SAMSUNG S6D0110

S6D0110
Preliminary
11
132 RGB Source & 176 Gate Driver With Internal GRAM
FOR 65,536 Colors TFT-LCD
July 9, 2002
Ver. 0.4
Prepared by: GOOHYUNG CHUNG
[email protected]
Contents in this document are subject to change without notice. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written
permission of LCD Driver IC Team.
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
S6D0110 Specification Revision History
Version
0.0
0.1
0.2
0.3
0.4
2
Content
Original
Modified descriptions for operating voltage. (page 4)
Modified figure for pad configuration. (page 6)
Added descriptions for IM2-0 pin mode setting. (page 10)
Added descriptions for /RD pin. (page 10)
Modified table for register selection. (page 12)
Added table for GRAM address. (page 17-18)
Modified table for Instruction. (page 20)
Modified descriptions for R00h. (page 22)
Added descriptions for SM bit in R01h. (page 23)
Modified descriptions for BT2-0 bits in R03h. (page 26)
Modified descriptions for CAD bit in R04h. (page 28)
Modified descriptions for VDV4-0 bits in R0Eh. (page 30)
Added descriptions for R08h, R09h. (page 36)
Modified figure for window address setting range. (page 41)
Modified table for GRAM data and grayscale level. (page 43)
Modified figure for voltage regulation function. (page 47)
Added descriptions and table for system interface.(page 48)
Modified figure for high-speed RAM write in window address
range. (page 56)
Added descriptions and figure for gate driver scan mode setting.
(page 69)
Modified figure for setup procedure of 8color display mode.(page
83)
Modified figure for instruction setup flow. (page 85-86)
Modified figure for interlaced drive. (page 89)
Modified descriptions for restriction on the 1st/2 nd screen driving
position register setting. (page 93)
Modified descriptions for introduction. (page 3)
Modified descriptions for Features. (page 4)
Modified figure for block diagram. (page 5)
Modified figure for pad configuration. (page 6)
Added table for pad dimension. (page 7)
Added figure for align key configuration and its coordinate. (page
8-9)
Added table for pad center coordinates. (page 10-13)
Modified and Added descriptions for pin description. (page 14-18)
Modified descriptions for power supply circuit. (page 21)
Modified figure for voltage setting. (page 22)
Added figure for application circuit. (page 102)
Modified table for pad dimension. (page 7)
Added table for blanking period setting. (page 43)
Modified descriptions for reset function. (page 53)
Modified descriptions for VC2-0 and VRL3-0 bit. (page 36)
Added descriptions and table contents for BGR bit. (page 39-40)
Author
Date
G. H. Jung
March 16 , 2002
M. S. Song
April 1 , 2002
M. S. Song
April 12 , 2002
M. S. Song
April 30 , 2002
M. S. Song
July 9, 2002
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
INTRODUCTION
The S6D0110 is 1-chip solution for TFT-LCD panel: source driver with built-in memory, gate driver, power IC are
integrated on one chip. This IC can display to a maximum of 132-RGB x 176-dot graphics on 65k-color TFT panel.
The S6D0110 also supports bit-operation functions, 8/16-bit high-speed bus interface, and high-speed RAM-write
functions enable efficient data transfer and high-speed rewriting of data to the internal GRAM.
The moving picture area can be specified in internal GRAM by window function. The specified window area can be
updated selectively so that moving picture is able to displayed simultaneously independent of still picture area.
The S6D0110 has various functions for reducing the power consumption of a LCD system: It operates at low voltage
(minimum 1.8V) and the IC has an internal GRAM to store 132-RGB x 176-dot 65k-color image. In addition, it has
the internal booster that generates the LCD driving voltage, breeder resistance and the voltage follower circuit for
LCD driver.
This LSI is suitable for any medium-sized or small portable mobile solution requiring long-term driving capabilities,
such as digital cellular phones supporting a web browser, bi-directional pagers, and small PDAs.
