STMICROELECTRONICS VND600SP-E

VND600SP-E
Double channel high-side driver
Features
Type
RDS(on)
Ilim
VCC
VND600SP-E
30 mΩ
25 A
36 V
■
ECOPACK®: lead free and RoHS compliant
■
Automotive Grade: compliance with AEC
Guidelines
■
Very low standby current
■
CMOS compatible input
■
Proportional load current sense
■
Current sense disable
■
Thermal shutdown protection and diagnosis
■
Undervoltage shutdown
■
Overvoltage clamp
■
Load current limitation
10
1
PowerSO-10™
Description
The VND600SP-E is a monolithic device made
using STMicroelectronics™ VIPower™ M0-3
technology. It is intended for driving resistive or
inductive loads with one side connected to
ground. Active VCC pin voltage clamp protects the
device against low energy spikes (see ISO7637
transient compatibility table).
This device has two channels in high-side
configuration; each channel has an analog sense
output on which the sensing current is
proportional (according to a known ratio) to the
corresponding load current.
Built-in thermal shutdown and outputs current
limitation protect the chip from overtemperature
and short circuit. Device turns-off in case of
ground pin disconnections.
Table 1.
Device summary
Order codes
Package
PowerSO-10™
February 2011
Tube
Tape and reel
VND600SP-E
VND600SPTR-E
Doc ID 10876 Rev 3
1/26
www.st.com
1
Contents
VND600SP-E
Contents
1
Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2
Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3
2.1
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2
Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3
Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4
Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1
4
6
2/26
3.1.1
Solution 1: resistor in the ground line (RGND only) . . . . . . . . . . . . . . . . 16
3.1.2
Solution 2: diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . . 17
3.2
Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3
MCU I/Os protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4
PowerSO-10 maximum demagnetization energy
(VCC = 13.5 V) 18
Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1
5
GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16
PowerSO-10 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.1
ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.2
PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3
PowerSO-10 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Doc ID 10876 Rev 3
VND600SP-E
List of tables
List of tables
Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5
Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
VCC - output diode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Current sense 9 V ≤ VCC ≤ 16 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Logic input (channel 1, 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Truth table (per each channel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Electrical transient requirements on VCC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical transient requirements on VCC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Electrical transient requirements on VCC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Thermal parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
PowerSO-10 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Doc ID 10876 Rev 3
3/26
List of figures
VND600SP-E
List of figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
4/26
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Switching characteristics (resistive load RL= 2.6 Ω) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Maximum turn- off current versus load inductance(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
PowerSO-10 PC board(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . . 19
PowerSO-10 thermal impedance junction ambient single pulse. . . . . . . . . . . . . . . . . . . . . 20
Thermal fitting model of a double channel HSD in PowerSO-10 . . . . . . . . . . . . . . . . . . . . 20
PowerSO-10 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
PowerSO-10 suggested pad layout and tube shipment (no suffix). . . . . . . . . . . . . . . . . . . 24
Tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Doc ID 10876 Rev 3
VND600SP-E
1
Block diagram and pin description
Block diagram and pin description
Figure 1.
Block diagram
VCC
OVERVOLTAGE
VCC CLAMP
UNDERVOLTAGE
PwCLAMP 1
DRIVER 1
Vdslim1
LOGIC
IOUT1
INPUT 2
Ot1
CURRENT
SENSE 1
OUTPUT 2
ILIM2
OVERTEMP. 1
OVERTEMP. 2
Ot1
K
PwCLAMP 2
DRIVER 2
GND
Figure 2.
OUTPUT 1
ILIM1
INPUT 1
Vdslim2
IOUT2
Ot2
Ot2
CURRENT
SENSE 2
K
Configuration diagram (top view)
GROUND
INPUT 2
INPUT 1
C.SENSE1
C.SENSE2
6
7
8
9
5
4
3
10
1
OUTPUT 2
OUTPUT 2
N.C.
OUTPUT 1
OUTPUT 1
2
11
VCC
PowerSO-10
Table 2.
Suggested connections for unused and not connected pins
Connection / pin
Current sense
Floating
To ground
Through 1 KΩ
resistor
N.C.
