 23 24 Fig. 5-5 Serial Interface Block Diagram Internal Bus 8 8 8 SIO0 P03/SI SET1 * SIO7 SIO SIOM Shift Registor (8) SIOM7 SIOM6 SIOM5 SIOM4 SIOM3 SIOM2 SIOM1 SIOM0 P02/SO Serial Clock Counter (3) INTSIO IRQSIO Set Signal Overflow Clear IRQSIO Clear Signal Serial Start P01/SCK R ϕ S fxx/2 4 fxx/2 10 MPX TOF0 (from Timer Channel 0) * SET1 : instruction execution µPD75116H,75117H Q µPD75116H,75117H 5.7 PROGRAMMABLE THRESHOLD PORT (ANALOG INPUT PORT) The µPD75117H is provided with 4-bit analog input pins (PTH00 to PTH03) for which the threshold voltage can be changed. These pins have a configuration as shown in Fig. 5-6. 15.5 0.5 The threshold voltage (VREF) can be selected in 16 ways (VDD × ——— – VDD × ———) and analog signals can be 16 16 directly input. 7.5 This port can also be used as a digital signal input port by selecting VDD × ——— as VREF. 16 ★ Fig. 5-6 Programmable Threshold Port Block Diagram Input Buffer PTH00 + Programmable Threshold Port Input Latch (4) – + PTH01 – + PTH02 – – Operation Stopped PTH0 VDD Internal Bus + PTH03 PTHM7 1 2R PTHM6 R PTHM5 R MPX VREF PTHM4 8 PTHM3 PTHM2 1 2R 4 PTHM1 PTHM0 PTHM 25 µPD75116H,75117H 5.8 BIT SEQUENTIAL BUFFER ······ 16 BITS Bit manipulation of the bit sequential buffer is the bit manipulation special data memory. Since, in particular, the bit manipulation can easily be performed by changing sequentially address and bit specification, it is convenient when processing data comprising a large number of bits bit-wise. Fig. 5-7 Bit Sequential Buffer Format Address Bit FC3H 3 Symbol L Register L = F 2 1 FC2H 0 3 BSB3 2 1 FC1H 0 3 BSB2 L=CL=B 2 1 FC0H 0 3 BSB1 L=8L=7 2 L=4 L=3 INCS L 26 0 BSB0 DECS L Remarks 1 In pmem. @L addressing, the specified bit moves according to the L register. L=0 µPD75116H,75117H 6. INTERRUPT FUNCTION The µPD75117H has 7 interrupt sources. Multiple interrupts with priority is are also possible. Two test sources are also provided. The test sources are edge detection testable inputs. Table 6-1 Interrupt Sources Interrupt Source INTBT (standard time interval signal from basic interval timer) INT4 (both rising edge and falling edge detection) INT0 (rising edge and falling edge detection selection) INT1 INTSIO (serial data transfer end signal) Interrupt Order*1 Vector Interrupt Request Signal (Vector Table Address) 1 VRQ1 (0002H) 2 VRQ2 (0004H) Internal 3 VRQ3 (0006H) Internal/External Internal External External External INTT0 (match signal from timer/event counter# 0 or TI0 input edge detection) Internal/external 4 VRQ4 (0008H) INTT1 (match signal from timer/event counter# 1 or TI1 input edge detection) Internal/external 5 VRQ5 (000AH) INT2*2 (rising edge detection) External INT3*2 (rising edge detection) * Testable input signal (Set IRQ2 and IRQ3) 1. The interrupt order is the priority order when multiple interrupt requests are generated simultaneously. 2. INT2 and INT3 are of test sources . These are affected by interrupt enable flags in the same way as interrupt sources, but do not generate vector interrupts. The µPD75117H interrupt control circuit has the following functions: • Hardware control vector interrupt function that can control interrupt acceptance by interrupt enable flag (IE×××) and interrupt master enable flag (IME). • Arbitrary setting of interrupt start address. • Multiple interruption function by which priority can be specified using the interrupt priority selection register (IPS). • Interrupt request flag (IRQ×××) test function (interrupt generation confirmation by software possible). • Standby mode release (selection of interrupt that releases the standby mode by interrupt enable flag possible). 27 28 Fig. 6-1 Interrupt Control Circuit Block Diagram Internal Bus 2 2 IM1 IM0 INT BT INT4 /P00 INT0 /P10 INT1 /P11 INT2 /P12 INT3 /P13 Edge Detection Circuit Edge Detection Circuit Edge Detection Circuit Interrupt Enable Flag (IE XXX ) (IME) 2 IPS IST Decoder IRQBT IRQ4 IRQ0 IRQ1 INTSIO IRQSIO INTT0 IRQT0 INTT1 IRQT1 Edge Detection Circuit Edge Detection Circuit 4 9 Priority Control Circuit Vector Table Address Generator IRQ2 IRQ3 µPD75116H,75117H Interrupt Request Flag Standby Release Signal µPD75116H,75117H 7. STANDBY FUNCTION To reduce the power consumption during program wait, the µPD75117H has two standby modes (STOP mode and HALT mode). Table 7-1 Standby Mode Setting and Operation Status STOP Mode Operation Status Setting instruction HALT Mode STOP instruction HALT instruction Clock generator System clock oscillation stopped Only CPU clock Φ stopped Basic interval timer Operation stopped Operable (IRQBT set at reference time intervals) Serial interface Operation possible only when the external SCK input and TO0 output (when timer/event counter 0 is external TI0 input) are selected as a serial clock Operation possible if a clock other than Φ is specified as a serial clock Timer/event counter Operable only when TIn pin input specified as count clock Operation possible Clock output circuit Operation stopped Except CPU clock Φ, output possible. External interrupt Operation of INT0 to INT4 possible CPU Operation stopped Release signal Operation stopped Interrupt request signal from operable hardware enabled by interrupt enable flag, or RESET input 29 µPD75116H,75117H 8. RESET FUNCTION The reset operation timing is shown in Fig. 8-1. Fig. 8-1 Reset Operation by RESET Input Wait (31.3 ms/4.19 MHz) RESET Input Operating Mode or Standby Mode HALT Mode Internal Reset Operation The state of hardware after reset operation is as shown in Table 8-1. 