3
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
FEATURES
132-RGB x 176-dot TFT-LCD display controller/driver IC for 65,536 colors (396ch-source driver/176ch-gate
driver)
16-/8-bit high-speed bus interface and serial peripheral interface (SPI)
High-speed burst-RAM write function
Writing to a window-RAM address area by using a window-address function
Bit-operation functions for graphic processing
−
−
Write-data mask functions in bit units
Logical operation in pixel unit and conditional write function
Various color-display control functions
−
−
65,536 colors can be displayed at the same time (gamma adjust included)
Vertical scroll display function in raster-row units
Internal RAM capacity: 132 x 16 x 176 = 371,712 bits
Low-power operation supports:
−
−
−
−
−
Power-save functions such as the standby mode and sleep mode
Partial LCD drive of two screens in any position
Maximum 12-times step-up circuit for liquid crystal drive voltage
Voltage followers to decrease direct current flow in the LCD drive breeder-resistors
Equalizing function for the switching performance of step-up circuits and operational amplifiers
N-raster row inversion drive (Reverse the polarity of driving voltage in every selected raster row is
possible)
Internal oscillation and hardware reset
Structure for TFT-display retention volume (Cst/Cadd structure)
Alternating functions for TFT-display counter-electrode power supply
−
N-line alternating drive of Vcom (Vgoff is also available for N-line alternating drive for Cadd)
Internal power supply circuit
−
−
Step-up circuit: five to nine times, positive-polarity inversion
Adjustment of Vcom(Vgoff) amplitude: internal 22-level digital potentiometer
Operating voltage
• Applying voltage
−
VDD to VSS = 1.8 to 2.5 V (non-regulating)
(logic voltage range – non-regulated)
VDD3 to VSS = 2.3 to 3.3 V (regulating)
(logic voltage range – regulated)
−
Vci to VSS = 2.5 to 3.3 V
(internal reference power-supply voltage)
−
Vci1 to VSS = 1.7 to 2.75 V (2.5 x 0.68 ~ 2.75) (power supply for step-up circuits)
• Generating voltage
−
For the source driver: AVDD to VSS = 3.5 to 5.5V (power supply for liquid crystal output circuits)
GVDD to VSS = 3.0 to 5.0V
(reference power supply for grayscale voltages)
−
For the gate driver:
VGH to VGL = 14 to 30 V, VGH to VSS = +7.0 to +20 V,
VgoffL = (VGL+0.5) to –7.5V, VgoffH = ~ to -1.5V
−
For the TFT-display counter electrode: Vcom amplitude(max) = 6V, VcomH to VSS(max) = GVDD
VcomL to VSS(max) = 1.0 V to -Vci + 0.5 V
4
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
BLOCK DIAGRAM
S1
S2
S3
:
:
:
:
S394
S395
S396
G0
G1
G2
:
:
G175
G176
G177
VGH
VGL
Vgoff
Grayscale
voltage
generator
178 CH.
Gate Driver
GVDD
AVDD
Gate control
VCL
VCI1/2/3/4
VBS
VGS
CGND
AVSS
VREG1
VREG1OUT
VREG2
VREG2OUT
REGP/REGN
VCOMH/L/R
VCOMOUT
VGOFFH/L
VGOFFOUT
/ 2
/ 3
Built-in
Power
Supply
circuit
396 CH.
Source Driver
/
64
Gamma
adjusting
circuit
M/AC circuit
Address
counter
Built-in GRAM
132x16x176 = 371,712 bits
Latch circuit
/ 64
/ 64
Write data
latch
/ 2
Read data
latch
/ 16
CL1
M
FLM
EQ
DISPTMG
OSC1
OSC2
VCI
/ 16
Bit operation
Timing
Generator
Index
register
Control
register
/ 16
OSC
VDD
Power
Regulator
System Interface
8-/16-bit parallel, 3-pin SPI
VDD3
VSS
RESETB
IM[2:0]
CS
RS
E
RW
DB[15:2]
DB1/SDO
DB0/SDI
PRegB
RDVDD
VDD3
Figure 1. Block Diagram
5
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
G97
G99
G101
G103
G105
DUMMY58
DUMMY57
DUMMY56
DUMMY60
DUMMY59
G0
G1
G3
G5
G7
G9
PAD CONFIGURATION
DUMMY55
DUMMY54
DUMMY53
G107
G109
G111
G113
G115
G117
