MICROSEMI APT15GP60B

APT15GP60B
APT15GP60S
600V
POWER MOS 7 IGBT
®
The POWER MOS 7® IGBT is a new generation of high voltage power IGBTs.
Using Punch Through Technology this IGBT is ideal for many high frequency,
high voltage switching applications and has been optimized for high frequency
switchmode power supplies.
• Low Conduction Loss
• 100 kHz operation @ 400V, 19A
• Low Gate Charge
• 200 kHz operation @ 400V, 12A
• Ultrafast Tail Current shutoff
• SSOA rated
C
G
E
MAXIMUM RATINGS
Symbol
All Ratings: TC = 25°C unless otherwise specified.
Parameter
APT15GP60B_S
VCES
Collector-Emitter Voltage
600
VGE
Gate-Emitter Voltage
±20
Gate-Emitter Voltage Transient
±30
VGEM
I C1
Continuous Collector Current @ TC = 25°C
56
I C2
Continuous Collector Current @ TC = 110°C
27
I CM
Pulsed Collector Current
SSOA
PD
TJ,TSTG
TL
1
UNIT
Volts
Amps
65
@ TC = 25°C
65A @ 600V
Switching Safe Operating Area @ TJ = 150°C
250
Total Power Dissipation
Watts
-55 to 150
Operating and Storage Junction Temperature Range
°C
300
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
STATIC ELECTRICAL CHARACTERISTICS
BVCES
Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 250µA)
600
VGE(TH)
Gate Threshold Voltage
VCE(ON)
I CES
I GES
TYP
MAX
4.5
6
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C)
2.2
2.7
Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C)
2.1
3
(VCE = VGE, I C = 1mA, Tj = 25°C)
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C)
2
Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C)
250
2
Gate-Emitter Leakage Current (VGE = ±20V)
Volts
µA
2500
±100
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
Microsemi Website - http://www.microsemi.com
UNIT
nA
5-2006
MIN
Rev C
Characteristic / Test Conditions
050-7413
Symbol
1
APT15GP60B_S
DYNAMIC CHARACTERISTICS
Symbol
Characteristic
Test Conditions
1685
VGE = 0V, VCE = 25V
210
Reverse Transfer Capacitance
f = 1 MHz
15
Gate-to-Emitter Plateau Voltage
Gate Charge
VGE = 15V
7.5
VCE = 300V
12
15
Input Capacitance
Coes
Output Capacitance
Cres
VGEP
Qge
TYP
Capacitance
Cies
Qg
MIN
Total Gate Charge
3
Gate-Emitter Charge
Qgc
Gate-Collector ("Miller ") Charge
I C = 15A
SSOA
Switching Safe Operating Area
TJ = 150°C, R G = 5Ω, VGE =
MAX
UNIT
pF
V
55
nC
65
A
15V, L = 100µH,VCE = 600V
td(on)
tr
td(off)
tf
Turn-on Delay Time
Current Rise Time
I C = 15A
4
Turn-on Switching Energy (With Diode) 5
Eoff
Turn-off Switching Energy
td(on)
Turn-on Delay Time
Eon1
Eon2
Eoff
152
8
12
VGE = 15V
69
I C = 15A
Current Fall Time
55
ns
88
R G = 5Ω
44
Turn-on Switching Energy (With Diode)
µJ
121
Inductive Switching (125°C)
VCC = 400V
Turn-off Delay Time
Turn-off Switching Energy
130
TJ = +25°C
6
Current Rise Time
Turn-on Switching Energy
ns
58
R G = 5Ω
Eon2
tf
29
Current Fall Time
Turn-on Switching Energy
td(off)
12
VGE = 15V
Turn-off Delay Time
Eon1
tr
8
Inductive Switching (25°C)
VCC = 400V
130
TJ = +125°C
267
66
µJ
268
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Characteristic
MIN
TYP
MAX
RΘJC
Junction to Case (IGBT)
.50
RΘJC
Junction to Case (DIODE)
N/A
Package Weight
5.90
WT
UNIT
°C/W
gm
1 Repetitive Rating: Pulse width limited by maximum junction temperature.
2 For Combi devices, Ices includes both IGBT and diode leakages
3 See MIL-STD-750 Method 3471.
4 Eon1 is the clamped inductive turn-on-energy of the IGBT only, without the effect of a commutating diode reverse recovery current
adding to the IGBT turn-on loss. (See Figure 24.)
5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching
loss. A Combi device is used for the clamping diode as shown in the Eon2 test circuit. (See Figures 21, 22.)
6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.)
050-7413
Rev C
5-2006
Microsemi reserves the right to change, without notice, the specifications and information contained herein.
TYPICAL PERFORMANCE CURVES
TC=25°C
10
0
TC=-55°C
TC=125°C
5
FIGURE 1, Output Characteristics(VGE = 15V)
100
40
TJ = 25°C
20
TJ = 125°C
3.5
TJ = 25°C.