30 Operating Mode µPD75116H,75117H Table 8-1 Status of Each Hardware after Resetting (1/2) Hardware RESET Input during Operation Low-order 6 bits of program memory address 0000H are set in PC13 to PC8 and the contents of address 0001H are set in PC7 to PC0. PC14*1 is set to 0. Low-order 6 bits of program memory address 0000H are set in PC13 to PC8 and the contents of address 0001H are set in PC7 to PC 0. PC14*1 is set to 0. Held Undefined Skip flag (SK0 to SK2) 0 0 Interrupt status flag (IST0, IST1) 0 0 Program counter (PC) Carry flag (CY) PSW RESET Input in Standby Mode Bank enable flag (MBE, RBE) Sets program memory Sets program memory address 000H bit 6 and bit 7 address 000H bit 6 and bit 7 to RBE and MBE, to RBE and MBE, respecrespectively. tively. Stack pointer (SP) Undefined Undefined Stack bank selection register (SBS) *1 Undefined Undefined Held *2 Undefined General register (X, A, H, L, D, E, B, C) Held Undefined Bank selection register (MBS, RBS) 0, 0 0, 0 Undefined Undefined Mode register (BTM) 0 0 Counter (Tn) 0 0 FFH FFH 0 0 TOEn, TOFn 0, 0 0, 0 Shift register (SIO) Held Undefined Mode register (SIOM) 0 0 Processor clock control register (PCC) 0 0 Clock output mode register (CLOM) 0 0 Data memory (RAM) Basic interval timer Timer/event counter (n = 0, 1) Counter (BT) Modulo register (TMODn) Mode register (TMn) Serial interface Clock generator, clock output circuit * 1. Compatible with the µPD75117H only. 2. Data of data memory addresses 0F8H to 0FDH becomes undefined by RESET input. 31 µPD75116H,75117H Table 8-1 Status of Each Hardware after Resetting (2/2) RESET Input in Standby Mode RESET Input during Operation IRQ1,IRQ2, IRQ4 Undefined Undefined Other than above 0 0 0 0 0 0 INT0, INT1 mode registers (IM0, IM1) 0, 0 0, 0 Output buffer OFF OFF Output latch Clear (0) Clear (0) 0 0 Undefined Undefined 0 0 0 0 Hardware ★ Interrupt request flag (IRQ×××) Interrupt function Interrupt enable flag (IE×××) Priority selection register (IPS) Digital port I/O mode register (PMGA, PMGB, PMGC) PTH00 to PTH03 input latch Analog port Mode register (PTHM) Bit sequential buffer (BSB0 to BSB3) 32 µPD75116H,75117H 9. INSTRUCTION SET (1) Operand identifier and description The operand is described in the operand field of each instruction in accordance with the description for the operand identifier of the instruction. (For details, refer to RA75X Assembler Package User’s Manual Language Volume (EEU-730).) When there are multiple elements in the description, one of the elements is selected. Upper case letters and symbols (+,–) are keywords and are described unchanged. Various register or flag symbols can be used as a label instead of mem, fmem, pmem, bit, etc. (For details, refer to µPD75117H User’s Manual (IEU-799).) However, there are restrictions on the labels for which fmem and pmem can be used. Identifier reg reg1 X, A, B, C, D, E, H, L X, B, C, D, E, H, L rp rp1 rp2 rp' rp'1 XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL' rpa HL, HL+, HL–, DE, DL rpa1 DE, DL n4 n8 4-bit immediate data or label 8-bit immediate data or label mem 8-bit immediate data or label* bit 2-bit immediate data or label fmem FB0H to FBFH, FF0H to FFFH immediate data or label pmem FC0H to FFFH immediate data or label addr * Description µPD75116H 0000H to 3F7FH immediate data or label µPD75117H 0000H to 3FFFH immediate data or label addr1 0000H to 5F7FH immediate data or lebel caddr 12-bit immediate data or label faddr 11-bit immediate data or label taddr 20H to 7FH immediate data (however, bit0 = 0) or label PORTn IE××× RBn MBn PORT 0 to PORT 9, PORT12 to PORT14 IEBT, IESIO, IET0, IET1, IE0 to IE4 RB0 to RB3 MB0, MB1, MB2, MB15 In the case of the 8-bit data processing, an even address only can be described for mem. 33 µPD75116H,75117H (2) Operation description legend A : A register; 4-bit accumulator B : B register 34 C D E H : : : : C register D register E register H register L X XA BC : : : : L register X register Register pair (XA); 8-bit accumulator Register pair (BC) DE HL XA' BC' : : : : Register pair (DE) Register pair (HL) Extension register pair (XA') Extension register pair (BC') DE' HL' PC SP : : : : Extension register pair (DE') Extension register pair (HL') Program counter Stack pointer CY PSW MBE RBE : : : : Carry flag; bit accumulator Program status word Memory bank enable flag Register bank enable flag PORTn IME IPS IE××× : : : : Portn (n = 0 to 9, 12 to 14) Interrupt master enable flag Interrupt priority selection register Interrupt enable flag RBS MBS PCC . : : : : Register bank selection register Memory bank selection register Processor clock control register Address, bit delimiter (××) ××H : Contents addressed by ×× : Hexadecimal data µPD75116H,75117H MB = MBE • MBS (MBS = 0, 1, 2, 15) *2 MB = 0 *3 MBE = 0 : MB = 0 (00H to 7FH) MB = 15 (80H to FFH) MBE = 0 : MB = MBS (MBS = 0, 1, 2, 15) MB = 15, fmem = FB0H to FBFH, FF0H to FFFH *5 MB = 15, pmem = FC0H to FFFH *6 addr = 0000H to 3F7FH (µPD75116H) 0000H to 3FFFH (µPD75117H) *7 • µPD75116H addr = (Current PC) –15 to (Current PC) –1, (Current PC) + 2 to (Current PC) + 16 • µPD75117H addr1 = (Current PC) –15 to (Current PC) –1, (Current PC) + 2 to (Current PC) + 16 *8 caddr = 0000H to 0FFFH (PC 13, 12 = 00B : µPD75116H) → *4 Data memory addressing → *1 → (3) Description of addressing area field symbols = 0000H to 0FFFH (PC14, 13, 12 = 000B : µPD75117H) = 1000H to 1FFFH (PC13, 12 = 01B : µPD75116H) = 1000H to 1FFFH (PC14, 13, 12 = 001B : µPD75117H) = 2000H to 2FFFH (PC14, 13, 12 = 010B : µPD75117H) = 3000H to 3F7FH (PC 13, 12 = 11B : µPD75116H) = 3000H to 3FFFH (PC14, 13, 12 = 011B : µPD75117H) = 4000H to 4FFFH (PC14, 13, 12 = 100B : µPD75117H) = 5000H to 5F7FH (PC14, 13, 12 = 101B : µPD75117H) *9 faddr = 0000H to 07FFH *10 taddr = 0020H to 007FH *11 addr1 = 0000H to 5F7FH ( : µPD75117H only) Remarks 1. 