G119
G121
DUMMY1
VCOMOUT
VCOMOUT
CONTACT1
CONTACT2
RESETB1
DUMMY2
DUMMY3
DUMMY4
DUMMY5
VGH
VGH
VCI3
VCI3
C23+
C23+
C23C23C22+
C22+
C22C22C21+
C21+
C21-
G161
G163
G165
G167
G169
G171
G173
G175
DUMMY52
DUMMY51
DUMMY50
DUMMY49
DUMMY48
DUMMY47
DUMMY46
DUMMY45
S1
S2
S3
S4
S5
S6
S7
S8
C21C41+
C41+
C41C41C31+
C31+
C31C31VGL
VGL
VGL
VGL
CGND
CGND
CGND
VDD3O
IM0/ID
VSSO
IM1
VDD3O
IM2
VDD3O
DUMMY6
VSSO
PREGB
VDD3O
RESETB2
VSSO
DUMMY7
DUMMY8
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DUMMY9
VSSO
DB7
DB6
DB5
DB4
DB3
DB2
DB1/SDO
DB0/SDI
DUMMY10
VSSO
RD
WR/SCL
RS
CS
DUMMY11
VSSO
AVSS
AVSS
AVSS
AVSS
19700 um
AVSS
AVSS
2980 um
AVSS
AVSS
VSSO
VSS
VSS
VSS
VSS
VSS
VDD3O
S6D0110
VDD3
VDD3
(0,0)
Y
VDD3
RDVDD
RDVDD
RDVDD
RDVDD
VDD
VDD
VDD
VDD
X
VBS
VCI
VCI
VCI
VCI
VCI
VCI4
OSC1
OSC2
CL1
M
FLM
EQ
DISPTMG
TEST
VGS
VGS
VGS
VGS
VGS
VGS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCOML
VCOML
DUMMY12
DUMMY13
VCOMR
VREG1OUT
VREG1
GVDD
GVDD
GVDD
GVDD
VCOMH
VCL
VCL
VCI1
VCI1
VCI1
VCI1
REGP
REGN
VCI2
AVDD
AVDD
VCI3
S389
S390
S391
S392
S393
S394
S395
S396
DUMMY36
DUMMY35
DUMMY34
DUMMY33
DUMMY32
DUMMY31
DUMMY30
DUMMY29
G177
G176
G174
G172
G170
G168
G166
G164
VCI3
C11C11C11C11C11+
C11+
C11+
C11+
C12C12C12C12C12+
C12+
C12+
C12+
VGOFF
VGOFF
VGOFFOUT
VGOFFOUT
VGOFFH
VGOFFH
VGOFFL
VGOFFL
VREG2
VREG2
VREG2OUT
VREG2OUT
DUMMY14
DUMMY15
DUMMY16
G124
G122
G120
G118
G116
G114
G112
G110
G108
DUMMY28
DUMMY27
DUMMY26
DUMMY17
RESETB3
DUMMY18
DUMMY19
VCOMOUT
VCOMOUT
G98
G100
G102
G104
G106
DUMMY23
DUMMY24
DUMMY25
DUMMY21
DUMMY22
G2
G4
G6
G8
G10
DUMMY20
Figure 2. Pad Configuration
6
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 1. S6D0110 Pad Dimensions
Items
Pad name.
Chip size1)
Size
X
Y
-
19580
2860
INPUT PAD
54
100
OUTPUT PAD
36
70
Unit
um
Pad size
NOTES:
1. Scribe line is not included in this chip size (Scribe line: 120um)
7
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
ALIGN KEY CONFIGURATION AND COORDINATE
LEFT COG ALIGN KEY
RIGHT COG ALIGN KEY
190 um
190 um
190 um
(-9512, -1315)
45 um
30 um
45 um
45 um
30 um
30 um
40 um
190 um
(9512, -1315)
40 um
30 um
30 um
45 um
45 um
40 um 30 um 45 um
45 um
LEFT ILB ALIGN KEY
30 um 40 um 30 um 45 um
RIGHT ILB ALIGN KEY
37
120
9
100
29
110
76
(-9699, -1227)
76
(9699, 1341)
29
100
9
120
37
Figure 3. COG and ILB align key
8
110
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Metal Size
45um
Bump Size
45um
55um
45um
55um
45um
55um
55um
Bump key
ILB key
(-9694,1205)
ILB key
COG key
COG key
Figure 4. Bump align key and align key configuration
NOTES:
2. Gold bump height: 15um(typ.)
2. Wafer thickness: 470um
9
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
PAD CENTER COORDINATES
Table 2. Pad Center Coordinates
[Unit: um]
NO.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
PAD name
DUMMY<1>
VCOMOUT
VCOMOUT
CONTACT1
CONTACT2
RESETB1
DUMMY<2>
DUMMY<3>
DUMMY<4>
DUMMY<5>
VGH
VGH
VCI3
VCI3
C23+
C23+
C23C23C22+
C22+
C22C22C21+
C21+
C21C21C41+
C41+
C41C41C31+
C31+
C31C31VGL
VGL
VGL
VGL
CGND
CGND
CGND
VDD3O
IM<0>
VSSO
IM<1>
VDD3O
IM<2>
VDD3O
DUMMY<6>
VSSO
PREGB
VDD3O
RESETB2
VSSO
DUMMY<7>
DUMMY<8>
DB<15>
DB<14>
DB<13>
DB<12>
X
-9360
-9280
-9200
-9120
-9040
-8960
-8880
-8280
-7780
-7280
-7200
-7120
-7040
-6960
-6880
-6800
-6720
-6640
-6560
-6480
-6400
-6320
-6240
-6160
-6080
-6000
-5920
-5840
-5760
-5680
-5600
-5520
-5440
-5360
-5280
-5200
-5120
-5040
-4960
-4880
-4800
-4720
-4640
-4560
-4480
-4400
-4320
-4240
-4160
-4080
-4000
-3920
-3840
-3760
-3680
-3600
-3520
-3440
-3360
-3280
Y
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
NO.
