APT15GT60BRDQ1(G) 600V TYPICAL PERFORMANCE CURVES APT15GT60BRDQ1 APT15GT60BRDQ1G* ® *G Denotes RoHS Compliant, Pb Free Terminal Finish. Thunderbolt IGBT® TO -2 47 The Thunderblot IGBT® is a new generation of high voltage power IGBTs. Using Non- Punch Through Technology, the Thunderblot IGBT® offers superior ruggedness and ultrafast switching speed. • Low Forward Voltage Drop • High Freq. Switching to 150KHz • Low Tail Current • Ultra Low Leakage Current G C E C • RBSOA and SCSOA Rated G E MAXIMUM RATINGS Symbol All Ratings: TC = 25°C unless otherwise specified. Parameter APT15GT60BRDQ1(G) VCES Collector-Emitter Voltage 600 VGE Gate-Emitter Voltage ±30 I C1 Continuous Collector Current @ TC = 25°C 42 I C2 Continuous Collector Current @ TC = 110°C 20 I CM SSOA PD TJ,TSTG TL Pulsed Collector Current 1 UNIT Volts Amps 45 Switching Safe Operating Area @ TJ = 150°C 45A @ 600V Total Power Dissipation Watts 184 Operating and Storage Junction Temperature Range -55 to 150 Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec. °C 300 STATIC ELECTRICAL CHARACTERISTICS V(BR)CES Collector-Emitter Breakdown Voltage (VGE = 0V, I C = 500µA) 600 VGE(TH) Gate Threshold Voltage VCE(ON) I CES I GES (VCE = VGE, I C = 700µA, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 25°C) Collector-Emitter On Voltage (VGE = 15V, I C = 15A, Tj = 125°C) Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 25°C) 2 Collector Cut-off Current (VCE = 600V, VGE = 0V, Tj = 125°C) TYP MAX 3 4 5 1.6 2.0 2.5 Gate-Emitter Leakage Current (VGE = ±20V) µA 1500 ±100 CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed. APT Website - http://www.advancedpower.com Volts 2.8 50 2 Units nA 12-2005 MIN Rev A Characteristic / Test Conditions 052-6284 Symbol DYNAMIC CHARACTERISTICS Symbol APT15GT60BRDQ1(G) Test Conditions Characteristic Cies Input Capacitance Coes Output Capacitance Cres Reverse Transfer Capacitance VGEP Gate-to-Emitter Plateau Voltage 3 Qg Total Gate Charge Qge Gate-Emitter Charge Qgc Gate-Collector ("Miller ") Charge SSOA Switching Safe Operating Area td(on) tr td(off) tf Eon1 tf Eon1 f = 1 MHz 50 Gate Charge 7.5 VGE = 15V 75 15V, L = 100µH,VCE = 600V 150 TJ = +25°C 215 6 VCC = 400V 8 VGE = 15V Turn-off Delay Time 100 TJ = +125°C 150 325 RG = 10Ω 44 55 ns 125 I C = 15A Current Fall Time Turn-off Switching Energy µJ 195 Inductive Switching (125°C) Current Rise Time Eoff ns 55 6 Turn-on Switching Energy (Diode) nC 105 RG = 10Ω Turn-on Delay Time Turn-on Switching Energy V A 8 I C = 15A Eon2 pF 45 6 5 UNIT 34 VCC = 400V 4 MAX 6 Inductive Switching (25°C) Current Fall Time Turn-off Switching Energy td(off) 120 TJ = 150°C, R G = 10Ω, VGE = Turn-off Delay Time Eoff tr VGE = 0V, VCE = 25V VGE = 15V Turn-on Switching Energy (Diode) td(on) 830 I C = 15A Current Rise Time Eon2 TYP Capacitance VCE = 300V Turn-on Delay Time Turn-on Switching Energy MIN 6 µJ 325 THERMAL AND MECHANICAL CHARACTERISTICS Symbol Characteristic RθJC Junction to Case (IGBT) RθJC Junction to Case (DIODE) WT Package Weight MIN TYP MAX .68 1.35 5.9 UNIT °C/W gm 1 Repetitive Rating: Pulse width limited by maximum junction temperature. 2 For Combi devices, Ices includes both IGBT and FRED leakages 3 See MIL-STD-750 Method 3471. 052-6284 Rev A 12-2005 4 Eon1 is the clamped inductive turn-on energy of the IGBT only, without the effect of a commutating diode reverse recovery current adding to the IGBT turn-on loss. Tested in inductive switching test circuit shown in figure 21, but with a Silicon Carbide diode. 