AP4501M Advanced Power Electronics Corp. N AND P-CHANNEL ENHANCEMENT MODE POWER MOSFET ▼ Simple Drive Requirement ▼ Low On-resistance ▼ Fast Switching N-CH BVDSS D2 30V RDS(ON) D2 D1 D1 28mΩ ID G2 S2 SO-8 S1 7A P-CH BVDSS G1 Description RDS(ON) 50mΩ ID -5.3A The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and costeffectiveness. The SO-8 package is universally preferred for all commercialindustrial surface mount applications and suited for low voltage applications such as DC/DC converters. -30V D2 D1 G2 G1 S2 S1 Absolute Maximum Ratings Symbol Parameter Rating N-channel VDS Drain-Source Voltage VGS Gate-Source Voltage ID@TA=25℃ ID@TA=70℃ Units P-channel 30 -30 V ±20 ±20 V 3 7 -5.3 A 3 5.8 -4.7 A 20 -20 A Continuous Drain Current Continuous Drain Current 1 IDM Pulsed Drain Current PD@TA=25℃ Total Power Dissipation 2 W Linear Derating Factor 0.016 W/℃ TSTG Storage Temperature Range -55 to 150 ℃ TJ Operating Junction Temperature Range -55 to 150 ℃ Thermal Data Symbol Rthj-amb Parameter Thermal Resistance Junction-ambient 3 Data and specifications subject to change without notice Max. Value Unit 62.5 ℃/W 201225022 AP4501M N-CH Electrical Characteristics@Tj=25oC(unless otherwise specified) Symbol Parameter Test Conditions BVDSS Drain-Source Breakdown Voltage ΔBVDSS/ΔTj Breakdown Voltage Temperature Coefficient Reference to 25℃, ID=1mA RDS(ON) Static Drain-Source On-Resistance VGS=0V, ID=250uA 2 Min. Typ. Max. Units 30 - - V - 0.02 - V/℃ VGS=10V, ID=7A - - 28 mΩ VGS=4.5V, ID=5A - - 42 mΩ VGS(th) Gate Threshold Voltage VDS=VGS, ID=250uA 1 - 3 V gfs Forward Transconductance VDS=10V, ID=7A - 13 - S IDSS Drain-Source Leakage Current (Tj=25oC) VDS=30V, VGS=0V - - 1 uA Drain-Source Leakage Current (Tj=70 C) VDS=24V, VGS=0V - - 25 uA Gate-Source Leakage VGS=±20V - - ID=7A - 8.4 - nC o IGSS 2 ±100 nA Qg Total Gate Charge Qgs Gate-Source Charge VDS=24V - 2.1 - nC Qgd Gate-Drain ("Miller") Charge VGS=4.5V - 4.7 - nC VDS=15V - 6 - ns 2 td(on) Turn-on Delay Time tr Rise Time ID=1A - 5.2 - ns td(off) Turn-off Delay Time RG=3.3Ω,VGS=10V - 18.8 - ns tf Fall Time RD=15Ω - 4.4 - ns Ciss Input Capacitance VGS=0V - 645 - pF Coss Output Capacitance VDS=25V - 150 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 95 - pF Source-Drain Diode Symbol IS VSD Parameter Continuous Source Current ( Body Diode ) 2 Forward On Voltage Test Conditions Min. Typ. Max. Units VD=VG=0V , VS=1.2V - - 1.67 A Tj=25℃, IS=7A, VGS=0V - - 1.2 V AP4501M P-CH Electrical Characteristics@Tj=25oC(unless otherwise specified) Symbol Parameter Test Conditions BVDSS Drain-Source Breakdown Voltage ΔBVDSS/ΔTj Breakdown Voltage Temperature Coefficient Reference to 25℃, ID=-1mA RDS(ON) 2 Static Drain-Source On-Resistance VGS(th) Gate Threshold Voltage gfs Forward