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
PAD name
DB<11>
DB<10>
DB<9>
DB<8>
DUMMY<9>
VSSO
DB<7>
DB<6>
DB<5>
DB<4>
DB<3>
DB<2>
DB1/SDO
DB0/SDI
DUMMY<10>
VSSO
R/W
E
RS
CSB
DUMMY<11>
VSSO
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
AVSS
VSS*
VSS
VSS
VSS
VSS
VSS
VDD3*
VDD3
VDD3
VDD3
RDVDD
RDVDD
RDVDD
RDVDD
VDD
VDD
VDD
VDD
VBS
VCI
VCI
VCI
VCI
VCI
VCI4
OSC1
OSC2
CL1
M
FLM
X
-3200
-3120
-3040
-2960
-2880
-2800
-2720
-2640
-2560
-2480
-2400
-2320
-2240
-2160
-2080
-2000
-1920
-1840
-1760
-1680
-1600
-1520
-1440
-1360
-1280
-1200
-1120
-1040
-960
-880
-800
-720
-640
-560
-480
-400
-320
-240
-160
-80
0
80
160
240
320
400
480
560
640
720
800
880
960
1040
1120
1200
1280
1360
1440
1520
Y
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
NO.
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
PAD name
EQ
DISPTMG
TEST
VGS
VGS
VGS
VGS
VGS
VGS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VCOML
VCOML
DUMMY<12>
DUMMY<13>
VCOMR
VREG1OUT
VREG1
GVDD
GVDD
GVDD
GVDD
VCOMH
VCL
VCL
VCI1
VCI1
VCI1
VCI1
REGP
REGN
VCI2
AVDD
AVDD
VCI3
VCI3
C11C11C11C11C11+
C11+
C11+
C11+
C12C12C12C12C12+
C12+
C12+
C12+
VGOFF
Notes: No. 91 & 92, No.97 & 98 PAD must be short by external wiring.
10
X
1600
1680
1760
1840
1920
2000
2080
2160
2240
2320
2400
2480
2560
2640
2720
2800
2880
2960
3040
3120
3200
3280
3360
3440
3520
3600
3680
3760
3840
3920
4000
4080
4160
4240
4320
4400
4480
4560
4640
4720
4800
4880
4960
5040
5120
5200
5280
5360
5440
5520
5600
5680
5760
5840
5920
6000
6080
6160
6240
6320
Y
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
NO.
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
PAD name
VGOFF
VGOFFOUT
VGOFFOUT
VGOFFH
VGOFFH
VGOFFL
VGOFFL
VREG2
VREG2
VREG2OUT
VREG2OUT
DUMMY<14>
DUMMY<15>
DUMMY<16>
DUMMY<17>
RESETB3
DUMMY<18>
DUMMY<19>
VCOMOUT
VCOMOUT
DUMMY<20>
DUMMY<21>
DUMMY<22>
G<2>
G<4>
G<6>
G<8>
G<10>
G<12>
G<14>
G<16>
G<18>
G<20>
G<22>
G<24>
G<26>
G<28>
G<30>
G<32>
G<34>
G<36>
G<38>
G<40>
G<42>
G<44>
G<46>
G<48>
G<50>
G<52>
G<54>
G<56>
G<58>
G<60>
G<62>
G<64>
G<66>
G<68>
G<70>
G<72>
G<74>
X
6400
6480
6560
6640
6720
6800
6880
6960
7040
7120
7200
7280
7780
8280
8880
8960
9040
9120
9200
9280
9360
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
Y
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1356
-1078
-1040
-1002
-964
-926
-888
-850
-812
-774
-736
-698
-660
-622
-584
-546
-508
-470
-432
-394
-356
-318
-280
-242
-204
-166
-128
-90
-52
-14
24
62
100
138
176
214
252
290
328
366
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 3. Pad Center Coordinates (continued)
[Unit: um]
NO.
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
PAD name
G<76>
G<78>
G<80>
G<82>
G<84>
G<86>
G<88>
G<90>
G<92>
G<94>
G<96>
G<98>
G<100>
G<102>
G<104>
G<106>
DUMMY<23>
DUMMY<24>
DUMMY<25>
DUMMY<26>
DUMMY<27>
DUMMY<28>
G<108>
G<110>
G<112>
G<114>
G<116>
G<118>
G<120>
G<122>
G<124>
G<126>
G<128>
G<130>
G<132>
G<134>
G<136>
G<138>
G<140>
G<142>
G<144>
G<146>
G<148>
G<150>
G<152>
G<154>
G<156>
G<158>
G<160>
G<162>
G<164>
G<166>
G<168>
G<170>
G<172>
G<174>
G<176>
G<177>
DUMMY<29>
DUMMY<30>
X
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9720
9610
9472
9434
9396
9358
9320
9282
9244
9206
9168
9130
9092
9054
9016
8978
8940
8902
8864
8826
8788
8750
8712
8674
8636
8598
8560
8522
8484
8446
8408
8370
8332
8294
8256
8218
8180
8142
8104
8066
8028
7990
7952
Y
404
442
480
518
556
594
632
670
708
746
784
822
860
898
936
974
1012
1050
1088
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO.
