ETC BF964SA

BF964S
Vishay Telefunken
N–Channel Dual Gate MOS-Fieldeffect Tetrode,
Depletion Mode
Electrostatic sensitive device.
Observe precautions for handling.
Applications
Input- and mixer stages especially VHF TV-tuners.
Features
D Integrated gate protection diodes
D High cross modulation performance
D Low noise figure
D High AGC-range
D Low feedback capacitance
D Low input capacitance
3
G2
D
4
2
G1
94 9307
96 12647
1
BF964S Marking: BF964S
Plastic case (TO 50)
1=Drain, 2=Source, 3=Gate 1, 4=Gate 2
S
12623
Absolute Maximum Ratings
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source voltage
Drain current
Gate 1/Gate 2 - source peak current
Total power dissipation
Channel temperature
Storage temperature range
Test Conditions
Type
Tamb ≤ 60 °C
Symbol
Value
VDS
20
ID
30
±IG1/G2SM
10
Ptot
200
TCh
150
Tstg
–55 to +150
Unit
V
mA
mA
mW
°C
°C
Symbol
RthChA
Unit
K/W
Maximum Thermal Resistance
Tamb = 25_C, unless otherwise specified
Parameter
Test Conditions
Channel ambient on glass fibre printed board (40 x 25 x 1.5) mm3
plated with 35mm Cu
Document Number 85003
Rev. 3, 20-Jan-99
Value
450
www.vishay.com
1 (8)
BF964S
Vishay Telefunken
Electrical DC Characteristics
Tamb = 25_C, unless otherwise specified
Parameter
Drain - source
breakdown voltage
Gate 1 - source
breakdown voltage
Gate 2 - source
breakdown voltage
Gate 1 - source
leakage current
Gate 2 - source
leakage current
Drain current
Test Conditions
ID = 10 mA, –VG1S = –VG2S = 4 V
Gate 1 - source
cut-off voltage
Gate 2 - source
cut-off voltage
VDS = 15 V, VG2S = 4 V, ID = 20 mA
VDS = 15 V, VG1S = 0, ID = 20 mA
Type
Symbol
V(BR)DS
Min
20
±IG1S = 10 mA, VG2S = VDS = 0
±V(BR)G1SS
±IG2S = 10 mA, VG1S = VDS = 0
±V(BR)G2SS
Typ
Max
Unit
V
8
14
V
8
14
V
±VG1S = 5 V, VG2S = VDS = 0
±IG1SS
50
nA
±VG2S = 5 V, VG1S = VDS = 0
±IG2SS
50
nA
–VG1S(OFF)
18
10.5
18
2.5
mA
mA
mA
V
–VG2S(OFF)
2.0
V
Max
Unit
mS
pF
pF
fF
pF
dB
dB
dB
VDS = 15 V, VG1S = 0, VG2S = 4 V
BF964S
BF964SA
BF964SB
IDSS
IDSS
IDSS
4
4
9.5
Electrical AC Characteristics
VDS = 15 V, ID = 10 mA, VG2S = 4 V, f = 1 MHz , Tamb = 25_C, unless otherwise specified
Parameter
Forward transadmittance
Gate 1 input capacitance
Gate 2 input capacitance
Feedback capacitance
Output capacitance
Power gain
AGC range
Noise figure
www.vishay.com
2 (8)
Test Conditions
VG1S = 0, VG2S = 4 V
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
VG2S = 4 to –2 V, f = 200 MHz
GS = 2 mS, GL = 0.5 mS, f = 200 MHz
Symbol
y21s
Cissg1
Cissg2
Crss
Coss
Gps
DGps
F
Min
15
Typ
18.5
2.5
1.2
25
1.0
25
50
1.0
3.0
35
1.3
Document Number 85003
Rev. 3, 20-Jan-99
BF964S
Vishay Telefunken
Typical Characteristics (Tamb = 25_C unless otherwise specified)
80
70
250
ID – Drain Current ( mA )
P tot – Total Power Dissipation ( mW )
300
200
150
100
50
20
40
60
80
50
2V
40
1V
30
20
100 120 140 160
Tamb – Ambient Temperature ( °C )
96 12159
0V
–1V
–1
0
1
2
3
4
5
VG2S – Gate 2 Source Voltage ( V )
12764
Figure 1. Total Power Dissipation vs.