Transconductance IDSS IGSS VGS=0V, ID=-250uA Min. Typ. Max. Units -30 - - V - -0.028 - V/℃ VGS=-10V, ID=-5.3A - - 50 mΩ VGS=-4.5V, ID=-4.2A - - 90 mΩ VDS=VGS, ID=-250uA -1 - -3 V VDS=-10V, ID=-5.3A - 8.5 - S o VDS=-30V, VGS=0V - - -1 uA o Drain-Source Leakage Current (Tj=70 C) VDS=-24V, VGS=0V - - -25 uA Gate-Source Leakage VGS= ± 20V - - Drain-Source Leakage Current (Tj=25 C) 2 ±100 nA Qg Total Gate Charge ID=-5.3A - 20 - nC Qgs Gate-Source Charge VDS=-15V - 3.5 - nC Qgd Gate-Drain ("Miller") Charge VGS=-10V - 2 - nC VDS=-15V - 12 - ns 2 td(on) Turn-on Delay Time tr Rise Time ID=-1A - 20 - ns td(off) Turn-off Delay Time RG=6Ω,VGS=-10V - 45 - ns tf Fall Time RD=15Ω - 27 - ns Ciss Input Capacitance VGS=0V - 790 - pF Coss Output Capacitance VDS=-15V - 440 - pF Crss Reverse Transfer Capacitance f=1.0MHz - 120 - pF Source-Drain Diode Symbol IS VSD Parameter Continuous Source Current ( Body Diode ) 2 Forward On Voltage Test Conditions Min. Typ. Max. Units VD=VG=0V , VS=-1.2V - - -1.67 A Tj=25℃, IS=-2.6A, VGS=0V - - -1.2 V Notes: 1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on 1 in2 copper pad of FR4 board ; 135℃/W when mounted on Min. copper pad. AP4501M N-Channel 36 36 10V 8.0V 6.0V 5.0V V GS =4.5V 24 ID , Drain Current (A) ID , Drain Current (A) 10V 8.0V 6.0V 5.0V 12 24 V GS =4.5V 12 T C =150 o C T C =25 o C 0 0 0 2 3 5 0 6 2 V DS , Drain-to-Source Voltage (V) 3 5 6 V DS , Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 2 90 I D =7.0A V GS = 10V I D =7.0A T C =25 ℃ Normalized RDS(ON) RDS(ON) (mΩ ) 70 50 1.4 0.8 30 10 0.2 2 6 10 V GS (V) Fig 3. On-Resistance v.s. Gate Voltage 14 -50 0 50 100 o T j , Junction Temperature ( C) Fig 4. Normalized On-Resistance v.s. Junction Temperature 150 AP4501M 8 2.4 6 1.8 PD (W) ID , Drain Current (A) N-Channel 4 1.2 0.6 2 0 0 25 50 75 100 125 0 150 50 100 150 T c ,Case Temperature ( o C) o T c , Case Temperature ( C) Fig 5. Maximum Drain Current v.s. Fig 6. Typical Power Dissipation Case Temperature 100 1 Normalized Thermal Response (Rthja) Duty Factor = 0.5 10 ID (A) 1ms 10ms 1 100ms 1s 0.1 T C =25 o C Single Pulse 10s DC 0.2 0.1 0.1 0.05 0.02 0.01 PDM 0.01 t T Single Pulse Duty Factor = t/T Peak Tj = P DM x R thja + Ta o Rthja=135 C/W 0.001 0.01 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 V DS (V) t , Pulse Width (s) Fig 7. Maximum Safe Operating Area Fig 8. Effective Transient Thermal Impedance AP4501M N-Channel f=1.0MHz 12 10000 VGS , Gate to Source Voltage (V) I D =7.0A 9 V DS= 1 6 V V DS =20V V DS =24V 1000 C (pF) Ciss 6 Coss Crss 100 3 0 10 0 4 8 12 16 1 7 13 19 25 31 V DS (V) Q G , Total Gate Charge (nC) Fig 9. Gate Charge Characteristics Fig 10. Typical Capacitance Characteristics 3 100 2.5 10 2 o o T C =25 C VGS(th) (V) IS(A) T C = 150 C 1 1.5 1 0.1 