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
PAD name
DUMMY<31>
DUMMY<32>
DUMMY<33>
DUMMY<34>
DUMMY<35>
DUMMY<36>
S<396>
S<395>
S<394>
S<393>
S<392>
S<391>
S<390>
S<389>
S<388>
S<387>
S<386>
S<385>
S<384>
S<383>
S<382>
S<381>
S<380>
S<379>
S<378>
S<377>
S<376>
S<375>
S<374>
S<373>
S<372>
S<371>
S<370>
S<369>
S<368>
S<367>
S<366>
S<365>
S<364>
S<363>
S<362>
S<361>
S<360>
S<359>
S<358>
S<357>
S<356>
S<355>
S<354>
S<353>
S<352>
S<351>
S<350>
S<349>
S<348>
S<347>
S<346>
S<345>
S<344>
S<343>
X
7914
7876
7838
7800
7762
7724
7686
7648
7610
7572
7534
7496
7458
7420
7382
7344
7306
7268
7230
7192
7154
7116
7078
7040
7002
6964
6926
6888
6850
6812
6774
6736
6698
6660
6622
6584
6546
6508
6470
6432
6394
6356
6318
6280
6242
6204
6166
6128
6090
6052
6014
5976
5938
5900
5862
5824
5786
5748
5710
5672
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO. PAD name
361
S<342>
362
S<341>
363
S<340>
364
S<339>
365
S<338>
366
S<337>
367
S<336>
368
S<335>
369
S<334>
370
S<333>
371
S<332>
372
S<331>
373
S<330>
374
S<329>
375
S<328>
376
S<327>
377
S<326>
378
S<325>
379
S<324>
380
S<323>
381
S<322>
382
S<321>
383
S<320>
384
S<319>
385
S<318>
386
S<317>
387
S<316>
388
S<315>
389
S<314>
390
S<313>
391
S<312>
392
S<311>
393
S<310>
394
S<309>
395
S<308>
396
S<307>
397
S<306>
398
S<305>
399
S<304>
400
S<303>
401
S<302>
402
S<301>
403
S<300>
404
S<299>
405
S<298>
406
S<297>
407
S<296>
408
S<295>
409
S<294>
410
S<293>
411
S<292>
412
S<291>
413
S<290>
414
S<289>
415
S<288>
416
S<287>
417
S<286>
418
S<285>
419
S<284>
420
S<283>
X
5634
5596
5558
5520
5482
5444
5406
5368
5330
5292
5254
5216
5178
5140
5102
5064
5026
4988
4950
4912
4874
4836
4798
4760
4722
4684
4646
4608
4570
4532
4494
4456
4418
4380
4342
4304
4266
4228
4190
4152
4114
4076
4038
4000
3962
3924
3886
3848
3810
3772
3734
3696
3658
3620
3582
3544
3506
3468
3430
3392
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO. PAD name
421
S<282>
422
S<281>
423
S<280>
424
S<279>
425
S<278>
426
S<277>
427
S<276>
428
S<275>
429
S<274>
430
S<273>
431
S<272>
432
S<271>
433
S<270>
434
S<269>
435
S<268>
436
S<267>
437
S<266>
438
S<265>
439
S<264>
440
S<263>
441
S<262>
442
S<261>
443
S<260>
444
S<259>
445
S<258>
446
S<257>
447
S<256>
448
S<255>
449
S<254>
450
S<253>
451
S<252>
452
S<251>
453
S<250>
454
S<249>
455
S<248>
456
S<247>
457
S<246>
458
S<245>
459
S<244>
460
S<243>
461
S<242>
462
S<241>
463
S<240>
464
S<239>
465
S<238>
466
S<237>
467
S<236>
468
S<235>
469
S<234>
470
S<233>
471
S<232>
472
S<231>
473
S<230>
474
S<229>
475
S<228>
476
S<227>
477
S<226>
478
S<225>
479
S<224>
480
S<223>
X
3354
3316
3278
3240
3202
3164
3126
3088
3050
3012
2974
2936
2898
2860
2822
2784
2746
2708
2670
2632
2594
2556
2518
2480
2442
2404
2366
2328
2290
2252
2214
2176
2138
2100
2062
2024
1986
1948
1910
1872
1834
1796
1758
1720
1682
1644
1606
1568
1530
1492
1454
1416
1378
1340
1302
1264
1226
1188
1150
1112
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
11
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 4. Pad Center Coordinates (continued)
[Unit: um]
NO.