5 Eon2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the IGBT turn-on switching loss. (See Figures 21, 22.) 6 Eoff is the clamped inductive turn-off energy measured in accordance with JEDEC standard JESD24-1. (See Figures 21, 23.) APT Reserves the right to change, without notice, the specifications and information contained herein. TYPICAL PERFORMANCE CURVES TJ = -55°C 35 30 TJ = 25°C 25 TJ = 125°C 20 15 10 60 30 25 20 15 TJ = 25°C 10 TJ = 125°C 5 0 0 7V 20 6V FIGURE 2, Output Characteristics (TJ = 125°C) 16 VGE, GATE-TO-EMITTER VOLTAGE (V) 35 8V 30 0 5 10 15 20 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) FIGURE 1, Output Characteristics(TJ = 25°C) TJ = -55°C 9V 40 0 250µs PULSE TEST<0.5 % DUTY CYCLE 10V 50 0 40 13V 70 10 0 1 2 3 4 5 VCE, COLLECTER-TO-EMITTER VOLTAGE (V) IC, COLLECTOR CURRENT (A) 80 5 45 15V 90 IC, COLLECTOR CURRENT (A) IC, COLLECTOR CURRENT (A) = 15V J VCE = 120V 12 VCE = 300V 10 8 VCE = 480V 6 4 2 0 2 4 6 8 10 12 VGE, GATE-TO-EMITTER VOLTAGE (V) I = 15A C T = 25°C 14 0 10 IC = 30A 3.5 TJ = 25°C. 250µs PULSE TEST <0.5 % DUTY CYCLE 3.0 2.5 IC = 15A 2.0 1.5 IC = 7.5A 1.0 0.5 0 6 8 10 12 14 16 VGE, GATE-TO-EMITTER VOLTAGE (V) FIGURE 5, On State Voltage vs Gate-to- Emitter Voltage 1.15 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 -50 -25 0 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) FIGURE 7, Threshold Voltage vs. Junction Temperature 80 3.5 IC = 30A 3.0 2.5 IC = 15A 2.0 IC = 7.5A 1.5 1.0 0.5 0 25 VGE = 15V. 250µs PULSE TEST <0.5 % DUTY CYCLE 50 75 100 125 150 TJ, Junction Temperature (°C) FIGURE 6, On State Voltage vs Junction Temperature 60 IC, DC COLLECTOR CURRENT(A) VGS(TH), THRESHOLD VOLTAGE (NORMALIZED) 1.10 70 FIGURE 4, Gate Charge VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) VCE, COLLECTOR-TO-EMITTER VOLTAGE (V) FIGURE 3, Transfer Characteristics 4.0 20 30 40 50 60 GATE CHARGE (nC) 50 40 30 20 10 0 -50 -25 0 25 50 75 100 125 150 TC, CASE TEMPERATURE (°C) FIGURE 8, DC Collector Current vs Case Temperature 12-2005 GE Rev A V 40 APT15GT60BRDQ1(G) 100 052-6284 45 td (OFF), TURN-OFF DELAY TIME (ns) td(ON), TURN-ON DELAY TIME (ns) 8 VGE = 15V 6 4 2 VCE = 400V TJ = 25°C, or 125°C 0 RG = 10Ω L = 100µH 30 tf, FALL TIME (ns) tr, RISE TIME (ns) 20 TJ = 25 or 125°C,VGE = 15V 15 10 VGE =15V,TJ=25°C 60 40 V = 400V 20 RCE= 10Ω G L = 100µH 0 RG = 10Ω, L = 100µH, VCE = 400V TJ = 125°C, VGE = 15V 150 100 50 1000 TJ = 25°C, VGE = 15V 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 11, Current Rise Time vs Collector Current 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 12, Current Fall Time vs Collector Current 600 V = 400V CE V = +15V GE R = 10Ω EOFF, TURN OFF ENERGY LOSS (µJ) EON2, TURN ON ENERGY LOSS (µJ) VGE =15V,TJ=125°C 80 200 0 G 800 TJ = 125°C 600 400 200 TJ = 25°C V = 400V CE V = +15V GE R = 10Ω G 500 TJ = 125°C 400 300 200 TJ = 25°C 100 0 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 13, Turn-On Energy Loss vs Collector Current 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 14, Turn Off Energy Loss vs Collector Current 1200 1000 V = 400V CE V = +15V GE T = 125°C Eon2,30A J 1000 800 Eoff,30A 600 Eon2,15A 400 Eoff,15A Eoff,7.5A 200 0 Eon2,7.5A 0 10 20 30 40 50 RG, GATE RESISTANCE (OHMS) FIGURE 15, Switching Energy Losses vs. Gate Resistance SWITCHING ENERGY LOSSES (µJ) SWITCHING ENERGY LOSSES (µJ) 100 250 RG = 10Ω, L = 100µH, VCE = 400V 5 12-2005 120 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 10, Turn-Off Delay Time vs Collector Current 25 Rev A 140 0 0 5 10 15 20 25 30 35 ICE, COLLECTOR TO EMITTER CURRENT (A) FIGURE 9, Turn-On Delay Time vs Collector Current 052-6284 APT15GT60BRDQ1(G) 160 10 V = 400V CE V = +15V GE R = 10Ω Eon2,30A G 800 600 Eoff,30A 400 Eoff,15A 200 0 Eon2,15A Eoff,7.5A Eon2,7.5A 0 25 50 75 100 125 TJ, JUNCTION TEMPERATURE (°C) FIGURE 16, Switching Energy Losses vs Junction Temperature TYPICAL PERFORMANCE CURVES 500 P C, CAPACITANCE ( F) IC, COLLECTOR CURRENT (A) Cies 1,000 Coes 100 50 APT15GT60BRDQ1(G) 50 2,000 Cres 45 40 35 30 25 20 15 10 5 10 0 10 20 30 40 50 VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Figure 17, Capacitance vs Collector-To-Emitter Voltage 0 0 100 200 300 400 500 600 700 VCE, COLLECTOR TO EMITTER VOLTAGE Figure 18,Minimim Switching Safe Operating Area D = 0.9 0.60 0.7 0.50 0.40 0.5 0.30 Note: 0.3 0.20 0.10 PDM ZθJC, THERMAL IMPEDANCE (°C/W) 0.70 t2 SINGLE PULSE 0.1 t Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 0.05 0 10-5 t1 10-4 10-3 10-2 10-1 RECTANGULAR PULSE DURATION (SECONDS) Figure 19a, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration 1.0 0.271 0.0013 0.00675 0.0969 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 19b, TRANSIENT THERMAL IMPEDANCE MODEL = min (fmax, fmax2) 0.05 fmax1 = td(on) + tr + td(off) + tf 10 T = 125°C J T = 75°C C D = 50 % V = 400V CE R = 10Ω G max fmax2 = Pdiss - Pcond Eon2 + Eoff Pdiss = TJ - TC RθJC 0 5 10 15 20 25 30 IC, COLLECTOR CURRENT (A) Figure 20, Operating Frequency vs Collector Current 12-2005 0.165 F 50 Rev A 0.243 Dissipated Power (Watts) 100 052-6284 TC (°C) ZEXT TJ (°C) FMAX, OPERATING FREQUENCY (kHz) 180 APT15GT60BRDQ1(G) 10% APT15DQ60 Gate Voltage TJ = 125°C IC V CC td(on) V CE tr Collector Current 90% A Switching Energy D.U.T. 90% TJ = 125°C td(off) tf 90% Collector Voltage 10% Switching Energy 0 Collector Current Rev A 12-2005 Figure 23, Turn-off Switching Waveforms and Definitions 052-6284 Collector Voltage Figure 22, Turn-on Switching Waveforms and Definitions Figure 21, Inductive Switching Test Circuit Gate Voltage 5% 10% TYPICAL PERFORMANCE CURVES APT15GT60BRDQ1(G) ULTRAFAST SOFT RECOVERY ANTI-PARALLEL DIODE MAXIMUM RATINGS Symbol IF(AV) IF(RMS) All Ratings: TC = 25°C unless otherwise specified. APT15GT60BRDQ1(G) Characteristic / Test Conditions Maximum Average Forward Current (TC = 129°C, Duty Cycle = 0.5) 15 RMS Forward Current (Square wave, 50% duty) 30 Non-Repetitive Forward Surge Current (TJ = 45°C, 8.3ms) IFSM UNIT Amps 110 STATIC ELECTRICAL CHARACTERISTICS Symbol Characteristic / Test Conditions Forward Voltage VF MIN TYP IF = 15A 2.0 IF = 30A 2.5 IF = 15A, TJ = 125°C 1.5 MAX UNIT Volts DYNAMIC CHARACTERISTICS Symbol Characteristic Test Conditions MIN TYP MAX UNIT trr Reverse Recovery Time I = 1A, di /dt = -100A/µs, V = 30V, T = 25°C F F R J - 15 trr Reverse Recovery Time - 19 Qrr Reverse Recovery Charge - 21 - 2 - 105 ns - 250 nC - 5 - 55 ns - 420 nC - 15 Amps IRRM Reverse Recovery Time Qrr Reverse Recovery Charge IF = 15A, diF/dt = -200A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current trr Reverse Recovery Time Qrr Reverse Recovery Charge IRRM VR = 400V, TC = 25°C Maximum Reverse Recovery Current trr IRRM IF = 15A, diF/dt = -200A/µs IF = 15A, diF/dt = -1000A/µs