Output
Input
X
X
X
X
Doc ID 10876 Rev 3
Through 10 KΩ
resistor
5/26
Electrical specifications
2
VND600SP-E
Electrical specifications
Figure 3.
Current and voltage conventions
IS
VCC
VF1 (1)
VCC
IOUT1
IIN1
INPUT1
VIN1
OUTPUT1
CURRENT SENSE 1
IIN2
INPUT2
VIN2
VOUT1
ISENSE1
OUTPUT2
CURRENT SENSE 2
GROUND
IOUT2
VSENSE1
VOUT2
ISENSE2
VSENSE2
IGND
1) VFn = VCCn - VOUTn during reverse battery condition
2.1
Absolute maximum ratings
Stressing the device above the rating listed in Table 3 may cause permanent damage to the
device. These are stress ratings only and operation of the device at these or any other
conditions above those indicated in the operating sections of this specification is not implied.
Exposure to absolute maximum rating conditions for extended periods may affect device
reliability. Refer also to the STMicroelectronics sure program and other relevant quality
document.
Table 3.
Absolute maximum ratings
Symbol
Value
Unit
41
V
VCC
DC supply voltage
-VCC
Reverse supply voltage
-0.3
V
- IGND
DC reverse ground pin current
-200
mA
Internally limited
A
-21
A
+/- 10
mA
-3
+15
V
V
IOUT
Output current
IR
Reverse output current
IIN
Input current
VCSENSE
6/26
Parameter
Current sense maximum voltage
Doc ID 10876 Rev 3
VND600SP-E
Electrical specifications
Table 3.
Symbol
Parameter
Value
Unit
VESD
Electrostatic discharge (Human Body Model:
R = 1.5 KΩ; C = 100 pF)
– INPUT
– CURRENT SENSE
– OUTPUT
– VCC
4000
2000
5000
5000
V
V
V
V
EMAX
Maximum switching energy
(L = 0.13 mH; RL = 0 Ω; Vbat= 13.5 V;
Tjstart = 150 °C; IL = 40 A)
145
mJ
Ptot
Power dissipation at Tc = 25 °C
96.1
W
Tj
Junction operating temperature
Internally limited
°C
Tc
Case operating temperature
-40 to 150
°C
Storage temperature
-55 to 150
°C
TSTG
2.2
Absolute maximum ratings (continued)
Thermal data
Table 4.
Symbol
Rthj-case
Rthj-amb
Thermal data
Parameter
Value
Thermal resistance junction-case (max)
Thermal resistance junction-ambient (max)
Unit
1.3
51.3(1)
°C/W
37(2)
1.
When mounted on a standard single sided FR-4 board with 0.5 cm2 of Cu (at least 35 μm thick).
2.
When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 μm thick).
Doc ID 10876 Rev 3
°C/W
7/26
Electrical specifications
2.3
VND600SP-E
Electrical characteristics
Values specified in this section are for 8 V < VCC < 36 V; -40 °C < Tj < 150 °C, unless
otherwise stated. (Per each channel).
Table 5.
Power
Symbol
VCC (1)
Parameter
Test conditions
Operating supply
voltage
VUSD (1) Undervoltage shutdown
VOV
(1)(2)
RON
Vclamp
IS (1)
Overvoltage shutdown
On-state resistance
Clamp voltage
Typ.
Max.
Unit
5.5
13
36
V
3
4
5.5
V
36
V
IOUT = 5 A; Tj = 25 °C
30
mΩ
IOUT = 5 A; Tj = 150 °C
60
mΩ
IOUT = 3 A; VCC = 6 V
100
mΩ
48
55
V
Off-state; VCC = 13 V;
VIN = VOUT = 0 V
12
40
µA
Off-state; VCC=13V;
VIN = VOUT = 0 V; Tj = 25 °C
12
25
mA
6
mA
0
50
µA
-75
0
µA
ICC = 20
Supply current
Min.
mA(2)
41
On-state; VIN = 5 V; VCC = 13 V;
IOUT = 0 A; RSENSE = 3.9 kΩ
IL(off1)
Off-state output current
VIN = VOUT = 0 V
IL(off2)
Off-state output current
VIN = 0 V; VOUT = 3.5 V
IL(off3)
Off-state output current
VIN = VOUT = 0 V;
VCC = 13 V; Tj = 125 °C
5
µA
IL(off4)
Off-state output current
VIN = VOUT = 0 V; VCC = 13 V;
Tj = 25 °C
3
µA
1. Per device.
2. Vclamp and VOV are correlated. Typical difference is 5 V.
Table 6.