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
12
PAD name
S<222>
S<221>
S<220>
S<219>
S<218>
S<217>
S<216>
S<215>
S<214>
S<213>
S<212>
S<211>
S<210>
S<209>
S<208>
S<207>
S<206>
S<205>
S<204>
S<203>
S<202>
S<201>
S<200>
S<199>
S<198>
S<197>
S<196>
S<195>
S<194>
S<193>
DUMMY<37>
DUMMY<38>
DUMMY<39>
DUMMY<40>
DUMMY<41>
DUMMY<42>
DUMMY<43>
DUMMY<44>
S<192>
S<191>
S<190>
S<189>
S<188>
S<187>
S<186>
S<185>
S<184>
S<183>
S<182>
S<181>
S<180>
S<179>
S<178>
S<177>
S<176>
S<175>
S<174>
S<173>
S<172>
S<171>
X
1074
1036
998
960
922
884
846
808
770
732
694
656
618
580
542
504
466
428
390
352
314
276
238
200
162
124
86
48
10
-28
-66
-104
-142
-180
-218
-256
-294
-332
-370
-408
-446
-484
-522
-560
-598
-636
-674
-712
-750
-788
-826
-864
-902
-940
-978
-1016
-1054
-1092
-1130
-1168
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO. PAD name
541
S<170>
542
S<169>
543
S<168>
544
S<167>
545
S<166>
546
S<165>
547
S<164>
548
S<163>
549
S<162>
550
S<161>
551
S<160>
552
S<159>
553
S<158>
554
S<157>
555
S<156>
556
S<155>
557
S<154>
558
S<153>
559
S<152>
560
S<151>
561
S<150>
562
S<149>
563
S<148>
564
S<147>
565
S<146>
566
S<145>
567
S<144>
568
S<143>
569
S<142>
570
S<141>
571
S<140>
572
S<139>
573
S<138>
574
S<137>
575
S<136>
576
S<135>
577
S<134>
578
S<133>
579
S<132>
580
S<131>
581
S<130>
582
S<129>
583
S<128>
584
S<127>
585
S<126>
586
S<125>
587
S<124>
588
S<123>
589
S<122>
590
S<121>
591
S<120>
592
S<119>
593
S<118>
594
S<117>
595
S<116>
596
S<115>
597
S<114>
598
S<113>
599
S<112>
600
S<111>
X
-1206
-1244
-1282
-1320
-1358
-1396
-1434
-1472
-1510
-1548
-1586
-1624
-1662
-1700
-1738
-1776
-1814
-1852
-1890
-1928
-1966
-2004
-2042
-2080
-2118
-2156
-2194
-2232
-2270
-2308
-2346
-2384
-2422
-2460
-2498
-2536
-2574
-2612
-2650
-2688
-2726
-2764
-2802
-2840
-2878
-2916
-2954
-2992
-3030
-3068
-3106
-3144
-3182
-3220
-3258
-3296
-3334
-3372
-3410
-3448
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO. PAD name
601
S<110>
602
S<109>
603
S<108>
604
S<107>
605
S<106>
606
S<105>
607
S<104>
608
S<103>
609
S<102>
610
S<101>
611
S<100>
612
S<99>
613
S<98>
614
S<97>
615
S<96>
616
S<95>
617
S<94>
618
S<93>
619
S<92>
620
S<91>
621
S<90>
622
S<89>
623
S<88>
624
S<87>
625
S<86>
626
S<85>
627
S<84>
628
S<83>
629
S<82>
630
S<81>
631
S<80>
632
S<79>
633
S<78>
634
S<77>
635
S<76>
636
S<75>
637
S<74>
638
S<73>
639
S<72>
640
S<71>
641
S<70>
642
S<69>
643
S<68>
644
S<67>
645
S<66>
646
S<65>
647
S<64>
648
S<63>
649
S<62>
650
S<61>
651
S<60>
652
S<59>
653
S<58>
654
S<57>
655
S<56>
656
S<55>
657
S<54>
658
S<53>
659
S<52>
660
S<51>
X
-3486
-3524
-3562
-3600
-3638
-3676
-3714
-3752
-3790
-3828
-3866
-3904
-3942
-3980
-4018
-4056
-4094
-4132
-4170
-4208
-4246
-4284
-4322
-4360
-4398
-4436
-4474
-4512
-4550
-4588
-4626
-4664
-4702
-4740
-4778
-4816
-4854
-4892
-4930
-4968
-5006
-5044
-5082
-5120
-5158
-5196
-5234
-5272
-5310
-5348
-5386
-5424
-5462
-5500
-5538
-5576
-5614
-5652
-5690
-5728
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
NO.
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
PAD name
S<50>
S<49>
S<48>
S<47>
S<46>
S<45>
S<44>
S<43>
S<42>
S<41>
S<40>
S<39>
S<38>
S<37>
S<36>
S<35>
S<34>
S<33>
S<32>
S<31>
S<30>
S<29>
S<28>
S<27>
S<26>
S<25>
S<24>
S<23>
S<22>
S<21>
S<20>
S<19>
S<18>
S<17>
S<16>
S<15>
S<14>
S<13>
S<12>
S<11>
S<10>
S<9>
S<8>
S<7>
S<6>
S<5>
S<4>
S<3>
S<2>
S<1>
DUMMY<45>
DUMMY<46>
DUMMY<47>
DUMMY<48>
DUMMY<49>
DUMMY<50>
DUMMY<51>
DUMMY<52>
G<175>
G<173>
X
-5766
-5804
-5842
-5880
-5918
-5956
-5994
-6032
-6070
-6108
-6146
-6184
-6222
-6260
-6298
-6336
-6374
-6412
-6450
-6488
-6526
-6564
-6602
-6640
-6678
-6716
-6754
-6792
-6830
-6868
-6906
-6944
-6982
-7020
-7058
-7096
-7134
-7172
-7210
-7248
-7286
-7324
-7362
-7400
-7438
-7476
-7514
-7552
-7590
-7628
-7666
-7704
-7742
-7780
-7818
-7856
-7894
-7932
-7970
-8008
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 5. Pad Center Coordinates (continued)
[Unit: um]
NO.