2. MB indicates the accessible memory bank. For *2, MB = 0 without regard to MBE and MBS. 3. 4. For *4 and *5, MB = 15 without regard to MBE and MBS. *6 to *10 indicate the addressable area. → = 2000H to 2FFFH (PC13, 12 = 10B : µPD75116H) Program memory addressing 35 µPD75116H,75117H (4) Explanation of machine cycle field S shows the number of machine cycles required when skip is performed by an instruction with skip. The value of S changes as follows: • No skip ....................................................................................................................................................................... S = 0 • When instruction to be skipped is 1-byte or 2-byte instruction ......................................................................... S = 1 • When instruction to be skipped is 3-byte instruction .......................................................................................... S = 2 (BR !addr, BRA !addr1*, CALL !addr, CALLA !addr1* instructions) * This instruction is valid for the µPD75117H only. Note One machine cycle is required to skip a GETI instruction. One machine cycle is equivalent to one cycle (= tCY) of the CPU clockΦ. Three times can be selected by PCC setting. 36 µPD75116H,75117H Instruction Group Mnemonic MOV Transfer XCH Operands Bytes Machine Cycles Operation Addressing Area Skip Condition A, #n4 1 1 A ← n4 reg1, #n4 2 2 reg1 ← n4 XA, #n8 2 2 XA ← n8 Stack A HL, #n8 2 2 HL ← n8 Stack B rp2, #n8 2 2 rp2 ← n8 A, @HL 1 1 A ← (HL) *1 A, @HL+ 1 2+S A ← (HL), then L ← L + 1 *1 L=0 A, @HL- 1 2+S A ← (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ← (rpa1) *2 XA, @HL 2 2 XA ← (HL) *1 @HL, A 1 1 (HL) ← A *1 @HL, XA 2 2 (HL) ← XA *1 A, mem 2 2 A ← (mem) *3 XA, mem 2 2 XA ← (mem) *3 mem, A 2 2 (mem) ← A *3 mem, XA 2 2 (mem) ← XA *3 A, reg 2 2 A ← reg XA, rp' 2 2 XA ← rp' reg1, A 2 2 reg1 ← A rp'1, XA 2 2 rp'1 ← XA A, @HL 1 1 A ↔ (HL) *1 A, @HL+ 1 2+S A ↔ (HL), then L ← L + 1 *1 L=0 A, @HL- 1 2+S A ↔ (HL), then L ← L – 1 *1 L = FH A, @rpa1 1 1 A ↔ (rpa1) *2 XA, @HL 2 2 XA ↔ (HL) *1 A, mem 2 2 A ↔ (mem) *3 XA, mem 2 2 XA ↔ (mem) *3 A,reg1 1 1 A ↔ reg1 XA, rp' 2 2 XA ↔ rp' XA, @PCDE 1 3 XA, @PCXA 1 3 XA, @BCDE* 1 3 XA ← (B2-0 + CDE)ROM *11 XA, @BCXA* 1 3 XA ← (B2-0 + CXA)ROM *11 Stack A XA ← (PC13-8 + DE)ROM Table reference MOVT XA ← (PC14-8 + DE)ROM XA ← (PC13-8 + XA)ROM XA ← (PC14-8 + XA)ROM * The 3 lower bits in the B register are valid only. Remarks Shading indicates a part compatible with the µPD75117H. 37 µPD75116H,75117H Instruction Group Mnemonic Operands CY, fmem.bit CY, pmem.@L Bit transfer MOV1 CY, @H+mem.bit fmem.bit, CY pmem.@L, CY @H+mem.bit, CY ADDS ADDC SUBS Operations SUBC AND OR Bytes Machine Cycles 2 2 2 2 2 2 Addressing Area 2 CY ← (fmem.bit) *4 2 CY ← (pmem7 – 2 + L3 – 2.bit(L1–0)) *5 2 CY ← (H + mem3 – 0.bit) *1 2 (fmem.bit) ← CY *4 2 (pmem7 – 2 + L3 – 2.bit(L1–0)) ← CY *5 2 (H + mem3 – 0.bit) ← CY *1 Skip Condition A, #n4 1 1+S A ← A + n4 XA, #n8 2 2+S XA ← XA + n8 A, @HL 1 1+S A ← A + (HL) XA, rp' 2 2+S XA ← XA + rp' carry rp'1, XA 2 2+S rp'1 ← rp'1 + XA carry A, @HL 1 1 A, CY ← A + (HL) + CY *1 carry carry carry *1 XA, rp' 2 2 XA, CY ← XA + rp' + CY rp'1, XA 2 2 rp'1, CY ← rp'1 + XA + CY A, @HL 1 1+S A ← A – (HL) XA, rp' 2 2+S XA ← XA – rp' borrow rp'1, XA 2 2+S rp'1, CY ← rp'1 – XA – CY borrow A, @HL 1 1 A, CY ← A – (HL) – CY XA, rp' 2 2 XA, CY ← XA – rp' – CY rp'1, XA 2 2 rp'1, CY ← rp'1 – XA – CY A, #n4 2 2 A ← A ∧ n4 A, @HL 1 1 A ← A ∧ (HL) XA, rp' 2 2 XA ← XA ∧ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∧ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA A, #n4 2 2 A ← A ∨ n4 A, @HL 1 1 A ← A ∨ (HL) XA, rp' 2 2 XA ← XA ∨ rp' rp'1, XA 2 2 rp'1 ← rp'1 ∨ XA XOR 38 Operation *1 *1 *1 *1 *1 borrow µPD75116H,75117H Instruction Group Mnemonic Operands Bytes Machine Cycles Operation Addressing Area Skip Condition A 1 1 CY ← A 0, A3 ← CY, An–1 ← An A 2 2 A←A reg 1 1+S reg ← reg + 1 reg = 0 rp1 1 1+S rp1 ← rp1 + 1 rp1 = 00H @HL 2 2+S (HL) ← (HL) + 1 *1 (HL) = 0 mem 2 2+S (mem) ← (mem) + 1 *3 (mem) = 0 reg 1 1+S reg ← reg – 1 reg = FH rp' 2 2+S rp' ←rp' – 1 rp' = FFH reg, #n4 2 2+S Skip if reg = n4 reg = n4 @HL, #n4 2 2+S Skip if (HL) = n4 *1 (HL) = n4 A, @HL 1 1+S Skip if A = (HL) *1 A = (HL) XA, @HL 2 2+S Skip if XA = (HL) *1 XA = (HL) A, reg 2 2+S Skip if A = reg A = reg XA, rp' 2 2+S Skip if XA = rp' XA = rp' SET1 CY 1 1 CY ← 1 Carry flag CLR1 manipulation SKT CY 1 1 CY ← 0 CY 1 1+S NOT1 CY 1 1 CY ← CY mem.bit 2 2 (mem.bit) ← 1 *3 fmem.bit 2 2 (fmem.bit) ← 1 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 1 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 1 *1 mem.bit 2 2 (mem.bit) ← 0 *3 fmem.bit 2 2 (fmem.bit) ← 0 *4 pmem.