Symbol
Ilim
TTSD
TR
THYST
8/26
Protection(1)
Parameter
Test conditions
DC short circuit current
VCC = 13 V
Min.
Typ.
25
40
5.5 V < VCC <3 6 V
Thermal shutdown
temperature
150
Thermal reset temperature
135
Thermal hysteresis
7
Doc ID 10876 Rev 3
175
Max. Unit
70
A
70
A
200
°C
°C
15
°C
VND600SP-E
Electrical specifications
Protection(1) (continued)
Table 6.
Symbol
Vdemag
VON
Parameter
Test conditions
Turn-off output voltage
clamp
IOUT = 2 A; VIN = 0 V;
L = 6 mH
Output voltage drop
limitation
IOUT = 0.5 A
Tj = -40 °C...+150 °C
Min.
Typ.
Max. Unit
VCC-41
VCC48
VCC55
50
V
mV
1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related
diagnostic signals must be used together with a proper software strategy. If the device is subjected to
abnormal conditions, this software must limit the duration and number of activation cycles
Table 7.
Table 8.
Symbol
K1
dK1/K1
K2
dK2/K2
K3
dK3/K3
VCC - output diode
Symbol
Parameter
VF
Forward on voltage
Min
Typ
Max
Unit
-
-
0.6
V
-IOUT = 2.6 A; Tj = 150 °C
Current sense 9 V ≤ VCC ≤ 16 V
Parameter
Test conditions
Min
Typ
Max
4400
6000
Unit
IOUT/ISENSE
IOUT1 or IOUT2 = 0.5 A;
VSENSE = 0.5 V; other channels
open; Tj = -40 °C...150 °C
3300
Current sense ratio drift
IOUT1 or IOUT2 = 0.5 A;
VSENSE = 0.5 V; other channels
open; Tj = -40 °C...150 °C
-10
IOUT/ISENSE
IOUT1 or IOUT2 = 5 A; VSENSE = 4 V;
other channels open; Tj = -40 °C
Tj = 25 °C...150 °C
Current sense ratio drift
IOUT1 or IOUT2 = 5 A; VSENSE = 4 V;
other channels open;
Tj = - 40 °C...150 °C
IOUT/ISENSE
IOUT1 or IOUT2 = 15 A; VSENSE = 4 V;
other channels open; Tj =- 40 °C
Tj = 25 °C...150 °C
Current sense ratio drift
IOUT1 or IOUT2 = 15 A; VSENSE = 4 V;
other channels open;
Tj = -40 °C...150 °C
-6
VCC = 5.5 V; IOUT1,2 = 2.5 A;
RSENSE = 10 kΩ
2
V
VCC > 8 V, IOUT1,2 = 5 A;
RSENSE = 10 kΩ
4
V
Max analog sense output
VSENSE1,2
voltage
VSENSEH
Test conditions
Analog sense output
voltage in overtemperature VCC = 13 V; RSENSE = 3.9 kΩ
condition
Doc ID 10876 Rev 3
4200
4400
+10
4900
4900
-6
4200
4400
6000
5750
+6
4900
4900
%
5500
5250
+6
5.5
%
%
V
9/26
Electrical specifications
Table 8.
VND600SP-E
Current sense 9 V ≤ VCC ≤ 16 V (continued)
Symbol
Parameter
Test conditions
Min
Typ
Analog sense output
VCC = 13 V; Tj > TTSD;
RVSENSEH impedance in
All channels open
overtemperature condition
tDSENSE
Current sense delay
response
Max
Unit
Ω
400
to 90% ISENSE (1)
500
µs
1. Current sense signal delay after positive input slope.
Table 9.