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
PAD name
G<171>
G<169>
G<167>
G<165>
G<163>
G<161>
G<159>
G<157>
G<155>
G<153>
G<151>
G<149>
G<147>
G<145>
G<143>
G<141>
G<139>
G<137>
G<135>
G<133>
G<131>
G<129>
G<127>
G<125>
G<123>
G<121>
G<119>
G<117>
G<115>
G<113>
G<111>
G<109>
G<107>
DUMMY<53>
DUMMY<54>
DUMMY<55>
DUMMY<56>
DUMMY<57>
DUMMY<58>
G<105>
G<103>
G<101>
G<99>
G<97>
G<95>
G<93>
G<91>
G<89>
G<87>
G<85>
G<83>
G<81>
G<79>
G<77>
G<75>
G<73>
G<71>
G<69>
G<67>
G<65>
X
-8046
-8084
-8122
-8160
-8198
-8236
-8274
-8312
-8350
-8388
-8426
-8464
-8502
-8540
-8578
-8616
-8654
-8692
-8730
-8768
-8806
-8844
-8882
-8920
-8958
-8996
-9034
-9072
-9110
-9148
-9186
-9224
-9262
-9300
-9338
-9376
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
Y
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1362
1252
1088
1050
1012
974
936
898
860
822
784
746
708
670
632
594
556
518
480
442
404
366
328
290
252
214
NO. PAD name
781
G<63>
782
G<61>
783
G<59>
784
G<57>
785
G<55>
786
G<53>
787
G<51>
788
G<49>
789
G<47>
790
G<45>
791
G<43>
792
G<41>
793
G<39>
794
G<37>
795
G<35>
796
G<33>
797
G<31>
798
G<29>
799
G<27>
800
G<25>
801
G<23>
802
G<21>
803
G<19>
804
G<17>
805
G<15>
806
G<13>
807
G<11>
808
G<9>
809
G<7>
810
G<5>
811
G<3>
812
G<1>
813
G<0>
814 DUMMY<59>
815 DUMMY<60>
X
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
-9610
-9720
Y
176
138
100
62
24
-14
-52
-90
-128
-166
-204
-242
-280
-318
-356
-394
-432
-470
-508
-546
-584
-622
-660
-698
-736
-774
-812
-850
-888
-926
-964
-1002
-1040
-1078
-1116
NO. PAD name
X
Y
NO. PAD name
X
Y
13
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
PIN DESCRIPTION
Table 6. Power supply pin description
Symbol
I/O
Description
VDD
Power
System power supply.
As S6D0110 have internal regulator, VDD range varies with each mode.
Non-regulated(PregB = 1) : +1.8 ~ +2.5 V
Regulated
(PregB = 0) : +1.9V
VDD3
Power
System power supply for internal regulator as external power.
(VDD3: +2.5 to +3.3 V)
VSS
Power
System ground(0V)
CGND
Power
System ground level for step up circuit block.
AVSS
Power
System ground level for analog circuit block.
VCI
Power
An internal reference power supply for V REG1OUT/VREG2OUT.
Connect VDD when VDD = 2.5 to 3.3 V.
Connect a 2.5 to 3.3 V external-voltage power supply when VDD = 1.8 to 2.5 V.
AVDD
O
A power output pin for source driver that is generated from power block.
Connect a capacitor for stabilization. (AVDD: 3.5 to 5.5 V)
Interconnect this pin to VCI2 pin.
GVDD
O
A Standard level for grayscale voltage generator.
Connect a capacitor for stabilization.
VGS
I
Reference voltage for grayscale voltage generator.
VCI1
I
A reference voltage for step-up circuit 1.
VCI2
I
A reference voltage for step-up circuit 2.
VCI3
I
A reference voltage in step-up circuit 3.
VCI4
I
A reference voltage in step-up circuit 4. Connect VCI, VDD, or an external power supply
lower than 3.3 V.
VCL
O
A power supply pin for generating VcomL. When VcomL is higher than VSS, outputs VSS
level.
14
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 7. Power supply pin description (continued)
Symbol
I/O
VBS
I
REGN,
REGP
I/O
Input pins for reference voltages of VREG1OUT, and VREG2OUT when the internal
reference-voltage generation circuit is not used. Leave these pins open when the internal
reference-voltage generation circuit is used.
O
This pin outputs a reference voltage for VREG1 between AVDD(DDVDH) and VSS. When
the internal reference voltage is not used, the reference voltage can be generated from the
voltage of REGP. Connect this pin to VREG1 and a capacitor for stabilization. When this
pin is not used, leave it open.
VREG1OUT
VREG2OUT
O
VcomOUT
O
Description
Reference voltage for step-up circuit3.
When VGH (max) = 20V, connect this pin to VCI.
