BF964S Vishay Telefunken N–Channel Dual Gate MOS-Fieldeffect Tetrode, Depletion Mode Electrostatic sensitive device. Observe precautions for handling. Applications Input- and mixer stages especially VHF TV-tuners. Features D Integrated gate protection diodes D High cross modulation performance D Low noise figure D High AGC-range D Low feedback capacitance D Low input capacitance 3 G2 D 4 2 G1 94 9307 96 12647 1 BF964S Marking: BF964S Plastic case (TO 50) 1=Drain, 2=Source, 3=Gate 1, 4=Gate 2 S 12623 Absolute Maximum Ratings Tamb = 25_C, unless otherwise specified Parameter Drain - source voltage Drain current Gate 1/Gate 2 - source peak current Total power dissipation Channel temperature Storage temperature range Test Conditions Type Tamb ≤ 60 °C Symbol Value VDS 20 ID 30 ±IG1/G2SM 10 Ptot 200 TCh 150 Tstg –55 to +150 Unit V mA mA mW °C °C Symbol RthChA Unit K/W Maximum Thermal Resistance Tamb = 25_C, unless otherwise specified Parameter Test Conditions Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm3 plated with 35mm Cu Document Number 85003 Rev. 3, 20-Jan-99 Value 450 www.vishay.com 1 (8) BF964S Vishay Telefunken Electrical DC Characteristics Tamb = 25_C, unless otherwise specified Parameter Drain - source breakdown voltage Gate 1 - source breakdown voltage Gate 2 - source breakdown voltage Gate 1 - source leakage current Gate 2 - source leakage current Drain current Test Conditions ID = 10 mA, –VG1S = –VG2S = 4 V Gate 1 - source cut-off voltage Gate 2 - source cut-off voltage VDS = 15 V, VG2S = 4 V, ID = 20 mA VDS = 15 V, VG1S = 0, ID = 20 mA Type Symbol V(BR)DS Min 20 ±IG1S = 10 mA, VG2S = VDS = 0 ±V(BR)G1SS ±IG2S = 10 mA, VG1S = VDS = 0 ±V(BR)G2SS Typ Max Unit V 8 14 V 8 14 V ±VG1S = 5 V, VG2S = VDS = 0 ±IG1SS 50 nA ±VG2S = 5 V, VG1S = VDS = 0 ±IG2SS 50 nA –VG1S(OFF) 18 10.5 18 2.5 mA mA mA V –VG2S(OFF) 2.0 V Max Unit mS pF pF fF pF dB dB dB VDS = 15 V, VG1S = 0, VG2S = 4 V BF964S BF964SA BF964SB IDSS IDSS IDSS 4 4 9.5 Electrical AC Characteristics VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified Parameter Forward transadmittance Gate 1 input capacitance Gate 2 input capacitance Feedback capacitance Output capacitance Power gain AGC range Noise figure www.vishay.com 2 (8) Test Conditions VG1S = 0, VG2S = 4 V GS = 2 mS, GL = 0.5 mS, f = 200 MHz VG2S = 4 to –2 V, f = 200 MHz GS = 2 mS, GL = 0.5 mS, f = 200 MHz Symbol y21s Cissg1 Cissg2 Crss Coss Gps DGps F Min 15 Typ 18.5 2.5 1.2 25 1.0 25 50 1.0 3.0 35 1.3 Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken Typical Characteristics (Tamb = 25_C unless otherwise specified) 80 70 250 ID – Drain Current ( mA ) P tot – Total Power Dissipation ( mW ) 300 200 150 100 50 20 40 60 80 50 2V 40 1V 30 20 100 120 140 160 Tamb – Ambient Temperature ( °C ) 96 12159 0V –1V –1 0 1 2 3 4 5 VG2S – Gate 2 Source Voltage ( V ) 12764 Figure 1. Total Power Dissipation vs. Ambient Temperature Figure 4. Drain Current vs. Gate 2 Source Voltage 4.0 VG1S= 2V 32 C issg1 – Gate 1 Input Capacitance ( pF ) 36 ID – Drain Current ( mA ) 3V 0 0 1.5V 1V 28 VG2S= 4V 24 0.5V 20 16 0V 12 8 –0.5V 4 –1V 0 0 2 4 6 8 10 12 14 VDS=15V VG2S=4V f=1MHz 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 0 16 VDS – Drain Source Voltage ( V ) 12762 3 6 9 12 15 18 21 24 27 30 ID – Drain Current ( mA ) 12765 Figure 2. Drain Current vs. Drain Source Voltage Figure 5. Gate 1 Input Capacitance vs. Drain Current 100 2.00 VG2S= 6V VDS= 15V 80 C oss – Output Capacitance ( pF ) 90 ID – Drain Current ( mA ) 60 10 0 5V 70 4V 60 50 3V 40 2V 30 1V 20 0V –1V 10 0 –1 12763 VG1S= 4V VDS= 15V 0 1 2 3 4 Figure 3. Drain Current vs. Gate 1 Source Voltage Document Number 85003 Rev. 3, 20-Jan-99 12766 VG2S=4V ID=10mA f=1MHz 1.50 1.25 1.00 0.75 0.50 0.25 0 0 5 VG1S – Gate 1 Source Voltage ( V ) 1.75 2 4 6 8 