@L 2 2 (pmem7–2 + L3–2.bit (L1–0)) ← 0 *5 @H + mem.bit 2 2 (H + mem3–0.bit) ← 0 *1 mem.bit 2 2+S Skip if (mem.bit) = 1 *3 (mem.bit) = 1 fmem.bit 2 2+S Skip if (fmem.bit) = 1 *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1 *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 *1 (@H + mem.bit) = 1 mem.bit 2 2+S Skip if (mem.bit) = 0 *3 (mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 0 *4 (fmem.bit) = 0 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 0 *5 (pmem.@L) = 0 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 0 *1 (@H + mem.bit) = 0 fmem.bit 2 2+S Skip if (fmem.bit) = 1 and clear *4 (fmem.bit) = 1 pmem.@L 2 2+S Skip if (pmem7–2 + L 3–2.bit (L1–0)) = 1 and clear *5 (pmem.@L) = 1 @H + mem.bit 2 2+S Skip if (H + mem3–0.bit) = 1 and clear *1 (@H + mem.bit) = 1 Accumulator RORC manipulation NOT INCS Increment /decrement DECS Comparison SKE SET1 CLR1 Memory bit manipulation SKT CY = 1 Skip if CY = 1 SKF SKTCLR 39 µPD75116H,75117H Instruction Group Mnemonic Operands CY, fmem.bit AND1 CY, pmem.@L CY, @H + mem.bit CY, fmem.bit Memory bit manipulation OR1 CY, pmem.@L CY, @H + mem.bit CY, fmem.bit XOR1 CY, pmem.@L CY, @H + mem.bit addr *1 BR Bytes Machine Cycles 2 2 2 2 2 2 2 2 2 — Operation Skip Addressing Condition Area 2 CY ← CY ∧ (fmem.bit) *4 2 CY ← CY ∧ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∧ (H + mem3–0.bit) *1 2 CY ← CY ∨ (fmem.bit) *4 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∨ (H + mem3–0.bit) *1 2 CY ← CY ∨ (fmem.bit) *4 2 CY ← CY ∨ (pmem7–2 + L3–2.bit (L1–0)) *5 2 CY ← CY ∨ (H + mem3–0.bit) *1 — PC13–0 ← addr (The assembler selects the optimum instruction from among the BR !addr, BRCB !caddr, and BR $addr instructions.) *6 PC14–0 ← addr1 (The assembler selects the optimum instruction from among the BR !addr, BRA !addr1, BRCB !caddr, and BR $addr1 instructions.) *11 addr1 — — !addr 3 3 $addr 1 2 PC13-0 ← addr $addr1 1 2 PC14-0 ← addr1 PCDE 2 3 2 3 PC13-0 ← addr Branch *6 PC14-0, PC13-0 ← addr *7 PC13-0 ← PC 13-8 + DE PCXA PC14-0 ← PC 14-8 + DE PC13-0 ← PC 13-8 + XA PC14-0 ← PC 14-8 + XA BCDE *2 2 3 PC14-0 ← B 2-0 + CDE *11 BCXA *2 2 3 PC14-0 ← B 2-0 + CXA *11 BRA !addr1 3 3 PC14-0 ← !addr1 *11 BRCB !caddr 2 2 PC13-0 ← PC 13,12 + caddr 11-0 PC14-0 ← PC 14,13,12 + caddr11-0 *8 (SP – 4) (SP – 1) (SP – 2) ← PC11-0 3 Subroutine stack control (SP – 3) ← MBE, RBE, PC13, PC12 PC13-0 ← addr, SP ← SP–4 CALL !addr 3 (SP – 2) ← ×, ×, MBE, RBE 4 (SP – 6) (SP – 3) (SP – 4) ← PC11-0 (SP – 5) ← 0, PC14, PC13, PC12 PC14 ← 0, PC13-0 ← addr, SP ← SP–6 * 1. µPD75116H only. 2. The 3 lower bits in the B register are valid only. Remarks 40 Shading indicates a part compatible with the µPD75117H. *6 µPD75116H,75117H Instruction Group Mnemonic Operands Bytes Machine Cycles Operation Addressing Skip Condition Area (SP – 2) ← ×, ×, MBE, RBE CALLA !addr1 3 3 (SP – 6) (SP – 3) (SP – 4) ← PC11-0 (SP – 5) ← 0, PC14, PC13, PC12 *11 PC14–0 ← addr1, SP ← SP–6 2 CALLF !faddr 2 (SP – 4) (SP – 1) (SP – 2) ← PC11–0 (SP – 3) ← MBE, RBE, PC13, PC12 PC13–0 ← 000 + faddr, SP ← SP – 4 (SP – 2) ← ×, ×, MBE, RBE 3 *9 (SP – 6) (SP – 3) (SP – 4) ← PC11–0 (SP – 5) ← 0, PC14, PC13, PC12 PC14–0 ← 0000 + faddr, SP ← SP – 6 MBE, RBE, PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4 1 RET 3 Subroutine stack control PC11–0 ← (SP) (SP + 3) (SP + 2) ×, PC14, PC13, PC12 ← (SP + 1) ×, ×, MBE, RBE ← (SP + 4) SP ← SP +6 MBE, RBE, PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) SP ← SP + 4, then skip unconditionally RETS 1 3+S PC11–0 ← (SP) (SP + 3) (SP + 2) ×, PC14, PC13, PC12 ← (SP + 1) ×, ×, MBE, RBE ← (SP + 4) SP ← SP +6 then skip unconditionally Unconditional PC13, PC12 ← (SP + 1) PC11–0 ← (SP) (SP + 3) (SP + 2) PSW ← (SP + 4) (SP + 5), SP ← SP +6 1 3 PC11–0 ← (SP) (SP + 3) (SP + 2) ×, PC14, PC13, PC12 ← (SP + 1) PSW ← (SP + 4) (SP + 5), SP ← SP +6 rp 1 1 (SP – 1) (SP – 2) ← rp, SP ← SP – 2 BS 2 2 (SP – 1) ← MBS, (SP – 2) ← RBS, SP ← SP – 2 rp 1 1 rp ← (SP + 1) (SP), SP ← SP + 2 BS 2 2 MBS ← (SP + 1), RBS ← (SP), SP ← SP + 2 2 2 IME (IPS.3) ← 1 2 2 IE××× ← 1 2 2 IME (IPS.3) ← 0 2 2 IE××× ← 0 RETI PUSH POP EI IE××× Interrupt control DI IE××× Remarks Shading indicates a part compatible with the µPD75117H. 41 µPD75116H,75117H Instruction Group Mnemonic Bytes Machine Cycles Operation A, PORTn 2 2 A← PORTn XA, PORTn 2 2 XA ← PORTn + 1, PORTn (n = 4, 6, 8, 12) PORTn, A 2 2 PORTn ← A PORTn, XA 2 2 PORTn + 1, PORTn ← XA (n = 4, 6, 8, 12) HALT 2 2 Set HALT Mode (PCC.2 ← 1) STOP 2 2 Set STOP Mode (PCC.3 ← 1) NOP 1 1 No Operation RBn 2 2 RBS ← n MBn 2 2 MBS ← n (n = 0, 1, 2, 15) IN *1 Input/output *1 OUT CPU control Operands SELL Addressing Skip Condition Area (n = 0 to 9, 12 to 14) (n = 2 to 9, 12 to 14) (n = 0 to 3) • TBR Instruction PC13–0 ← (taddr)5–0 ← (taddr + 1) PC14← 0 -----------------------------------------------------------------------• TCALL Instruction 3 1 Special *2 GETI taddr (SP – 5) (SP – 6) (SP – 3)(SP – 4) ← PC14–0 (SP – 2) ← (×, ×, MBE, RBE) PC13–0 ← (taddr)5–0 ← (taddr + 1) SP ← SP – 6 PC14← 0 -----------------------------------------------------------------------• Other than TBR and TCALL Instruction Execution of an instruction addressed 3 at (taddr) and (taddr + 1) 4 • TBR Instruction PC13–0 ← (taddr)5–0 ← (taddr + 1) PC14← 0 -----------------------------------------------------------------------• TCALL Instruction (SP – 5) (SP – 6) (SP – 3)(SP – 4) ← ×, PC 14–0 (SP – 2) ← ×, ×, MBE, RBE 4 PC13–0 ← (taddr)5–0 ← (taddr + 1) SP ← SP – 6, PC 14← 0 -----------------------------------------------------------------------• Other than TBR and TCALL Instruction Execution of an instruction addressed 3 at (taddr) and (taddr + 1) -----------------------*10 -----------------------Conforms to referenced instruction. 