PD - 96324 AUTOMOTIVE GRADE AUIRFS4310 AUIRFSL4310 HEXFET® Power MOSFET Features l l l l l l l Advanced Process Technology Ultra Low On-Resistance 175°C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS D 100V RDS(on) typ. max. G S Description Specifically designed for Automotive applications, this HEXFET® Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175°C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. 7.0mΩ ID (Silicon Limited) 130A c ID (Package Limited) 75A S D G S D G D2Pak AUIRFS4310 Absolute Maximum Ratings 5.6mΩ TO-262 AUIRFSL4310 G D S Gate Drain Source Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25°C, unless otherwise specified. Parameter ID @ TC = 25°C ID @ TC = 100°C ID @ TC = 25°C IDM PD @TC = 25°C VGS EAS IAR EAR dV/dt TJ TSTG Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally limited) Avalanche Current Repetitive Avalanche Energy Peak Diode Recovery Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting torque, 6-32 or M3 screw d e d Units c c 130 92 75 550 300 2.0 ± 20 980 See Fig. 14, 15, 22a, 22b, f 14 -55 to + 175 300 (1.6mm from case) 10lb in (1.1N m) x A W W/°C V mJ A mJ V/ns °C x Thermal Resistance Parameter RθJC RθJA k Junction-to-Case Junction-to-Ambient (PCB Mount) j Typ. Max. Units ––– ––– 0.50 40 °C/W HEXFET® is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ www.irf.com 1 07/20/10 AUIRFS/SL4310 Static Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units V(BR)DSS ∆V(BR)DSS/∆TJ RDS(on) VGS(th) gfs RG IDSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Gate Input Resistance Drain-to-Source Leakage Current IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage 100 ––– ––– ––– 0.064 ––– ––– 5.6 7.0 2.0 ––– 4.0 160 ––– ––– ––– 1.4 ––– ––– ––– 20 ––– ––– 250 ––– ––– 200 ––– ––– -200 Conditions V VGS = 0V, ID = 250µA V/°C Reference to 25°C, ID = 1mA mΩ VGS = 10V, ID = 75A V VDS = VGS, ID = 250µA S VDS = 50V, ID = 75A Ω f = 1MHz, open drain VDS = 100V, VGS = 0V µA VDS = 100V, VGS = 0V, TJ = 125°C VGS = 20V nA VGS = -20V Dynamic Electrical Characteristics @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Coss eff. (ER) Coss eff. (TR) Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Effective Output Capacitance (Time Related) ––– 170 ––– 46 ––– 62 ––– 26 ––– 110 ––– 68 ––– 78 ––– 7670 ––– 540 ––– 280 ––– 650 ––– 720.1 250 ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– ––– d g nC ns pF Conditions ID = 75A VDS = 80V VGS = 10V VDD = 65V ID = 75A RG = 2.6Ω VGS = 10V VGS = 0V VDS = 50V ƒ = 1.0MHz VGS = 0V, VDS = 0V to 80V VGS = 0V, VDS = 0V to 80V g g i, See Fig.11 h, See Fig. 5 Diode Characteristics Parameter IS Continuous Source Current VSD trr (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Reverse Recovery Time Qrr Reverse Recovery Charge IRRM ton Reverse Recovery Current Forward Turn-On Time ISM di Notes: Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 75A Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25°C, L = 0.35mH RG = 25Ω, IAS = 75A, VGS =10V. Part not recommended for use above this value. ISD ≤ 75A, di/dt ≤ 550A/µs, VDD ≤ V(BR)DSS, TJ ≤ 175°C. Pulse width ≤ 400µs; duty cycle ≤ 2%. 2 Min. Typ. Max. Units ––– ––– ––– 130 ––– c 550 Conditions MOSFET symbol A D showing the integral reverse G p-n junction diode. ––– ––– 1.3 V TJ = 25°C, IS = 75A, VGS = 0V TJ = 25°C VR = 85V, ––– 45 68 ns TJ = 125°C IF = 75A ––– 55 83 di/dt = 100A/µs TJ = 25°C ––– 82 120 nC T = 125°C ––– 120 180 J ––– 3.3 ––– A TJ = 25°C Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) g S g Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994. Rθ is measured at TJ approximately 90°C. www.irf.com AUIRFS/SL4310 Qualification Information† Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model †† Comments: This part number(s) passed Automotive qualification. IR’s Industrial and Consumer qualification level is granted by extension of the higher Automotive level. TO-262 2 D PAK N/A MSL1 Class