10 12 14 16 18 20 VDS – Drain Source Voltage ( V ) Figure 6. Output Capacitance vs. Drain Source Voltage www.vishay.com 3 (8) BF964S Vishay Telefunken 20 VDS=15V VG1S=0 f=1MHz 3.6 3.2 2.4 2.0 1.6 1.2 2 0 –1 0 1 2 3 4 5 6 –20 0V –30 –0.5V –40 –1V 0 100MHz 0 2 4 6 8 10 12 14 16 18 20 Re (y11) ( mS ) 12770 Figure 10. Short Circuit Input Admittance 0.3 f=1300MHz 0.2 ID=5mA Im ( y12) ( mS ) –10 4V 3V 2V 1V f= 200MHz VDS=15V VG2S=4V f=100...1300MHz 400MHz 6 0 10 – Transducer Gain ( dB ) 8 0.4 VG2S – Gate 2 Source Voltage ( V ) 10mA 20mA 0.1 1000MHz 0.0 –50 –60 VG2S=–2...–3V –70 –5 –4 –3 –2 –1 0 1 2 VDS=15V VG2S=4V f=100...1300MHz 0 0.1 0.3 0.2 0.4 0.5 Re (y12) ( mS ) 12772 Figure 8. Transducer Gain vs. Gate 1 Source Voltage 24 22 20 18 16 14 12 10 8 6 4 2 0 700MHz –0.1 3 VG1S – Gate 1 Source Voltage ( V ) 12768 ID=20mA 700MHz 10 4 –2 1000MHz 12 0.8 Figure 7. Gate 2 Input Capacitance vs. Gate 2 Source Voltage 2 ID=10mA 14 –3 S 21 ID=5mA 16 2.8 12767 Figure 11. Short Circuit Reverse Transfer Admittance 5 VG2S=4V VDS=15V f=1MHz VDS=15V VG2S=4V f=100...1300MHz 0 –5 3V Im ( y21) ( mS ) Y21S – Forward Transadmittance ( mS ) f=1300MHz 18 Im ( y11 ) ( mS ) C issg2 – Gate 2 Input Capacitance ( pF ) 4.0 2V –10 ID=5mA 10mA 20mA –15 1V 400MHz –20 700MHz –25 1000MHz –30 0V f=100MHz 1300MHz –35 0.5V –40 0 12769 5 10 15 20 25 30 ID – Drain Current ( mA ) Figure 9. Forward Transadmittance vs. Drain Current www.vishay.com 4 (8) –8 12771 –4 0 4 8 12 16 20 24 Re (y21) ( mS ) Figure 12. Short Circuit Forward Transfer Admittance Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken 8 f=1300MHz 7 ID=10mA Im ( y22) ( mS ) 6 20mA ID=5mA 1000MHz 5 700MHz 4 3 400MHz 2 1 VDS=15V VG2S=4V f=100...1300MHz 100MHz 0 0 0.5 1.0 1.5 2.0 2.5 Re (y22) ( mS ) 12773 Figure 13. Short Circuit Output Admittance Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.com 5 (8) BF964S Vishay Telefunken VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V , Z0 = 50 W S12 S11 j 90° 120° j0.5 150° j0.2 0 j5 ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ ÁÁÁ ÁÁÁ ÁÁÁÁÁÁ 0.2 0.5 1 2 5 1300MHz 1 400 100 180° 0.008 0.016 1000 700 0° ID= 20mA 10mA –30° 5mA –j5 400 –j0.5 30° 1300MHz 1000 100 –j0.2 60° j2 –150° –j2 –120° –j 12 924 –60° –90° 12 925 Figure 14. Input reflection coefficient Figure 16. Reverse transmission coefficient S21 S22 j 90° 120° 60° 700 400 j0.5 j2 1000 150° 30° j0.2 j5 1300MHz 100 180° 0.8 1.6 0° ID= 20mA 10mA –30° –30° 5mA –150° ÁÁÁÁ ÁÁÁÁÁÁ 0 0.2 0.5 1 12 926 100 1 –j5 1300MHz –j2 –60° –90° Figure 15. Forward transmission coefficient www.vishay.com 6 (8) 5 700 –j0.2 –j0.5 –120° 2 12 927 –j Figure 17. Output reflection coefficient Document Number 85003 Rev. 3, 20-Jan-99 BF964S Vishay Telefunken Dimensions in mm 96 12242 Document Number 85003 Rev. 3, 20-Jan-99 www.vishay.com 7 (8) BF964S Vishay Telefunken Ozone Depleting Substances Policy Statement It is the policy of Vishay Semiconductor GmbH to 1. Meet all present and future national and international statutory requirements. 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment. It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances ( ODSs ). The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances. Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents. 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively 2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency ( EPA ) in the USA 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively. Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances. We reserve the right to make changes to improve technical design and may do so without further notice. Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use. Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423 www.vishay.com 8 (8) Document Number 85003 Rev. 3, 20-Jan-99