Symbol
Parameter
Test conditions
Min
Typ
Max Unit
td(on)
Turn-on delay time
RL = 2.6 Ω (seeFigure 4)
-
30
-
µs
td(off)
Turn-on delay time
RL = 2.6 Ω (seeFigure 4)
-
30
-
µs
(dVOUT/dt)on Turn-on voltage slope RL = 2.6 Ω (see Figure 4)
-
Figure 15
-
V/µs
(dVOUT/dt)off Turn-off voltage slope RL = 2.6 Ω (see Figure 4)
-
Figure 16
-
V/µs
Max
Unit
1.25
V
Table 10.
Symbol
Logic input (channel 1, 2)
Parameter
Test conditions
VIL
Input low level voltage
IIL
Low level input current
VIH
Input high level voltage
IIH
High level input current
VI(hyst)
Input hysteresis voltage
VICL
10/26
Switching (VCC = 13 V)
Input clamp voltage
VIN = 1.25 V
Min
Typ
1
µA
3.25
V
VIN = 3.25 V
10
0.5
IIN = 1 mA
IIN = -1 mA
Doc ID 10876 Rev 3
6
µA
V
6.8
-0.7
8
V
V
VND600SP-E
Electrical specifications
Figure 4.
Switching characteristics (resistive load RL= 2.6 Ω)
VOUT
90%
80%
dVOUT/dt(off)
dVOUT/dt(on)
10%
tr
tf
t
ISENSE
90%
INPUT
t
tDSENSE
td(on)
td(off)
t
Figure 5.
IOUT/ISENSE versus IOUT
IOUT/ISENSE
6500
6000
max.Tj=-40°C
5500
max.Tj=25...150°C
5000
typical value
min.Tj=25...150°C
4500
4000
min.Tj=-40°C
3500
3000
0
2
4
6
8
10
12
14
16
IOUT (A)
Doc ID 10876 Rev 3
11/26
Electrical specifications
Table 11.
Truth table (per each channel)
Conditions
12/26
VND600SP-E
Input
Output
Sense
Normal operation
L
H
L
H
0
Nominal
Overtemperature
L
H
L
L
0
VSENSEH
Undervoltage
L
H
L
L
0
0
Overvoltage
L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
Short circuit to VCC
L
H
H
H
0
< Nominal
Negative output voltage
clamp
L
L
0
Doc ID 10876 Rev 3
(Tj<TTSD)
(Tj>TTSD)
0
0
VSENSEH
VND600SP-E
Electrical specifications
Table 12.
Electrical transient requirements on VCC pin (part 1)
Test levels
ISO T/R 7637/1
test pulse
I
II
III
IV
Delays and
impedance
1
-25 V
-50 V
-75 V
-100 V
2 ms, 10 Ω
2
+25 V
+50 V
+75 V
+100 V
0.2 ms, 10 Ω
3a
-25 V
-50 V
-100 V
-150 V
0.1 µs, 50 Ω
3b
+25 V
+50 V
+75 V
+100 V
0.1 µs, 50 Ω
4
-4 V
-5 V
-6 V
-7 V
100 ms, 0.01 Ω
5
+26.5 V
+46.5 V
+66.5 V
+86.5 V
400 ms, 2 Ω
Table 13.
Electrical transient requirements on VCC pin (part 2)
Test levels results
ISO T/R 7637/1
Test pulse
I
II
III
IV
1
C
C
C
C
2
C
C
C
C
3a
C
C
C
C
3b
C
C
C
C
4
C
C
C
C
5
C
E
E
E
Table 14.
Electrical transient requirements on VCC pin (part 3)
Class
Contents
C
All functions of the device are performed as designed after exposure to
disturbance.
E
One or more functions of the device is not performed as designed after exposure
to disturbance and cannot be returned to proper operation without replacing the
device.
Doc ID 10876 Rev 3
13/26
Electrical specifications
Figure 6.