M4(425V) (per AEC-Q101-002) ESD Human Body Model (per AEC-Q101-001) Charged Device Model RoHS Compliant Class H2(4000V) Class C4 (1000V) (per AEC-Q101-005) Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRFS/SL4310 1000 1000 100 BOTTOM 10 BOTTOM 100 4.5V ≤ 60µs PULSE WIDTH Tj = 25°C 4.5V 0.1 1 10 0.1 100 Fig 1. Typical Output Characteristics 10 100 Fig 2. Typical Output Characteristics 3.0 RDS(on) , Drain-to-Source On Resistance (Normalized) 1000 ID, Drain-to-Source Current(Α) 1 VDS , Drain-to-Source Voltage (V) VDS , Drain-to-Source Voltage (V) 100 TJ = 175°C 10 TJ = 25°C VDS = 50V ≤ 60µs PULSE WIDTH 1 3.0 4.0 5.0 6.0 7.0 ID = 75A VGS = 10V 2.5 2.0 1.5 1.0 0.5 8.0 -60 -40 -20 VGS, Gate-to-Source Voltage (V) 12000 VGS, Gate-to-Source Voltage (V) Coss = Cds + Cgd Ciss 8000 6000 4000 2000 Coss Crss ID= 75A VDS = 80V VDS= 50V VDS= 20V 16 12 8 4 0 0 1 20 40 60 80 100 120 140 160 180 Fig 4. Normalized On-Resistance vs. Temperature 20 VGS = 0V, f = 1 MHZ Ciss = Cgs + Cgd, Cds SHORTED Crss = Cgd 10000 0 TJ , Junction Temperature (°C) Fig 3. Typical Transfer Characteristics C, Capacitance (pF) ≤ 60µs PULSE WIDTH Tj = 175°C 10 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 5. Typical Capacitance vs. Drain-to-Source Voltage 4 VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V TOP ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 15V 10V 8.0V 6.0V 5.5V 5.0V 4.8V 4.5V 0 40 80 120 160 200 240 280 QG Total Gate Charge (nC) Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage www.irf.com AUIRFS/SL4310 10000 TJ = 175°C ID, Drain-to-Source Current (A) ISD , Reverse Drain Current (A) 1000.0 100.0 10.0 TJ = 25°C 1.0 OPERATION IN THIS AREA LIMITED BY R DS (on) 1000 100 100µsec 10 1 VGS = 0V 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1 V(BR)DSS , Drain-to-Source Breakdown Voltage 140 Limited By Package 100 80 60 40 20 0 25 50 75 100 125 150 100 1000 Fig 8. Maximum Safe Operating Area Fig 7. Typical Source-Drain Diode Forward Voltage 120 10 VDS , Drain-toSource Voltage (V) VSD , Source-to-Drain Voltage (V) ID, Drain Current (A) 10msec DC 0.1 0.1 120 115 110 105 100 -60 -40 -20 0 175 20 40 60 80 100 120 140 160 180 TJ , Junction Temperature (°C) T C , Case Temperature (°C) Fig 9. Maximum Drain Current vs. Case Temperature Fig 10. Drain-to-Source Breakdown Voltage EAS, Single Pulse Avalanche Energy (mJ) 4.0 3.5 3.0 Energy (µJ) 1msec Tc = 25°C Tj = 175°C Single Pulse 2.5 2.0 1.5 1.0 0.5 0.0 2400 I D 12A 17A BOTTOM 75A TOP 2000 1600 1200 800 400 0 0 20 40 60 80 100 VDS, Drain-to-Source Voltage (V) Fig 11. Typical COSS Stored Energy www.irf.com 120 25 50 75 100 125 150 175 Starting TJ, Junction Temperature (°C) Fig 12. Maximum Avalanche Energy Vs. DrainCurrent 5 AUIRFS/SL4310 1 Thermal Response ( ZthJC ) D = 0.50 0.1 0.20 0.10 0.05 0.02 0.01 0.01 τJ R1 R1 τJ τ1 R2 R2 τC τ2 τ1 τ Ri (°C/W) τi (sec) 0.1962 0.00117 0.2542 τ2 0.016569 Ci= τi/Ri Ci i/Ri 0.001 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 t1 , Rectangular Pulse Duration (sec) Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆ Tj = 150°C and Tstart =25°C (Single Pulse) Avalanche Current (A) Duty Cycle = Single Pulse 0.01 0.05 10 0.10 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming ∆Τ j = 25°C and Tstart = 150°C. 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Fig 14. Typical Avalanche Current vs.Pulsewidth EAR , Avalanche Energy (mJ) 1000 Notes on Repetitive Avalanche Curves , Figures 14, 15: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long as neither Tjmax nor Iav (max) is exceeded. 