250µs PULSE TEST
<0.5 % DUTY CYCLE
3
IC =30A
2.5
IC = 15A
2
IC = 7.5A
1.5
1
0.5
0
8
10
12
14
16
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage
BVCES, COLLECTOR-TO-EMITTER BREAKDOWN
VOLTAGE (NORMALIZED)
6
14
0.9
0.85
0.8
-50
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 7, Breakdown Voltage vs. Junction Temperature
VCE = 120V
VCE = 300V
8
VCE = 480V
6
4
2
0
10
20
30
40
50
GATE CHARGE (nC)
FIGURE 4, Gate Charge
60
3.5
3
IC =30A
2.5
IC = 15A
2
IC = 7.5A
1.5
1
0.5
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
0
-50
0
25
50
75
100 125
TJ, Junction Temperature (°C)
FIGURE 6, On State Voltage vs Junction Temperature
70
0.95
IC = 15A
TJ = 25°C
10
1.15
1.0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
12
80
1.05
TC=-55°C
TC=125°C
5
1.2
1.10
TC=25°C
10
0
2
4
6
8
10
12
VGE, GATE-TO-EMITTER VOLTAGE (V)
FIGURE 3, Transfer Characteristics
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
0
VGE, GATE-TO-EMITTER VOLTAGE (V)
60
15
FIGURE 2, Output Characteristics (VGE = 10V)
16
IC, DC COLLECTOR CURRENT(A)
IC, COLLECTOR CURRENT (A)
80
0
VCE, COLLECTOR-TO-EMITTER VOLTAGE (V)
TJ = -55°C
20
0
0
0.5
1
1.5
2
2.5
3
VCE, COLLECTER-TO-EMITTER VOLTAGE (V)
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
-25
60
50
40
30
5-2006
15
VGE = 10V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
20
10
0
-50
-25
0
25
50
75 100 125 150
TC, CASE TEMPERATURE (°C)
FIGURE 8, DC Collector Current vs Case Temperature
Rev C
IC, COLLECTOR CURRENT (A)
20
IC, COLLECTOR CURRENT (A)
VGE = 15V.
250µs PULSE TEST
<0.5 % DUTY CYCLE
25
APT15GP60B_S
30
050-7413
30
APT15GP60B_S
80
16
14
VGE= 10V
12
VGE= 15V
10
8
6
VCE = 400V
TJ = 25°C or 125°C
RG = 5Ω
L = 100 µH
4
2
0
td (OFF), TURN-OFF DELAY TIME (ns)
td(ON), TURN-ON DELAY TIME (ns)
18
VGE =15V,TJ=125°C
70
60
VGE =10V,TJ=125°C
50
40
VGE =15V,TJ=25°C
30
VGE =10V,TJ=25°C
20
10
VCE = 400V
RG = 5Ω
L = 100 µH
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 9, Turn-On Delay Time vs Collector Current
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 10, Turn-Off Delay Time vs Collector Current
30
100
TJ = 25 or 125°C,VGE = 10V
80
TJ = 125°C, VGE = 10V or 15V
20
tf, FALL TIME (ns)
tr, RISE TIME (ns)
25
15
10
TJ = 25 or 125°C,VGE = 15V
5
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 11, Current Rise Time vs Collector Current
600
700
VCE = 400V
L = 100 µH
RG = 5 Ω
500
TJ =125°C, VGE=15V
TJ =125°C,VGE=10V
400
300
200
TJ = 25°C, VGE=15V
100
TJ = 25°C, VGE=10V
0
800
Eoff 30A
600
500
400
Eon2 15A
300
Eoff 15A
200
Eon2 7.5A
100
Eoff 7.5A
0
0
500
400
300
200
100
700
Eon2 30A
700
10
20
30
40
50
RG, GATE RESISTANCE (OHMS)
FIGURE 15, Switching Energy Losses vs. Gate Resistance
TJ = 125°C, VGE = 10V or 15V
TJ = 25°C, VGE = 10V or 15V
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 14, Turn Off Energy Loss vs Collector Current
SWITCHING ENERGY LOSSES (µJ)
SWITCHING ENERGY LOSSES (µJ)
5-2006
Rev C
050-7413
VCE = 400V
VGE = +15V
TJ = 125°C
600
VCE = 400V
L = 100 µH
RG = 5 Ω
0
0
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 13, Turn-On Energy Loss vs Collector Current
900
RG =5Ω, L = 100µH, VCE = 400V
5
10
15
20
25
30
ICE, COLLECTOR TO EMITTER CURRENT (A)
FIGURE 12, Current Fall Time vs Collector Current
EOFF, TURN OFF ENERGY LOSS (µJ)
EON2, TURN ON ENERGY LOSS (µJ)
700
TJ = 25°C, VGE = 10V or 15V
40
20
RG =5Ω, L = 100µH, VCE = 400V
0
60
600
VCE = 400V
VGE = +15V
RG = 5 Ω
500
Eon2 30A
Eoff 30A
400
300
200
Eon2 15A
100
0
-50
Eon2 7.5A
Eoff 15A
Eoff 7.5A
-25
0
25
50
75
100 125
TJ, JUNCTION TEMPERATURE (°C)
FIGURE 16, Switching Energy Losses vs Junction Temperature
TYPICAL PERFORMANCE CURVES
4,000
IC, COLLECTOR CURRENT (A)
Cies
P
C, CAPACITANCE ( F)
1,000
500
Coes
100
50
Cres
10
APT15GP60B_S
70
60
50
40
30
20
10
0
0
10
20
30
40
50
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 17, Capacitance vs Collector-To-Emitter Voltage
0
100 200 300 400 500 600 700
VCE, COLLECTOR TO EMITTER VOLTAGE
Figure 18, Minimim Switching Safe Operating Area
0.50
0.9
0.40
0.7
0.30
0.5
0.3
t1
t2
0.10
0
Note:
PDM
0.20
Duty Factor D = t1/t2
0.1
0.05
10-5
Peak TJ = PDM x ZθJC + TC
SINGLE PULSE
10-4
10-3
10-2
10-1
RECTANGULAR PULSE DURATION (SECONDS)
Figure 19A, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
1.0
0.284
0.0060
0.161
ZEXT are the external thermal
impedances: Case to sink,
sink to ambient, etc. Set to
zero when modeling only
the case to junction.