VND600SP-E
Waveforms
NORMAL OPERATION
INPUTn
LOAD CURRENTn
SENSEn
UNDERVOLTAGE
VCC
VUSDhyst
VUSD
INPUTn
LOAD CURRENTn
SENSEn
OVERVOLTAGE
VOV
VCC
INPUTn
LOAD CURRENTn
SENSEn
VCC < VOV
VCC > VOV
SHORT TO GROUND
INPUTn
LOAD CURRENTn
LOAD VOLTAGEn
SENSEn
SHORT TO VCC
INPUTn
LOAD VOLTAGEn
LOAD CURRENTn
SENSEn
Tj
TTSD
TR
<Nominal
<Nominal
OVERTEMPERATURE
INPUTn
LOAD CURRENTn
SENSEn
14/26
ISENSE=
Doc ID 10876 Rev 3
VSENSEH
RSENSE
VND600SP-E
Electrical specifications
2.4
Electrical characteristics curves
Figure 7.
Off-state output current
Figure 8.
High level input current
Iih (uA)
IL(off1) (uA)
5
5
4.5
4.5
Off state
Vcc=36V
Vin=Vout=0V
4
3.5
Vin=3.25V
4
3.5
3
3
2.5
2.5
2
2
1.5
1.5
1
1
0.5
0.5
0
0
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
Figure 9.
50
75
100
125
150
175
Tc (°C)
Tc (°C)
Input low level
Figure 10. Input high level
Vih (V)
Vil (V)
3.6
2.6
3.4
2.4
3.2
2.2
3
2
2.8
1.8
2.6
1.6
2.4
1.4
2.2
1.2
2
1
-50
-25
0
25
50
75
100
125
150
-50
175
-25
0
25
Figure 11.
50
75
100
125
150
175
Tc (°C)
Tc (°C)
Input clamp voltage
Figure 12. Input hysteresis voltage
Vhyst (V)
Vicl (V)
1.5
8
1.4
7.8
Iin=1mA
7.6
1.3
7.4
1.2
7.2
1.1
7
1
6.8
0.9
6.6
0.8
6.4
0.7
6.2
0.6
6
0.5
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
-50
-25
0
25
50
75
100
125
150
175
Tc (°C)
Doc ID 10876 Rev 3
15/26
Electrical specifications
VND600SP-E
Figure 13. Overvoltage shutdown
Figure 14. ILIM vs Tcase
Vov (V)
Ilim (A)
50
80
48
70
Vcc=13V
46
60
44
42
50
40
40
38
30
36
20
34
10
32
30
0
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
Tc (°C)
50
75
100
125
150
175
Tc (°C)
Figure 15. Turn-on voltage slope
Figure 16. Turn-off voltage slope
dVout/dt(on) (V/ms)
dVout/dt(off) (V/ms)
750
500
450
700
Vcc=13V
Rl=2.6Ohm
650
Vcc=13V
Rl=2.6Ohm
400
600
350
550
300
500
250
450
200
400
150
350
100
300
50
0
250
-50
-25
0
25
50
75
100
125
150
175
-50
-25
0
25
50
75
100
125
150
175
Tc (ºC)
Tc (ºC)
Figure 17. On-state resistance vs Tcase
Figure 18. On-state resistance vs VCC
Ron (mOhm)
Ron (mOhm)
100
80
90
70
Iout=5A
Vcc=8V & 36V
80
Iout=5A
Tc= 150°C
60
70
50
60
50
40
40
30
30
Tc= 25°C
20
20
Tc= - 40°C
10
10
0
0
-75
-50
-25
0
25
50
75
100
125
150
175
10
15
20
25
Vcc (V)
Tc (°C)
16/26
5
Doc ID 10876 Rev 3
30
35
40
VND600SP-E
3
Application information
Application information
Figure 19. Application schematic
+5V
Rprot
VCC
INPUT1
Dld
μC
Rprot
CURRENT SENSE1
Rprot
INPUT2
Rprot
CURRENT SENSE2
OUTPUT1
GND
RSENSE1
RSENSE2
VGND
RGND
OUTPUT2
DGND
3.1
GND protection network against reverse battery
3.1.1
Solution 1: resistor in the ground line (RGND only)
This can be used with any type of load.