VR = 400V, TC = 125°C Maximum Reverse Recovery Current ns nC - - Amps Amps D = 0.9 1.20 1.00 0.7 0.80 0.5 Note: 0.3 0.40 t1 t2 0.20 t 0.1 SINGLE PULSE 0.05 10-3 10-2 10-1 1.0 RECTANGULAR PULSE DURATION (seconds) FIGURE 24a. MAXIMUM EFFECTIVE TRANSIENT THERMAL IMPEDANCE, JUNCTION-TO-CASE vs. PULSE DURATION TJ (°C) 12-2005 10-4 TC (°C) 0.583 0.767 Dissipated Power (Watts) 0.0022 0.060 ZEXT are the external thermal impedances: Case to sink, sink to ambient, etc. Set to zero when modeling only the case to junction. FIGURE 24b, TRANSIENT THERMAL IMPEDANCE MODEL Rev A 10-5 Duty Factor D = 1/t2 Peak TJ = PDM x ZθJC + TC 052-6284 0 PDM 0.60 ZEXT ZθJC, THERMAL IMPEDANCE (°C/W) 1.40 50 120 trr, REVERSE RECOVERY TIME (ns) 140 TJ = 175°C 40 TJ = 125°C 30 20 10 0 TJ = 25°C TJ = -55°C 0 1 2 3 4 VF, ANODE-TO-CATHODE VOLTAGE (V) Figure 25. Forward Current vs. Forward Voltage Qrr, REVERSE RECOVERY CHARGE (nC) 700 R 30A 500 400 15A 300 7.5A 200 100 0 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 27. Reverse Recovery Charge vs. Current Rate of Change CJ, JUNCTION CAPACITANCE (pF) 40 20 T =125°C J V =400V R 20 30A 15 10 15A 7.5A 5 Duty cycle = 0.5 T =175°C J 30 25 IRRM 0.6 trr 0.4 Qrr 20 15 10 5 0 90 12-2005 7.5A 60 35 0.8 25 50 75 100 125 150 TJ, JUNCTION TEMPERATURE (°C) Figure 29. Dynamic Parameters vs. Junction Temperature Rev A 15A 80 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE (A/µs) Figure 28. Reverse Recovery Current vs. Current Rate of Change trr 0.2 052-6284 30A 100 0 Qrr 1.0 80 70 60 50 40 30 20 10 0 R 0 200 400 600 800 1000 1200 1400 1600 -diF /dt, CURRENT RATE OF CHANGE(A/µs) Figure 26. Reverse Recovery Time vs. Current Rate of Change IF(AV) (A) Kf, DYNAMIC PARAMETERS (Normalized to 1000A/µs) 1.2 0.0 T =125°C J V =400V 25 T =125°C J V =400V 600 APT15GT60BRDQ1(G) 0 IRRM, REVERSE RECOVERY CURRENT (A) IF, FORWARD CURRENT (A) 60 1 10 100 200 VR, REVERSE VOLTAGE (V) Figure 31. Junction Capacitance vs. Reverse Voltage 0 25 50 75 100 125 150 175 Case Temperature (°C) Figure 30. Maximum Average Forward Current vs. CaseTemperature TYPICAL PERFORMANCE CURVES APT15GT60BRDQ1(G) Vr diF /dt Adjust +18V APT6017LLL 0V D.U.T. 30µH trr/Qrr Waveform PEARSON 2878 CURRENT TRANSFORMER Figure 32. Diode Test Circuit 1 IF - Forward Conduction Current 2 diF /dt - Rate of Diode Current Change Through Zero Crossing. 3 IRRM - Maximum Reverse Recovery Current. 4 trr - Reverse Recovery Time, measured from zero crossing where diode current goes from positive to negative, to the point at which the straight line through IRRM and 0.25 IRRM passes through zero. 5 1 4 Zero 5 3 0.25 IRRM 2 Qrr - Area Under the Curve Defined by IRRM and trr. Figure 33, Diode Reverse Recovery Waveform and Definitions TO-247 Package Outline e1 SAC: Tin, Silver, Copper 4.69 (.185) 5.31 (.209) 1.49 (.059) 2.49 (.098) 15.49 (.610) 16.26 (.640) 6.15 (.242) BSC 5.38 (.212) 6.20 (.244) Collector (Cathode) 20.80 (.819) 21.46 (.845) 3.55 (.138) 3.81 (.150) 2.21 (.087) 2.59 (.102) 1.65 (.065) 2.13 (.084) 1.01 (.040) 1.40 (.055) Gate Collector (Cathode) Emitter (Anode) 5.45 (.215) BSC 2-Plcs. Dimensions in Millimeters and (Inches) APT’s products are covered by one or more of U.S.patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. US and Foreign patents pending. All Rights Reserved. 12-2005 19.81 (.780) 20.32 (.800) Rev A 0.40 (.016) 0.79 (.031) 2.87 (.113) 3.12 (.123) 052-6284 4.50 (.177) Max.