3 1 * *10 ----------------------Conforms to referenced instruction. 1. When executing the IN/OUT instruction, <MBE = 0> or <MBE = 1, MBS = 15> must be set. 2. The TBR or TCALL instruction is a GETI instruction table definition assembler pseudo-instruction. Remarks 42 ------------------------ Shading indicates a part compatible with the µPD75117H. Compression IDC MSK Modem Extension MPX Transmitter/ Receiver Prescaler Speaker VCO Speaker Amp PLL TCXO MPX 10. APPLICATION EXAMPLE Amp 10.1 CORDLESS TELEPHONE (SUBSET) Power Amp Prescaler LED Display µ PD7511H VCO PLL Key Matrix SIO Radio Wave Detection LCD Controller/ Driver LED Display µ PD7228 Console Extra-Area Detection ID ROM µ PD6252 Detection 2SC4226 3SK177 Amp 2SC2757 2SC4182 Legend 43 IDC : Immediate Deviation Controller, ID ROM : ID (Identification) Code ROM, LCD : Liquid Crystal Display LED : Light Emitting Diode, MPX : Multiplexer MSK : Minimum Shift Keying PLL : Phase Locked Loop, SIO : Serial Data Input/Output TCXO : Temperature Compensation Crystal Oscillator VCO : Voltage Control Oscillator µPD75116H,75117H Filter Mixer µPD75116H,75117H 10.2 DISPLAY PAGER µ PD75117H Filter INT RAM Code ROM Switch Piezoelectric Buzzer TO High-Current Output LED Display Comparator Input Battery Check SIO LCD Controller/Driver µ PD7228/7229 44 LCD Display µPD75116H,75117H 11. MASK OPTION SELECTION The µPD75117H has the following mask option. Pin Function P12 to P14 Mask Option • Pull-up resistor (can be specified bit-wise.) • No pull-up resistor (can be specified bit-wise.) 45 µPD75116H,75117H ★ 12. ELECTRICAL SPECIFICATIONS ABSOLUTE MAXIMUM RATINGS (Ta = 25 °C) PARAMETER Supply voltage SYMBOL TEST CONDITIONS RATING UNIT –0.3 to +7.0 V –0.3 to VDD +0.3 V –0.3 to VDD +0.3 V –0.3 to +7.3 V –0.3 to VDD +0.3 V One pin –15 mA All pins –30 mA Peak value 30 mA Effective value 15 mA 100 mA 60 mA 100 mA 60 mA VDD VI1 Except ports 12, 13 and 14 Input voltage Internal pull-up resistor VI2*1 Ports 12 to 14 Open–drain Output voltage VO Output current high IOH One pin Peak value Output current low IOL*2 Total of ports 0, 2, 12 to 14 Effective value Peak value Total of ports 3 to 9 Effective value * Operating temperature Topt –40 to +60 °C Storage temperature Tstg –65 to +150 °C 1. When a voltage exceeding 6V is applied to ports 12, 13 and 14, the power supply impedance (pull-up resistor) should be 50KΩ or more. 2. Effective value should be calculated: [Effective value] = [Peak value] × √duty Note Product quality may suffer if the absolute maximum rating is exceeded for even a single parameter or even momentarily. The absolute maximum ratings are rated values at which the product is on the verge of suffering physical damage, and therefore the product must be used under conditions which ensure that the absolute maximum ratings are not exceeded. OPERATING VOLTAGE RANGE PARAMETER 46 TEST CONDITIONS MIN. MAX. UNIT CPU – 40 + 60 °C Programmable threshold port (comparator input) – 10 + 60 °C Other hardware – 40 + 60 °C µPD75116H,75117H CAPACITANCE (Ta = 25 °C, VDD = 0 V) PARAMETER SYMBOL TEST CONDITIONS MIN. TYP. MAX. UNIT 15 pF 15 pF 15 pF MAX. UNIT 5.0 *4 MHz 4 ms 5.0 *4 MHz 10 ms 30 ms 2.0 5.0 *4 MHz 100 250 ns CIN Input capacitance COUT Output capacitance f = 1 MHz Unmeasured pins returned to 0 V Input/output capacitance CIO OSCILLATION CIRCUIT CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 1.8 to 5.5 V) RESONATOR RECOMMENDED CONSTANT X1 *1 *2 Oscillator frequency (fXX) X2 Ceramic resonator C1 *3 Oscillation stabilization time C2 X1 *1 Crystal resonator *5 X1 Oscillation *3 stabilization time C2 External clock 2.0 VDD = 4.5 to 5.5 V 4.19 VDD = 2.7 to 5.5 V X1 input high-/low-level width (tXH, tXL) µPD74HCU04 * TYP. After VDD reaches MIN. of oscillation voltage range X1 input *2 frequency (fX) X2 MIN. 2.0 *2 Oscillator frequency (fXX) X2 C1 TEST CONDITIONS PARAMETER 1. When using in VDD < 2.7 V, the X2 pin oscillation waveform duty should be set within the range between 40% and 60%. Duty = tXXL (or tXXH) tXXL + tXXH × 100 VDD X2 Oscillation Waveform 1 VDD 2 VSS tXXL tXXH 2. Oscillator frequency and X1 input frequency indicate oscillation circuit characteristics only. See AC CHARACTERISTICS for instruction execution time. 3. The oscillation stabilization time is the time required for oscillation to stabilize after VDD reaches MIN. of oscillation voltage range or the STOP mode is released. 4. When the oscillator frequency is 4.19 MHz < fXX ≤ 5.0 MHz, PCC = 0011 should not be selected as the instruction execution time. If PCC = 0011 is selected, one machine cycle is less than 0.95 µs and the rated MIN. value of 0.95 µs is not observed. 