The following is an indication on how to dimension the RGND resistor.
1.
RGND ≤ 600 mV / IS(on)max
2.
RGND ≥ (-VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device’s datasheet.
Power dissipation in RGND (when VCC < 0: during reverse battery situations) is:
PD= (-VCC)2/ RGND
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that if the microprocessor ground is not shared by the device ground then the
RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift varies depending on how many devices are ON in the case of several
high-side drivers sharing the same RGND.
If the calculated power dissipation leads to a large resistor or several devices have to share
the same resistor then ST suggests to utilize solution 2 (see Section 3.1.2).
Doc ID 10876 Rev 3
17/26
Application information
3.1.2
VND600SP-E
Solution 2: diode (DGND) in the ground line
A resistor (RGND = 1 kΩ) should be inserted in parallel to DGND if the device drives an
inductive load.
This small signal diode can be safely shared amongst several different HSDs. Also in this
case, the presence of the ground network produces a shift (∼600 mV) in the input threshold
and in the status output values if the microprocessor ground is not common to the device
ground. This shift does not vary if more than one HSD shares the same diode/resistor
network.
Series resistor in INPUT and STATUS lines are also required to prevent that, during battery
voltage transient, the current exceeds the absolute maximum rating.
Safest configuration for unused INPUT and STATUS pin is to leave them unconnected, while
unused SENSE pin has to be connected to ground pin.
3.2
Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the
VCC max DC rating. The same applies if the device is subject to transients on the VCC line
that are greater than the ones shown in Table 12.
3.3
MCU I/Os protection
If a ground protection network is used and negative transient are present on the VCC line,
the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent
the microcontroller I/Os pins to latch-up.
The value of these resistors is a compromise between the leakage current of microcontroller
and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of
microcontroller I/Os.
-VCCpeak/Ilatchup ≤ Rprot ≤ (VOHµC-VIH-VGND) / IIHmax
Calculation example:
For VCCpeak = -100 V and Ilatchup ≥ 20 mA; VOHµC ≥ 4.5 V
5 kΩ ≤ Rprot ≤ 65 kΩ.
Recommended values:
Rprot =10 kΩ.
18/26
Doc ID 10876 Rev 3
VND600SP-E
3.4
Application information
PowerSO-10 maximum demagnetization energy
(VCC = 13.5 V)
Figure 20. Maximum turn- off current versus load inductance(1)
A: A single pulse at Tjstart = 150 °C
B: Repetitive pulse at Tjstart = 100 °C
C: Repetitive pulse at Tjstart = 125 °C
Condition:
VCC = 13.5 V
VIN, IL
Demagnetization
Demagnetization
Demagnetization
t
1. Values are generated with RL = 0 Ω
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed
the temperature specified above for curves B and C.
Doc ID 10876 Rev 3
19/26
Package and PCB thermal data
VND600SP-E
4
Package and PCB thermal data
4.1
PowerSO-10 thermal data
Figure 21. PowerSO-10 PC board(1)
1. Layout condition of Rth and Zth measurements (PCB FR4 area= 58 mm x 58 mm, PCB thickness=2 mm,
Cu thickness = 35 µm, Copper areas: from minimum pad lay-out to 8 cm2).
Figure 22. Rthj-amb vs PCB copper area in open box free air condition
RTHj_amb (°C/W)
55
Tj-Tamb=50°C
50
45
40
35
30
0
2
4
6
PCB Cu heatsink area (cm^2)
20/26
Doc ID 10876 Rev 3
8
10
VND600SP-E
Package and PCB thermal data
Figure 23. PowerSO-10 thermal impedance junction ambient single pulse
Equation 1: pulse calculation formula
Z THδ = R TH ⋅ δ + Z THtp ( 1 – δ )
where
δ = tp ⁄ T
Figure 24. Thermal fitting model of a double channel HSD in PowerSO-10
Tj_1
Pd1
Tj_2
C1
C2
C3
C4
C5
C6
R1
R2
R3
R4
R5
R6
C1
C2
R1
R2
Pd2
T_amb
Doc ID 10876 Rev 3
21/26
Package and PCB thermal data
Table 15.