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. ∆T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25°C in Figure 14, 15). tav = Average time in avalanche. D = Duty cycle in avalanche = tav ·f ZthJC(D, tav) = Transient thermal resistance, see Figures 13) TOP Single Pulse BOTTOM 1% Duty Cycle ID = 75A 800 600 400 200 0 25 50 75 100 125 150 175 Starting TJ , Junction Temperature (°C) Fig 15. Maximum Avalanche Energy vs. Temperature 6 PD (ave) = 1/2 ( 1.3·BV·Iav) = DT/ ZthJC Iav = 2DT/ [1.3·BV·Zth] EAS (AR) = PD (ave)·tav www.irf.com AUIRFS/SL4310 20 ID = 1.0A ID = 1.0mA ID = 250µA 4.0 16 IRRM - (A) VGS(th) Gate threshold Voltage (V) 5.0 3.0 12 8 IF = 30A VR = 85V 2.0 4 1.0 TJ = 125°C TJ = 25°C 0 -75 -50 -25 0 25 50 75 100 125 150 175 100 200 300 400 500 600 700 800 900 1000 TJ , Temperature ( °C ) dif / dt - (A / µs) Fig. 17 - Typical Recovery Current vs. dif/dt 20 500 16 400 QRR - (nC) IRRM - (A) Fig 16. Threshold Voltage Vs. Temperature 12 8 IF = 45A VR = 85V 4 300 200 IF = 30A VR = 85V 100 TJ = 125°C TJ = 25°C TJ = 125°C TJ = 25°C 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) dif / dt - (A / µs) Fig. 19 - Typical Stored Charge vs. dif/dt Fig. 18 - Typical Recovery Current vs. dif/dt 500 QRR - (nC) 400 300 200 100 IF = 45A VR = 85V TJ = 125°C TJ = 25°C 0 100 200 300 400 500 600 700 800 900 1000 dif / dt - (A / µs) www.irf.com Fig. 20 - Typical Stored Charge vs. dif/dt 7 AUIRFS/SL4310 D.U.T Driver Gate Drive - - - * D.U.T. ISD Waveform Reverse Recovery Current + RG • • • • dv/dt controlled by RG Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer + D= Period P.W. + + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Current Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 21. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs V(BR)DSS 15V D.U.T RG VGS 20V DRIVER L VDS tp + V - DD IAS tp A 0.01Ω I AS Fig 22a. Unclamped Inductive Test Circuit LD Fig 22b. Unclamped Inductive Waveforms VDS VDS 90% + VDD - 10% D.U.T VGS VGS Pulse Width < 1µs Duty Factor < 0.1% td(on) Fig 23a. Switching Time Test Circuit tr td(off) tf Fig 23b. Switching Time Waveforms Id Vds Vgs L DUT 0 VCC Vgs(th) 1K Qgs1 Qgs2 8 Fig 24a. Gate Charge Test Circuit Qgd Qgodr Fig 24b. Gate Charge Waveform www.irf.com AUIRFS/SL4310 TO-262 Package Outline Dimensions are shown in millimeters (inches) TO-262 Part Marking Information Part Number AUIRFSL4310 YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, Lead Free XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ www.irf.com 9 AUIRFS/SL4310 D2Pak (TO-263AB) Package Outline Dimensions are shown in millimeters (inches) D2Pak (TO-263AB) Part Marking Information Part Number AUIRFS4310 YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, Lead Free XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com AUIRFS/SL4310 D2Pak (TO-263AB) Tape & Reel Information TRR 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) FEED DIRECTION 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 11.60 (.457) 11.40 (.449) 0.368 (.0145) 0.342 (.0135) 15.42 (.609) 15.22 (.601) 24.30 (.957) 23.90 (.941) TRL 10.90 (.429) 10.70 (.421) 1.75 (.069) 1.25 (.049) 4.72 (.136) 4.52 (.178) 16.10 (.634) 15.90 (.626) FEED DIRECTION 13.50 (.532) 12.80 (.504) 27.40 (1.079) 23.90 (.941) 4 330.00 (14.173) MAX. NOTES : 1. COMFORMS TO EIA-418. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION MEASURED @ HUB. 4. INCLUDES FLANGE DISTORTION @ OUTER EDGE. www.irf.com 60.00 (2.362) MIN. 30.40 (1.197) MAX. 26.40 (1.039) 24.40 (.961) 3 4 11 AUIRFS/SL4310 Ordering Information Base part number AUIRFSL4310 AUIRFS4310 12 Package Type TO-262 D2Pak Standard Pack Form Tube Tube Tape and Reel Left Tape and Reel Right Complete Part Number Quantity 50 50 800 800 AUIRFSL4310 AUIRFS4310 AUIRFS4310TRL AUIRFS4310TRR www.irf.com AUIRFS/SL4310 IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the “AU” prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR’s terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR’s standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or “enhanced plastic.” Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer’s risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation “AU”. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR’s Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 www.irf.com 13