5. The external clock cannot be used in VDD < 2.7 V. 47 µPD75116H,75117H Note When the clock oscillator is used, the following should be noted concerning wiring in the area in the figure enclosed by a dotted line to prevent the influence of wiring capacitance, etc. • The wiring should be kept as short as possible. • No other signal lines should be crossed. • Keep away from lines carrying a high fluctuating current. • The oscillator capacitor grounding point should always be at the same potential as VSS. Do not connect to a ground pattern carrying a high current. • A signal should be not taken from the oscillator. RECOMMENDED OSCILLATION CIRCUIT CONSTANT RECOMMENDED CERAMIC RESONATOR (Ta = –40 to +60 °C) MANUFACTURER PRODUCT NAME FREQUENCY (MHz) EXTERNAL CAPACITANCE (pF) C1 C2 47 47 33 33 Iincorporated Iincorporated 33 33 Iincorporated Iincorporated 33 33 Iincorporated Iincorporated OSCILLATION VOLTAGE RANGE [V] MIN. MAX. 1.8 5.5 KBR–2.0MS PBRC 2.00A 2.00 KBR–4.0MSA PBRC 4.00A KBR–4.0MKS 4.00 KBR–4.0MWS Kyocera KBR–4.19MSA PBRC 4.19A KBR–4.19MKS 4.19 KBR–4.19MWS KBR–5.0MSA PBRC 5.00A KBR–5.0MKS KBR–5.0MWS 48 5.00 µPD75116H,75117H DC CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 1.8 to 5.5 V) PARAMETER SYMBOL VIH1 VIH2 Input voltage high VIH3 VIH4 VIL1 Input voltage low VIL2 VIL3 TEST CONDITIONS Other than below VOH IOH = –100 µA Ports 0, 2, 4 to 8 Output voltage low VOL Ports 3, 9 Ports 12 to 14 ILIH1 Input leakage current high ILIH2 ILIH3 ILIL1 VDD = 1.8 to 2.7 V 0.8 V DD VDD V 0.8 V DD VDD V VDD = 2.7 to 5.5 V 0.7 V DD VDD V VDD = 1.8 to 2.7 V 0.8 V DD VDD V VDD = 2.7 to 5.5 V 0.7 V DD 6 V VDD = 1.8 to 5.5 V 0.8 V DD 6 V VDD = 2.7 to 5.5 V VDD – 0.5 VDD V VDD = 1.8 to 2.7 V VDD – 0.3 VDD V VDD = 2.7 to 5.5 V 0 0.3 VDD V VDD = 1.8 to 5.5 V 0 0.2 VDD V 0 0.2 VDD V 0 0.4 V VDD = 1.8 to 2.7 V 0 0.25 V VDD = 4.5 to 5.5 V VDD – 1.0 V VDD = 2.7 to 5.5 V VDD – 0.8 V VDD = 2.7 to 5.5 V VDD – 0.5 V VDD = 1.8 to 2.7 V VDD – 0.2 V VDD = 2.7 to 5.5 V IOH = –1 mA Output voltage high V Ports 0,1,TI0, 1, RESET X1, X2 VIN = VDD VIV = 6 V UNIT VDD N-ch open– drain Other than below MAX. 0.7 V DD Internal pull-up resistor X1, X2 TYP. VDD = 2.7 to 5.5 V Ports 0,1,TI0, 1, RESET Ports 12 to 14 MIN. 2.0 V VDD = 2.7 to 5.5 V 0.4 V IOL = 400 µA VDD = 2.7 to 5.5 V 0.5 V IOL = 100 µA VDD = 1.8 to 5.5 V 0.3 V IOL = 15 mA VDD = 4.5 to 5.5 V 0.35 2.0 V IOL = 10 mA VDD = 2.7 to 5.5 V 0.3 1.0 V IOL = 1.6 mA VDD = 2.7 to 5.5 V 0.4 V IOL = 400 µA VDD = 2.7 to 5.5 V 0.5 V IOL = 100 µA VDD = 1.8 to 5.5 V 0.3 V IOL = 10 mA VDD = 4.5 to 5.5 V 2.0 V IOL = 1.6 mA VDD = 2.7 to 5.5 V 0.4 V IOL = 400 µA VDD = 2.7 to 5.5 V 0.5 V IOL = 100 µA VDD = 1.8 to 5.5 V 0.3 V Other than below 3 µA X1, X2 20 µA Ports 12 to 14 (open-drain) 15 µA Other than below –3 µA –20 µA IOL = 15 mA VDD = 4.5 to 5.5 V IOL = 1.6 mA 0.35 0.35 Input leakage current low ILIL2 Output leakage current high VOUT = VDD Other than below 3 µA ILOH2 VOUT = 6 V Ports 12 to 14 (open-drain) 15 µA Output leakage current low ILOL VOUT = 0 V –3 µA Internal pull-up resistor (mask option) RL Ports 12 to 14 60 kΩ ILOH1 VIN = 0 V X1, X2 10 35 49 µPD75116H,75117H DC CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 1.8 to 5.5 V) PARAMETER SYMBOL TEST CONDITIONS IDD1 4.19 MHz Crystal oscillation C1 = C2 = 22 pF Supply current*1 IDD3 TYP. MAX. UNIT VDD = 5 V ±10 % *2 3.0 9.0 mA VDD = 3 V ±10 % *2 1.6 4.8 mA VDD = 2 V ±10 % *3 0.6 1.8 mA VDD = 5 V ±10 % 0.7 2.1 mA VDD = 3 V ±10 % 280 860 µA VDD = 2 V ±10 % 120 360 µA VDD = 5 V ±10 % 0.2 50 µA VDD = 3 V ±10 % 0.1 20 µA VDD = 2 V ±10 % 0.05 10 µA HALT mode IDD2 STOP mode MIN. * 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. When the processor clock control register (PCC) is set to 0011 for operation in the high-speed mode. 3. When the PCC register is set to 0010 for operation in the low-speed mode. COMPARATOR CHARACTERISTICS (Ta = –10 to +60 °C*, VDD = 1.8 to 5.5 V) PARAMETER SYMBOL Compare accuracy VACOMP Threshold voltage VTH PTH input voltage VIPTH Comparator circuit current consumption * 50 TEST CONDITIONS VDD = 5.0 V PTHM7 set to "1" VDD = 3.0 V VDD = 2.0 V MIN. TYP. MAX. UNIT ±100 mV 0 VDD V 0 VDD V 0.7 0.3 0.1 mA mA mA The comparator cannot operate in the range of Ta = –40 to –10 °C. It must be used within the range of Ta = –10 to +60 °C. µPD75116H,75117H AC CHARACTERISTICS (Ta = –40 to +60 °C, VDD = 1.8 to 5.5 V) PARAMETER SYMBOL CPU clock cycle time* (Minimum instruction execution time = 1 machine cycle) tCY TI0, TI1 input frequency fTI TI0, TI1 input high/ low-level width TEST CONDITIONS MIN. VDD = 2.7 to 5.5 V VDD = 2.7 to 5.5 V tTIH, TYP. MAX. UNIT 0.95 16 µs 1.91 16 µs 0 1 MHz 0 275 kHz 0.48 µs 1.8 µs Input 0.8 µs Output 0.95 µs Input 3.2 µs Output 3.8 µs Input 0.4 µs tKCY/2 – 50 ns 1.6 µs tKCY/2 – 150 ns VDD = 2.7 to 5.5 V tTIL V DD = 4.5 to 5.5 V SCK cycle time tKCY VDD = 4.5 to 5.5 V SCK high/low-level width tKH, Output tKL Input Output SI setup time (to SCK↑) tSIK 100 ns SI hold time (from SCK↑) tKSI 400 ns SO output delay time from SCK↓ tKSO INT0 to INT4 high/low-level width tINTH, tINTL 5 µs RESET low-level width tRSL 5 µs VDD = 4.5 to 5.5 V 0 300 ns 0 1000 ns 51 µPD75116H,75117H * The CPU clock (Φ) cycle time is determined by the oscillator frequency of the connected resonator and the setting of the processor clock control tCY vs. VDD 100 register (PCC). The graph on the right shows the characteristic for cycle time tCY supply current VDD during system clock operation. Cycle Time tCY [ µ s] 10 Operating Guarantee Range 1.0 0.1 0 1 2 3 4 5 Supply Voltage VDD [V] AC Timing Test Point (Except ports 0, 1, TI0, TI1, X1, X2, RESET) (1) VDD = 2.7 to 5.5 V 0.7 VDD Test Points 0.3 VDD (2) 0.3 VDD VDD = 1.8 to 2.7 V 0.8 VDD 0.2 VDD 52 0.7 VDD Test Points 0.8 VDD 0.2 VDD 6 7 µPD75116H,75117H Clock Timing (1) VDD = 2.7 to 5.5 V 1/fX tXL tXH VDD – 0.5 V 0.4 V X1 Input (2) VDD = 1.8 to 2.7 V 1/fX tXL tXH VDD – 0.3 V 0.25 V X1 Input TI0,TI1 Input Timing 1/fTI tTIL TI0, TI1 tTIH 0.8 VDD 0.2 VDD 53 µPD75116H,75117H Serial Transfer Timing tKCY tKH tKL 0.8 VDD 0.2 VDD SCK tSIK tKSI 0.8 VDD Input Data SI 0.2 VDD tKSO SO Output Data Interrupt Input Timing tINTL tINTH 0.8 VDD INT0–INT4 0.2 VDD RESET Input Timing tRSL RESET 54 0.2 VDD µPD75116H,75117H DATA MEMORY STOP MODE LOW SUPPLY VOLTAGE DATA RETENTION CHARACTERISTICS (Ta = –40 to +60 °C) PARAMETER * SYMBOL Data retention supply voltage VDDDR Data retention supply current*1 IDDDR Release signal set time tSREL Oscillation stabilization wait time*2 tWAIT TEST CONDITIONS MIN. TYP. 1.8 VDDDR = 2.0 V 0.05 MAX. UNIT 5.5 V 10 µA µs 0 Release by RESET Release by interrupt request 217/fXX ms *3 ms 1. Excluding current flowing in the internal pull-up resistors and comparator circuit. 