PD - 95864 IRF7842 HEXFET® Power MOSFET Applications l Synchronous MOSFET for Notebook Processor Power l Secondary Synchronous Rectification for Isolated DC-DC Converters l Synchronous Fet for Non-Isolated DC-DC Converters Benefits l Very Low RDS(on) at 4.5V VGS l Low Gate Charge l Fully Characterized Avalanche Voltage and Current VDSS RDS(on) max Qg (typ.) 40V 5.0m:@VGS = 10V 1 8 S 2 7 S 3 6 4 5 S G 33nC A A D D D D SO-8 Top View Absolute Maximum Ratings Max. Units Drain-to-Source Voltage Parameter 40 V VGS Gate-to-Source Voltage ± 20 ID @ TA = 25°C Continuous Drain Current, VGS @ 10V 18 ID @ TA = 70°C Continuous Drain Current, VGS @ 10V 14 IDM Pulsed Drain Current 140 PD @TA = 25°C Power Dissipation PD @TA = 70°C Power Dissipation TJ Linear Derating Factor Operating Junction and TSTG Storage Temperature Range VDS f f c A 2.5 W 1.6 0.02 -55 to + 150 W/°C °C Thermal Resistance Parameter RθJL RθJA g Junction-to-Ambient fg Junction-to-Drain Lead Typ. Max. Units ––– 20 °C/W ––– 50 Notes through are on page 9 www.irf.com 1 4/26/04 IRF7842 Static @ TJ = 25°C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions BVDSS Drain-to-Source Breakdown Voltage 40 ––– ––– ∆ΒVDSS/∆TJ Breakdown Voltage Temp. Coefficient ––– 0.037 ––– V/°C Reference to 25°C, ID = 1mA RDS(on) Static Drain-to-Source On-Resistance ––– 4.0 5.0 mΩ ––– 4.7 5.9 V VGS = 0V, ID = 250µA VGS = 10V, ID = 17A VGS = 4.5V, ID = 14A VGS(th) Gate Threshold Voltage 1.35 ––– 2.25 V ∆VGS(th) Gate Threshold Voltage Coefficient ––– - 5.6 ––– mV/°C IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA VDS = 32V, VGS = 0V ––– ––– 150 Gate-to-Source Forward Leakage ––– ––– 100 nA VGS = 20V Gate-to-Source Reverse Leakage ––– ––– -100 Forward Transconductance 81 ––– ––– Total Gate Charge ––– 33 50 Qgs1 Pre-Vth Gate-to-Source Charge ––– 9.6 ––– Qgs2 Post-Vth Gate-to-Source Charge ––– 2.8 ––– Qgd Gate-to-Drain Charge ––– 10 ––– Qgodr Gate Charge Overdrive Switch Charge (Qgs2 + Qgd) ––– 10.6 ––– Qsw ––– 12.8 ––– IGSS gfs Qg VGS = -20V S ––– 18 ––– nC Gate Resistance ––– 1.3 TBD Ω ––– 14 ––– Rise Time ––– 12 ––– td(off) Turn-Off Delay Time ––– 21 ––– tf Fall Time ––– 5.0 ––– Ciss Input Capacitance ––– 4500 ––– Coss Output Capacitance ––– 680 ––– Crss Reverse Transfer Capacitance ––– 310 ––– VGS = 4.5V ID = 14A Output Charge Turn-On Delay Time VDS = 20V, ID = 14A VDS = 20V nC Qoss td(on) VDS = VGS, ID = 250µA VDS = 32V, VGS = 0V, TJ = 125°C RG tr e e VDS = 16V, VGS = 0V VDD = 20V, VGS = 4.5V e ID = 14A ns Clamped Inductive Load pF VDS = 20V VGS = 0V ƒ = 1.0MHz Avalanche Characteristics EAS Parameter Single Pulse Avalanche Energy IAR Avalanche Current c d Typ. ––– Max. 50 Units mJ ––– 14 A Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current ––– ––– 3.1 ISM (Body Diode) Pulsed Source Current ––– ––– 140 VSD (Body Diode) Diode Forward Voltage ––– ––– 1.0 V trr Reverse Recovery Time ––– 99 150 ns Qrr Reverse Recovery