0.5 0 0.01 0 0.4 0.8 V SD (V) Fig 11. Forward Characteristic of Reverse Diode 1.2 -50 0 50 100 o T j , Junction Temperature ( C ) Fig 12. Gate Threshold Voltage v.s. Junction Temperature 150 AP4501M N-Channel VDS 90% RD VDS D 0.5 x RATED VDS G RG TO THE OSCILLOSCOPE + 10% VGS S VGS 10V - td(on) Fig 13. Switching Time Circuit td(off) tf tr Fig 14. Switching Time Waveform VG VDS QG TO THE OSCILLOSCOPE D 4.5V 0.8 x RATED VDS QGS G S QGD VGS + 1~ 3 mA I G I D Charge Fig 15. Gate Charge Circuit Fig 16. Gate Charge Waveform Q AP4501M P-Channel 20 20 10V 8.0V 6.0V 10V 8.0V 6.0V 15 -ID , Drain Current (A) -ID , Drain Current (A) 15 V GS =4. 0 V 10 V GS =4. 0 V 10 5 5 T C =150 o C T C =25 o C 0 0 0 1 2 3 0 4 Fig 1. Typical Output Characteristics 2 3 4 Fig 2. Typical Output Characteristics 90 1.8 I D =-5.3A T C =25 ℃ I D =-5.3A 80 1.6 70 1.4 Normalized RDS(ON) RDS(ON) (mΩ ) 1 -V DS , Drain-to-Source Voltage (V) -V DS , Drain-to-Source Voltage (V) 60 50 V GS = -10V 1.2 1 0.8 40 0.6 30 3 4 5 6 7 8 9 10 11 -V GS (V) Fig 3. On-Resistance v.s. Gate Voltage -50 0 50 100 T j , Junction Temperature ( o C) Fig 4. Normalized On-Resistance v.s. Junction Temperature 150 AP4501M P-Channel 2.4 6 5 4 PD (W) -ID , Drain Current (A) 1.8 3 1.2 2 0.6 1 0 0 25 50 75 100 125 150 0 50 o 100 150 T c ,Case Temperature ( o C) T c , Case Temperature ( C) Fig 5. Maximum Drain Current v.s. Fig 6. Typical Power Dissipation Case Temperature 1 100 Normalized Thermal Response (R thja) Duty Factor = 0.5 10 -ID (A) 1ms 10ms 1 100ms 1s 0.1 10s DC T C =25 o C Single Pulse 0.01 0.2 0.1 0.1 0.05 0.02 0.01 PDM t 0.01 T Single Pulse Duty Factor = t/T Peak Tj = P DM x Rthja + Ta Rthja=135 oC/W 0.001 0.1 1 10 100 0.0001 0.001 0.01 0.1 1 10 100 1000 -V DS (V) t , Pulse Width (s) Fig 7. Maximum Safe Operating Area Fig 8. Effective Transient Thermal Impedance AP4501M P-Channel 14 I D =-5.3A 12 10 1000 V DS =-10V V DS =-15V V DS =-20V 8 Ciss C (pF) -VGS , Gate to Source Voltage (V) f=1.0MHz 10000 6 Coss Crss 100 4 2 0 10 0 5 10 15 20 25 30 1 5 9 13 17 21 25 29 -V DS (V) Q G , Total Gate Charge (nC) Fig 9. Gate Charge Characteristics Fig 10. Typical Capacitance Characteristics 3 100.00 2.5 10.00 T j =150 o C -VGS(th) (V) -IS(A) 2 T j =25 o C 1.5 1.00 1 0.10 0.5 0.01 0 0.1 0.4 0.7 1 -V SD (V) Fig 11. Forward Characteristic of Reverse Diode 1.3 -50 0 50 100 T j ,Junction Temperature ( o C) Fig 12. Gate Threshold Voltage v.s. Junction Temperature 150 AP4501M P-Channel VDS 90% RD VDS D RG TO THE OSCILLOSCOPE 0.5 x RATED VDS G 10% S -10 V VGS VGS td(on) Fig 13. Switching Time Circuit td(off) tf tr Fig 14. Switching Time Waveform VG VDS -10V 0.5 x RATED VDS G S QG TO THE OSCILLOSCOPE D QGS QGD VGS -1~-3mA I G ID Charge Fig 15. Gate Charge Circuit Fig 16. Gate Charge Waveform Q