2. The oscillation stabilization wait time is the time during which CPU operation is stopped to prevent unstable operation when oscillation is started. 3. Depends on the basic interval timer mode register (BTM) setting (see table below). BTM3 BTM2 BTM1 BTM0 WAIT TIME (Figures in parentheses are for operation at fXX = 4.19 MHz) — 0 0 0 220/f XX (approx. 250 ms) — 0 1 1 217/fXX (approx. 31.3 ms) — 1 0 1 215/fXX (approx. 7.82 ms) — 1 1 1 213/fXX (approx. 1.95 ms) Data Retention Timing (STOP mode release by RESET) Internal Reset Operation HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution RESET tWAIT 55 µPD75116H,75117H Data Retention Timing (Standby release signal: STOP mode release by interrupt signal) HALT Mode STOP Mode Operating Mode Data Retention Mode VDD VDDDR tSREL STOP Instruction Execution Standby Release Signal (Interrupt Request) tWAIT 56 µPD75116H,75117H 13. PACKAGE INFORMATION 64-PIN PLASTIC QFP ( 14) 64 PIN PLASTIC QFP ( 14) A B 48 49 33 32 F Q 5°±5° S C D detail of lead end 64 1 G 17 16 H I M J M P K N L P64GC-80-AB8-3 NOTE Each lead centerline is located within 0.15 mm (0.006 inch) of its true position (T.P.) at maximum material condition. ITEM MILLIMETERS INCHES A 17.6 ± 0.4 0.693 ± 0.016 B 14.0 ± 0.2 0.551 +0.009 –0.008 C 14.0 ± 0.2 0.551 +0.009 –0.008 D 17.6 ± 0.4 0.693 ± 0.016 F 1.0 0.039 G 1.0 0.039 H 0.35 ± 0.10 0.014 +0.004 –0.005 I 0.15 0.006 J 0.8 (T.P.) 0.031 (T.P.) K 1.8 ± 0.2 0.071 ± 0.008 L 0.8 ± 0.2 0.031 +0.009 –0.008 M 0.15 +0.10 –0.05 0.006 +0.004 –0.003 N 0.10 0.004 P 2.55 0.100 Q 0.1 ± 0.1 0.004 ± 0.004 S 2.85 MAX. 0.112 MAX. 57 µPD75116H,75117H ★ 64-PIN PLASTIC QFP ( 12) 64 PIN PLASTIC QFP ( 12) A B 48 49 33 32 Q 5°±5° D C S detail of lead end F 64 17 16 1 H I M J P G M K N L P64GK-65-8A8 NOTE Each lead centerline is located within 0.13 mm (0.005 inch) of its true position (T.P.) at maximum material condition. 58 ITEM MILLIMETERS INCHES A 14.8 ± 0.4 0.583 ± 0.016 B 12.0 ± 0.2 0.472+0.009 –0.008 C 12.0 ± 0.2 0.472+0.009 –0.008 D 14.8 ± 0.4 0.583 ± 0.016 F 1.125 0.044 G 1.125 0.044 H 0.30 ± 0.10 0.012+0.004 –0.005 I 0.13 0.005 J 0.65 (T.P.) 0.026 (T.P.) K 1.4 ± 0.2 0.055 ± 0.008 L 0.6 ± 0.2 0.024+0.008 –0.009 M 0.15+0.10 –0.05 0.006+0.004 –0.003 N 0.10 0.004 P 1.4 0.055 Q 0.1 ± 0.1 0.004 ± 0.004 S 1.7 MAX. 0.067 MAX. µPD75116H,75117H ★ 14. RECOMMENDED SOLDERING CONDITIONS The µPD75117H should be soldered and mounted under the conditions recommended in the table below. For details of recommended conditions, refer to the information document "Semiconductor Device Mount Technology Manual" (IEI-1207). For soldering methods and conditions other than those recommended below, contact our sales personnel. Table 14-1 Surface Mount Type Soldering Conditions (1) µ PD75117HGC: 64-Pin Plastic QFP ( 14 mm) Soldering Method Recommended Condition Symbol Package peak temperature : 230 °C, Duration : 30 sec. max. (at 210 °C or avove), Number of times : twice <Points to note> Flux washing by the water after the first reflow should be avoided. IR30-00-2 VPS Package peak temperature : 215 °C, Duration : 40 sec. max. (at 200 °C or above), Number of times : twice <Points to note> Flux washing by the water after the first reflow should be avoided. VP15-00-2 Wave soldering Solder bath temperature : 260 °C max., Duration : 10 sec. max., Number of times : once, Preheating temperature : 120 °C max. (package surface temperature) WX60-00-1 Pin part heating Pin part temperature : 300 °C max., Duration : 3 sec. max. (per device side) Infrared reflow (2) — µ PD75117GK: 64-Pin Plastic QFP ( 12 mm) Soldering Method * Soldering Conditions Soldering Conditions Recommended Condition Symbol Infrared reflow Package peak temperature : 230 °C, Duration : 30 sec. max. (at 210 °C or avove), Number of times : twice, Time limit: 7 days* (thereafter 10 hours prebaking at 125 ˚C required) <Points to note> Flux washing by the water after the first reflow should be avoided. IR35-107-2 VPS Package peak temperature : 215 °C, Duration : 40 sec. max. (at 200 °C or above), Number of times : twice, Time limit: 7 days* (thereafter 10 hours prebaking at 125 ˚C required) <Points to note> Flux washing by the water after the first reflow should be avoided. VP15-107-2 Pin part heating Pin part temperature : 300 °C max., Duration : 3 sec. max. (per device side) — For the storage period after dry-pack decupsulation storage conditions are max. 25 ˚C, 65 % RH. Note Use of more than one soldering method should be avoided (except in the case of pin part heating). 