Ambient Temperature
Figure 4. Drain Current vs. Gate 2 Source Voltage
4.0
VG1S= 2V
32
C issg1 – Gate 1 Input Capacitance ( pF )
36
ID – Drain Current ( mA )
3V
0
0
1.5V
1V
28
VG2S= 4V
24
0.5V
20
16
0V
12
8
–0.5V
4
–1V
0
0
2
4
6
8
10
12
14
VDS=15V
VG2S=4V
f=1MHz
3.5
3.0
2.5
2.0
1.5
1.0
0.5
0
0
16
VDS – Drain Source Voltage ( V )
12762
3
6
9
12 15 18 21 24 27 30
ID – Drain Current ( mA )
12765
Figure 2. Drain Current vs. Drain Source Voltage
Figure 5. Gate 1 Input Capacitance vs. Drain Current
100
2.00
VG2S= 6V
VDS= 15V
80
C oss – Output Capacitance ( pF )
90
ID – Drain Current ( mA )
60
10
0
5V
70
4V
60
50
3V
40
2V
30
1V
20
0V
–1V
10
0
–1
12763
VG1S= 4V
VDS= 15V
0
1
2
3
4
Figure 3. Drain Current vs. Gate 1 Source Voltage
Document Number 85003
Rev. 3, 20-Jan-99
12766
VG2S=4V
ID=10mA
f=1MHz
1.50
1.25
1.00
0.75
0.50
0.25
0
0
5
VG1S – Gate 1 Source Voltage ( V )
1.75
2
4
6
8
10 12 14 16 18 20
VDS – Drain Source Voltage ( V )
Figure 6. Output Capacitance vs. Drain Source Voltage
www.vishay.com
3 (8)
BF964S
Vishay Telefunken
20
VDS=15V
VG1S=0
f=1MHz
3.6
3.2
2.4
2.0
1.6
1.2
2
0
–1
0
1
2
3
4
5
6
–20
0V
–30
–0.5V
–40
–1V
0
100MHz
0
2
4
6
8
10 12 14 16 18 20
Re (y11) ( mS )
12770
Figure 10. Short Circuit Input Admittance
0.3
f=1300MHz
0.2
ID=5mA
Im ( y12) ( mS )
–10
4V
3V
2V
1V
f= 200MHz
VDS=15V
VG2S=4V
f=100...1300MHz
400MHz
6
0
10
– Transducer Gain ( dB )
8
0.4
VG2S – Gate 2 Source Voltage ( V )
10mA
20mA
0.1
1000MHz
0.0
–50
–60
VG2S=–2...–3V
–70
–5
–4
–3
–2
–1
0
1
2
VDS=15V
VG2S=4V
f=100...1300MHz
0
0.1
0.3
0.2
0.4
0.5
Re (y12) ( mS )
12772
Figure 8. Transducer Gain vs. Gate 1 Source Voltage
24
22
20
18
16
14
12
10
8
6
4
2
0
700MHz
–0.1
3
VG1S – Gate 1 Source Voltage ( V )
12768
ID=20mA
700MHz
10
4
–2
1000MHz
12
0.8
Figure 7. Gate 2 Input Capacitance vs.