Charge ––– 11 17 nC 2 c Conditions MOSFET symbol A showing the integral reverse p-n junction diode. TJ = 25°C, IS = 14A, VGS = 0V e TJ = 25°C, IF = 14A, VDD = 20V di/dt = 100A/µs e www.irf.com IRF7842 1000 1000 100 BOTTOM TOP 10 1 2.5V ≤ 60µs PULSE WIDTH Tj = 25°C ID, Drain-to-Source Current (A) ID, Drain-to-Source Current (A) TOP VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.8V 2.5V 100 BOTTOM 2.5V 10 ≤ 60µs PULSE WIDTH Tj = 150°C 0.1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 1 10 100 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics 1000.0 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) ID, Drain-to-Source Current (Α) VGS 10V 5.0V 4.5V 3.5V 3.3V 3.0V 2.8V 2.5V 100.0 T J = 150°C 10.0 T J = 25°C 1.0 VDS = 25V ≤ 60µs PULSE WIDTH 0.1 1.5 2.0 2.5 3.0 3.5 4.0 ID = 18A VGS = 10V 1.5 1.0 0.5 -60 -40 -20 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics www.irf.com 0 20 40 60 80 100 120 140 160 T J , Junction Temperature (°C) Fig 4. Normalized On-Resistance Vs. Temperature 3 IRF7842 100000 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd VGS, Gate-to-Source Voltage (V) ID= 14A C, Capacitance (pF) C oss = C ds + C gd 10000 Ciss 1000 Coss Crss VDS= 30V VDS= 20V 10 8 6 4 2 0 100 1 10 0 100 20 40 60 80 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) OPERATION IN THIS AREA LIMITED BY R DS(on) 100 100.0 T J = 150°C 10.0 T J = 25°C 1.0 10 1msec 1 10msec Tc = 25°C Tj = 150°C Single Pulse VGS = 0V 0.1 0.1 0.2 0.4 0.6 0.8 1.0 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage 4 1.2 0 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area www.irf.com IRF7842 2.4 18 VGS(th) Gate threshold Voltage (V) 16 ID , Drain Current (A) 14 12 10 8 6 4 2 2.0 ID = 250µA 1.6 1.2 0.8 0.4 0 25 50 75 100 125 -75 150 -50 -25 25 50 75 100 125 150 T J , Temperature ( °C ) T J , Junction Temperature (°C) Fig 9. Maximum Drain Current Vs. Case Temperature 0 Fig 10. Threshold Voltage Vs. Temperature 100 D = 0.50 0.20 0.10 0.05 0.02 0.01 Thermal Response ( Z thJA ) 10 1 R1 R1 0.1 τJ 0.01 τJ τ1 τ1 R2 R2 τ2 τ2 Ci= τi/Ri Ci τi/Ri τ3 τC τ τ3 Ri (°C/W) τi (sec) 10.48 0.138167 26.83 1.8582 12.69 44.8 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthja + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 R3 R3 0.0001 1E-006 1E-005 0.0001 0.001 0.01 0.1 1 10 100 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient www.irf.com 5 RDS(on), Drain-to -Source On Resistance ( mΩ) IRF7842 200 EAS, Single Pulse Avalanche Energy (mJ) 16 ID = 18A 12 8 T J = 125°C 4 T J = 25°C 0 2.0 4.0 6.0 8.0 10.0 ID 6.7A 7.5A BOTTOM 14A TOP 160 120 80 40 0 25 VGS, Gate-to-Source Voltage (V) 50 75 100 125 150 Starting T J, Junction Temperature (°C) Fig 12. On-Resistance Vs. Gate Voltage Fig 13c. Maximum Avalanche Energy Vs. Drain Current 15V LD VDS L VDS DRIVER + VDD - D.U.T RG IAS VGS 20V tp + V - DD D.U.T A VGS 0.01Ω Pulse Width < 1µs Duty Factor < 0.1% Fig 13a. Unclamped