22/26
VND600SP-E
Thermal parameter
Area/island (cm2)
Footprint
R1 (°C/ W)
0.05
R2 (°C/ W)
0.3
R3 (°C/ W)
0.3
R4 (°C/ W)
0.8
R5 (°C/ W)
12
R6 (°C/ W)
37
C1 (W.s/ °C)
0.001
C2 (W.s /°C)
5.00E-03
C3 (W.s/ °C)
0.02
C4 (W.s/ °C)
0.3
C5 (W.s/ °C)
0.75
C6 (W.s/ °C)
3
Doc ID 10876 Rev 3
6
22
5
VND600SP-E
Package and packing information
5
Package and packing information
5.1
ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
5.2
PowerSO-10 mechanical data
Figure 25. PowerSO-10 package dimensions
B
0.10 A B
10
H
E
E
E2
1
SEATING
PLANE
e
B
DETAIL "A"
A
C
0.25
h
E4
D
= D1 =
=
=
SEATING
PLANE
A
F
A1
A1
L
DETAIL "A"
α
Doc ID 10876 Rev 3
23/26
Package and packing information
Table 16.
VND600SP-E
PowerSO-10 mechanical data
Millimeters
Dim.
Min.
Max.
A
3.35
3.65
A(1)
3.4
3.6
A1
0
0.10
B
0.40
0.60
B(1)
0.37
0.53
C
0.35
0.55
C(1)
0.23
0.32
D
9.40
9.60
D1
7.40
7.60
E
9.30
9.50
E2
7.20
7.60
E2(1)
7.30
7.50
E4
5.90
6.10
E4(1)
5.90
6.30
e
1.27
F
1.25
1.35
F(1)
1.20
1.40
H
13.80
14.40
H(1)
13.85
14.35
h
0.50
L
1.20
1.80
L(1)
0.80
1.10
a
0°
8°
α(1)
2°
8°
1. Muar only POA P013P.
24/26
Typ.
Doc ID 10876 Rev 3
VND600SP-E
5.3
Package and packing information
PowerSO-10 packing information
Figure 26. PowerSO-10 suggested pad layout and tube shipment (no suffix)
14.6 - 14.9
B
10.8 - 11
C
6.30
A
0.67 - 0.73
1
9.5
2
3
4
5
10
9
8
0.54 - 0.6
7
1.27
6
All dimensions are in mm.
Casablanca
Muar
Base Q.ty Bulk Q.ty Tube length (± 0.5) A
B C (± 0.1)
50
1000
532
10.4 16.4
0.8
50
1000
532
4.9 17.2
0.8
Figure 27. Tape and reel shipment (suffix “TR”)
REEL DIMENSIONS
Base Q.ty
Bulk Q.ty
A (max)
B (min)
C (± 0.2)
F
G (+ 2 / -0)
N (min)
T (max)
600
600
330
1.5
13
20.2
24.4
60
30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
Tape width
Tape Hole Spacing
Component Spacing
Hole Diameter
Hole Diameter
Hole Position
Compartment Depth
Hole Spacing
W
P0 (± 0.1)
P
D (± 0.1/-0)
D1 (min)
F (± 0.05)
K (max)
P1 (± 0.1)
24
4
24
1.5
1.5
11.5
6.5
2
All dimensions are in mm.
End
Start
Top
No components
Components
No components
cover
tape
500mm min
Empty components pockets
saled with cover tape.
500mm min
User direction of feed
Doc ID 10876 Rev 3
25/26
Revision history
6
VND600SP-E
Revision history
Table 17.
Document revision history
Date
Revision
01-Oct-2004
1
Initial release.
28-Jun-2010
2
Changed Features list.
Reformatted entire document. No content change.
3
Updated Features list.
Updated following tables:
– Table 5: Power
– Table 8: Current sense 9 V ≤ VCC ≤ 16 V
11-Feb-2011
26/26
Changes
Doc ID 10876 Rev 3
VND600SP-E
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2011 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com
26/26
Doc ID 10876 Rev 3