Gate 2 Source Voltage
2
ID=10mA
14
–3
S 21
ID=5mA
16
2.8
12767
Figure 11. Short Circuit Reverse Transfer Admittance
5
VG2S=4V
VDS=15V
f=1MHz
VDS=15V
VG2S=4V
f=100...1300MHz
0
–5
3V
Im ( y21) ( mS )
Y21S – Forward Transadmittance ( mS )
f=1300MHz
18
Im ( y11 ) ( mS )
C issg2 – Gate 2 Input Capacitance ( pF )
4.0
2V
–10
ID=5mA
10mA
20mA
–15
1V
400MHz
–20
700MHz
–25
1000MHz
–30
0V
f=100MHz
1300MHz
–35
0.5V
–40
0
12769
5
10
15
20
25
30
ID – Drain Current ( mA )
Figure 9. Forward Transadmittance vs. Drain Current
www.vishay.com
4 (8)
–8
12771
–4
0
4
8
12
16
20
24
Re (y21) ( mS )
Figure 12. Short Circuit Forward Transfer Admittance
Document Number 85003
Rev. 3, 20-Jan-99
BF964S
Vishay Telefunken
8
f=1300MHz
7
ID=10mA
Im ( y22) ( mS )
6
20mA
ID=5mA
1000MHz
5
700MHz
4
3
400MHz
2
1
VDS=15V
VG2S=4V
f=100...1300MHz
100MHz
0
0
0.5
1.0
1.5
2.0
2.5
Re (y22) ( mS )
12773
Figure 13. Short Circuit Output Admittance
Document Number 85003
Rev. 3, 20-Jan-99
www.vishay.com
5 (8)
BF964S
Vishay Telefunken
VDS = 15 V, ID = 5 to 20 mA, VG2S = 4 V , Z0 = 50
W
S12
S11
j
90°
120°
j0.5
150°
j0.2
0
j5
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁ
0.2
0.5
1
2
5
1300MHz
1
400
100
180°
0.008
0.016
1000 700
0°
ID= 20mA
10mA
–30°
5mA
–j5
400
–j0.5
30°
1300MHz
1000
100
–j0.2
60°
j2
–150°
–j2
–120°
–j
12 924
–60°
–90°
12 925
Figure 14. Input reflection coefficient
Figure 16. Reverse transmission coefficient
S21
S22
j
90°
120°
60°
700
400
j0.5
j2
1000
150°
30°
j0.2
j5
1300MHz
100
180°
0.8
1.6
0°
ID= 20mA
10mA
–30°
–30°
5mA
–150°
ÁÁÁÁ
ÁÁÁÁÁÁ
0
0.2
0.5
1
12 926
100
1
–j5
1300MHz
–j2
–60°
–90°
Figure 15. Forward transmission coefficient
www.vishay.com
6 (8)
5
700
–j0.2
–j0.5
–120°
2
12 927
–j
Figure 17. Output reflection coefficient
Document Number 85003
Rev. 3, 20-Jan-99
BF964S
Vishay Telefunken
Dimensions in mm
96 12242
Document Number 85003
Rev. 3, 20-Jan-99
www.vishay.com
7 (8)
BF964S
Vishay Telefunken
Ozone Depleting Substances Policy Statement
It is the policy of Vishay Semiconductor GmbH to
1. Meet all present and future national and international statutory requirements.
2. Regularly and continuously improve the performance of our products, processes, distribution and operating
systems with respect to their impact on the health and safety of our employees and the public, as well as their
impact on the environment.
It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as
ozone depleting substances ( ODSs ).
The Montreal Protocol ( 1987 ) and its London Amendments ( 1990 ) intend to severely restrict the use of ODSs and
forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban
on these substances.
Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of
ODSs listed in the following documents.
1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively
2 . Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental
Protection Agency ( EPA ) in the USA
3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C ( transitional substances ) respectively.
Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting
substances and do not contain such substances.
We reserve the right to make changes to improve technical design and may do so without further notice.
Parameters can vary in different applications. All operating parameters must be validated for each customer application
by the customer. Should the buyer use Vishay-Telefunken products for any unintended or unauthorized application, the
buyer shall indemnify Vishay-Telefunken against all claims, costs, damages, and expenses, arising out of, directly or
indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.
Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany
Telephone: 49 ( 0 ) 7131 67 2831, Fax number: 49 ( 0 ) 7131 67 2423
www.vishay.com
8 (8)
Document Number 85003
Rev. 3, 20-Jan-99