Inductive Test Circuit V(BR)DSS tp Fig 14a. Switching Time Test Circuit VDS 90% 10% VGS I AS Fig 13b. Unclamped Inductive Waveforms 6 td(on) tr td(off) tf Fig 14b. Switching Time Waveforms www.irf.com IRF7842 D.U.T Driver Gate Drive + P.W. + - - • • • • D.U.T. ISD Waveform Reverse Recovery Current + dv/dt controlled by RG Driver same type as D.U.T. ISD controlled by Duty Factor "D" D.U.T. - Device Under Test VDD P.W. Period * RG D= VGS=10V Circuit Layout Considerations • Low Stray Inductance • Ground Plane • Low Leakage Inductance Current Transformer - Period + - Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage Body Diode VDD Forward Drop Inductor Curent ISD Ripple ≤ 5% * VGS = 5V for Logic Level Devices Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs Id Current Regulator Same Type as D.U.T. Vds Vgs 50KΩ 12V .2µF .3µF D.U.T. + V - DS Vgs(th) VGS 3mA IG ID Current Sampling Resistors Fig 16. Gate Charge Test Circuit www.irf.com Qgs1 Qgs2 Qgd Qgodr Fig 17. Gate Charge Waveform 7 IRF7842 SO-8 Package Details D 5 A 8 6 7 6 5 H 1 6X 2 3 0.25 [.010] 4 A e e1 8X b 0.25 [.010] A A1 MILLIMET ERS MIN MAX MIN .0532 .0688 1.35 1.75 A1 .0040 .0098 0.10 0.25 b .013 .020 0.33 0.51 c .0075 .0098 0.19 0.25 D .189 .1968 4.80 5.00 E .1497 .1574 3.80 4.00 e .050 BASIC 1.27 BASIC e1 A E INCHES DIM B MAX .025 BASIC 0.635 BAS IC H .2284 .2440 5.80 6.20 K .0099 .0196 0.25 0.50 L .016 .050 0.40 1.27 y 0° 8° 0° 8° K x 45° C y 0.10 [.004] 8X L 8X c 7 C A B FOOT PRINT NOT ES : 1. DIMENS IONING & T OLERANCING PER AS ME Y14.5M-1994. 8X 0.72 [.028] 2. CONT ROLLING DIMENS ION: MILLIMET ER 3. DIMENS IONS ARE S HOWN IN MILLIMET ERS [INCHES ]. 4. OUT LINE CONFORMS T O JEDEC OUT LINE MS -012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS . MOLD PROT RUS IONS NOT T O EXCEED 0.25 [.010]. 6.46 [.255] 7 DIMENS ION IS THE LENGT H OF LEAD F OR S OLDERING T O A S UBS T RAT E. 3X 1.27 [.050] 8X 1.78 [.070] SO-8 Part Marking EXAMPLE: T HIS IS AN IRF7101 (MOS FET) INT ERNAT IONAL RECTIFIER LOGO XXXX F7101 DAT E CODE (YWW) P = DES IGNAT ES LEAD-FREE PRODUCT (OPT IONAL) Y = LAS T DIGIT OF T HE YEAR WW = WEEK A = AS S EMBLY S IT E CODE LOT CODE PART NUMBER 8 www.irf.com IRF7842 SO-8 Tape and Reel TERMINAL NUMBER 1 12.3 ( .484 ) 11.7 ( .461 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES: 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 330.00 (12.992) MAX. 14.40 ( .566 ) 12.40 ( .488 ) NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541. Notes: Repetitive rating; pulse width limited by max. junction temperature. Starting TJ = 25°C, L = 0.5mH RG = 25Ω, IAS = 14A. Pulse width ≤ 400µs; duty cycle ≤ 2%. When mounted on 1 inch square copper board Rθ is measured at TJ approximately 90°C Data and specifications subject to change without notice. This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR’s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.4/04 www.irf.com 9