50
10
FIGURE 19B, TRANSIENT THERMAL IMPEDANCE MODEL
TJ = 125°C
TC = 75°C
D = 50 %
VCE = 400V
RG = 5 Ω
5
10
15 20 25 30 35 40 45 50
IC, COLLECTOR CURRENT (A)
Figure 20, Operating Frequency vs Collector Current
Fmax = min(f max1 , f max 2 )
f max1 =
0.05
t d (on ) + t r + t d(off ) + t f
f max 2 =
Pdiss − Pcond
E on 2 + E off
Pdiss =
TJ − TC
R θJC
5-2006
0.216
Dissipated Power
(Watts)
100
Rev C
TC ( C)
050-7413
TJ ( C)
FMAX, OPERATING FREQUENCY (kHz)
292
ZEXT
ZθJC, THERMAL IMPEDANCE (°C/W)
0.60
APT15GP60B_S
Gate Voltage
APT15DF60
10%
TJ = 125 C
td(on)
V CE
IC
V CC
Collector Current
tr
90%
A
5%
D.U.T.
10%
5%
Collector Voltage
Switching Energy
Figure 21, Inductive Switching Test Circuit
Figure 22, Turn-on Switching Waveforms and Definitions
VTEST
*DRIVER SAME TYPE AS D.U.T.
90%
Gate Voltage
TJ = 125 C
Collector Voltage
td(off)
A
tf
V CE
90%
IC
100uH
V CLAMP
10%
0
A
Collector Current
Switching Energy
Figure 24, EON1 Test Circuit
3
TO-247 (B) Package Outline
Collector
5-2006
Rev C
Collector
(Heat Sink)
5.38 (.212)
6.20 (.244)
4.98 (.196)
5.08 (.200)
1.47 (.058)
1.57 (.062)
15.95 (.628)
16.05(.632)
Revised
4/18/95
20.80 (.819)
21.46 (.845)
3.50 (.138)
3.81 (.150)
4.50 (.177) Max.
050-7413
D PAK (S) Package Outline
15.49 (.610)
16.26 (.640)
6.15 (.242) BSC
0.40 (.016)
0.79 (.031)
19.81 (.780)
20.32 (.800)
2.87 (.113)
3.12 (.123)
0.020 (.001)
0.178 (.007)
2.67 (.105)
2.84 (.112)
Gate
Collector
Emitter
2.21 (.087)
2.59 (.102)
1.04 (.041)
1.15(.045)
13.79 (.543)
13.99(.551)
0.46 (.018)
0.56 (.022) {3 Plcs}
1.65 (.065)
2.13 (.084)
1.01 (.040)
1.40 (.055)
D.U.T.
DRIVER*
Figure 23, Turn-off Switching Waveforms and Definitions
4.69 (.185)
5.31 (.209)
1.49 (.059)
2.49 (.098)
B
5.45 (.215) BSC
2-Plcs.
1.27 (.050)
1.40 (.055)
1.22 (.048)
1.32 (.052)
1.98 (.078)
2.08 (.082)
5.45 (.215) BSC
{2 Plcs.}
Emitter
Collector
Gate
Dimensions in Millimeters (Inches)
Dimensions in Millimeters and (Inches)
Microsemi’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522
5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved.
13.41 (.528)
13.51(.532)
Revised
8/29/97
11.51 (.453)
11.61 (.457)
3.81 (.150)
4.06 (.160)
(Base of Lead)
Heat Sink (Collector)
and Leads are Plated