59 µPD75116H,75117H ★ APPENDIX A. FUNCTIONAL DIFFERENCES AMONG µPD751×× SERIES PRODUCTS Product Name Item ROM (byte) RAM (× 4 bits) µPD75104/106/108/112/116 µPD75104A/108A µPD75108F/112F/116F 4K/6K/8K/12K/16K (Mask ROM) 4K/8K (Mask ROM) 8K/12K/16K (Mask ROM) 320/320/512/512/512 320/512 Instruction set 75X High-End Total 58 CMOS input CMOS input/output 10 10 (Pull-up resistor mask option : 4) 32 (LED direct drive capability *2) I/O N-ch open-drain port input/output 512 10 32 (Pull-up resistor mask option : 24, 32 (LED direct drive capability *2) LED direct drive capability) 12 (LED direct drive capability *2) +12 V Withstand voltage Pull-up resistor +10 V Can be incorporated by mask option 4 (4-bit precision) Analog input Power-on reset circuit On-chip (Mask option) None Power-on flag Operating voltage Operating temperature range Minimum instruction execution time Package * 60 2.7 to 6.0 V 2.7 to 5.0 V (Ta = –40 to +50 °C) 2.8 to 5.0 V –40 to +85 °C –40 to +60 °C 0.95 µs (operating at 4.5 to 6.0 V) 3.8 µs (operating at 2.7 V) 0.95 µs (operating at 4.5 to 5.0 V) 1.91 µs (operating at 2.7V) • 64-pin plastic shrink DIP (750 mil) • 64-pin plastic QFP (14 × 20 mm) • 64-pin plastic QFP ( 14 mm) (Resin thick 2.55 mm) • 64-pin plastic QFP ( 14 mm) (Resin thick 1.5 mm) • 64-pin plastic QFP (14 × 20 mm) 1. 75X High-End can also be used by means of the 16K-byte mode/24K-byte mode switching function. 2. For details, refer to the electrical specifications in each data sheet. µPD75116H,75117H µPD75116H/117H 16K/24K (Mask ROM) µPD75P108B µPD75P116 8K (One-time PROM, EPROM) 8K (One-time PROM) µPD75P117H 24K (One-time PROM) 768 512 768 75X High-End/Extended High-End 75X High-End 75X Extended High-End*1 58 10 32 (LED direct drive capability *2) 12 (LED direct drive capability *2) +12 V +6 V Can be incorporated by mask option +6 V None 4 (4-bit precision) None 1.8 to 5.5 V –40 to +60 °C 0.95 µs (operating at 2.7 V) 1.91 µs (operating at 1.8 V) • 64-pin plastic QFP ( 12 mm) • 64-pin plastic QFP ( 14 mm) (Resin thick 2.55 mm) 5 V ±10 % 2.7 to 6.0 V –40 to +85 °C 1.8 to 5.5 V –40 to +60 °C 0.95 µs (operating at 4.5 to 6.0 V) 3.8 µs (operating at 2.7 V) 0.95 µs (operating at 4.75 to 5.5 V) 0.95 µs (operating at 2.7 V) 1.91 µs (operating at 1.8 V) • 64-pin plastic shrink DIP (750 mil) • 64-pin ceramic shrink DIP (750 mil) • 64-pin plastic QFP (14 × 20 mm) • 64-pin plastic shrink DIP (750 mil) • 64-pin plastic QFP (14 × 20 mm) • 64-pin plastic QFP ( 12 mm) • 64-pin plastic QFP ( 14 mm) (Resin thick 2.55 mm) 61 µPD75116H,75117H APPENDIX B. DEVELOPMENT TOOLS The following development tools are available for system development using the µPD75116H/75117H. IE-75000-R*1 IE-75001-R 75X series in-circuit emulator IE-75000-R-EM*2 Emulation board for the IE-75000-R or IE-75001-R EP-75108AGC-R Emulation probe for the µPD75116HGC/75117HGC. A 64-pin conversion socket (EV9200G-64) is also provided. EV-9200G-64 Hardware EP-75117GK-R EV-9500G-64 Emulation probe for the µPD75116HGK/75117HGK. A 64-pin conversion socket (EV9500G-64) is also provided. PG-1500 PROM programmer PA-75P117GC PROM programmer adapter for the µPD75P117HGC, connected to the PG-1500. PA-75P117GK PROM programmer adapter for the µPD75P117HGK, connected to the PG-1500. IE control program Software PG-1500 controller RA75X relocatable assembler * 62 Host machines • PC-9800 series (MS-DOS™ Ver. 3.30 to Ver. 5.00A*3) • IBM PC/AT™ (PC DOS™ Ver.3.1) 1. Maintenance product 2. Not incorporated in the IE-75001-R. 3. A task swapping function is provided in Ver. 5.00/5.00A, but this function cannot be used with this software. µPD75116H,75117H ★ APPENDIX C. RELATED DOCUMENTS Device Related Documents Document Name Document Number User’s Manual IEM–1340 Instruction Application Table — 75X Series Selection Guide IF–1027 Development Tools Documents Document Name Document Number IE-75000-R/IE-75001-R User’s Manual EEU–1455 IE-75000-R-EM User’s Manual EEU–1294 EP-75117GK-R User’s Manual EEU–1318 PG-1500 User’s Manual EEU–1335 Hardware Operation Volume EEU–1346 Language Volume EEU–1343 RA75X Assembler Package User’s Manual Software PG-1500 Controller User’s Manual EEU–1291 Other Documents Document Name Document Number Package Manual IEI–1213 Surface Mount Technology Manual IEI–1207 Quality grade on NEC Semiconductor Devices IEI–1209 NEC Semiconductor Device Reliability & Quality Control — Electrostatic Discharge (ESD) Test — Semiconductor Devices Quality Guide Guarantee Guide Microcomputer Related Products Guide Other Manufacturers Volume Note MEI–1202 — The information in these related documents is subject to change without notice. For design purpose, etc., be sure to use the latest ones. 63 µPD75116H,75117H 64 µPD75116H,75117H 65 µPD75116H,75117H No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document. NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others. The devices listed in this document are not suitable for use in aerospace equipment, submarine cables, nuclear reactor control systems and life support systems. If customers intend to use NEC devices for above applications or they intend to use "Standard" quality grade NEC devices for applications not intended by NEC, please contact our sales people in advance. Application examples recommended by NEC Corporation Standard: Computer, Office equipment, Communication equipment, Test and Measurement equipment, Machine tools, Industrial robots, Audio and Visual equipment, Other consumer products, etc. Special: Automotive and Transportation equipment, Traffic control systems, Antidisaster systems, Anticrime systems, etc. M4 92.6 MS-DOS is a trademark of Microsoft Corporation. PC DOS and PC/AT are trademarks of IBM Corporation.