When VGH (max) = 15V, connect this pin to VSS.
This pin outputs a reference voltage for VREG2 between VSS and VGL When the internal
reference voltage is not used, the reference voltage can be generated from the voltage of
REGN. Connect this pin to VREG2 and a capacitor for stabilizatio0n. When this pin is not
used, leave it open.
A power supply for the TFT-display counter electrode.
The alternating cycle can be set by the M pin. Connect this pin to the TFT-display counter
electrode.
This pin is also used as equalizing function: When EQ = “High” period, all source driver’s
outputs (S1 to S396) are short to Vcom level (Hi-z). In case of VcomL < 0V, equalizing
function must not be used. (Set EQ bit (R07h) to be “00” for preventing the abnormal
function.)
VcomR
I
A reference voltage of VcomH.
When VcomH is externally adjusted, halt the internal adjuster of VcomH by setting the
register and insert a variable resistor between GVDD and VSS. When this pin is not
externally adjusted, leave it open and adjust VcomH by setting the internal register.
VcomH
O
This pin indicates a high level of Vcom generated in driving the Vcom alternation.
Connect this pin to the capacitor for stabilization.
VcomL
O
When the Vcom alternation is driven, this pin indicates a low level of Vcom. An internal
register can be used to adjust the voltage. Connect this pin to a capacitor for stabilization.
When the VCOMG bit is low, the VcomL output stops and a capacitor for stabilization is not
needed.
VGH
O
A positive power output pin for gate driver, internal step-up circuits, bias circuits, and
operational amplifiers. Connect a capacitor for stabilization.
Interconnect this pin to VCI3 pin.
VGL
O
A Negative power output pin for gate driver, bias circuits, and operational amplifiers.
Connect a capacitor for stabilization. When internal VGL generator is not used, connect an
external-voltage power supply higher than -15.0 V.
15
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 8. Power supply pin description (continued)
Symbol
I/O
Vgoff
I
Power supply pin for off level for gate of TFT.
Connect this pin to VgoffOUT.
O
An power output pin for gate driver.
This pin is a negative voltage for the gate off level. Alternation can be synchronized by M
pin. Set the internal register according to the structure of the TFT-display retention volume.
For the amplitude at the alternation driving, this pin outputs a voltage between VcomH and
VcomL with the VgoffL reference voltage..
VgoffH
O
When the Vgoff alternation is driven, this pin indicates a high level of Vgoff. Connect a
capacitor for stabilization. When the CAD bit is low, the VgoffH output stops and a capacitor
for stabilization is not needed.
VgoffL
O
When the Vgoff alternation is driven, this pin indicates a low level of Vgoff. Connect a
capacitor for stabilization. An internal register can be used to adjust the voltage.
C11+,C11to
C23+,C23-
-
Connect the step-up capacitor according to the step-up factor.
C31+,
C31-
-
Connect a step-up capacitor for generating the VGL level.
C41+,
C41-
-
Connect a step-up capacitor for generating the -V CL level.
VgoffOUT
16
Description
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 9. System interface pin description
Symbol
I/O
IM2-1,
IM0/ID
I
CSB
I
RS
I
E
(/WR,SCL)
I
R/W
(/RD)
I
DB0/SDI
I/O
DB1/SDO
I/O
DB2-DB15
I/O
RESETB1/
RESETB2/
RESETB3
I
Description
Selects the MPU interface mode:
IM2
IM1
IM0/ID
MPU interface mode
VSS
VSS
VSS
68-system 16-bit bus interface
VSS
VSS
VDD3
68-system 8bit bus interface
VSS
VDD3
VSS
80-system 16bit bus interface
VSS
VDD3
VDD3
80-system 8bit bus interface
VDD3
VSS
ID
Serial peripheral interface (SPI)
When a SPI mode is selected, the IM0 pin is used as the ID setting for a device code.
Chip select pin.
Low: S6D0110 is selected and can be accessed
High: S6D0110 is not selected and cannot be accessed
Must be fixed at VSS level when not in use.
Register select pin.
Low: Index/status, High: Control
IM2
IM1
Pin func.
Pin description
For a 68-system bus interface, serves as an enable
VSS
VSS
E
signal to activate data read/write operation.
For an 80-system bus interface, serves as a write
VSS
VDD3
/WR
strobe signal and writes data at the low level.
For a serial peripheral interface, serves as the
VDD3
VSS
SCL
synchronous clock signal.
IM2
IM1
Pin func.
Pin description
For a 68-system bus interface, serves as a signal to
VSS
VSS
R/W
select data read/write operation.
Low: Write , High: Read
For an 80-system bus interface, serves as a read
VSS
VDD3
/RD
strobe signal and reads data at the low level.
When SPI mode is selected, fix this pin at “VSS” level.
Bi-directional data input pin for the first bit of 16-bit data bus or serial data of SPI.
For an 8-bit bus interface, data bus uses DB15-DB8; fix unused DB7-DB0 to the VDD3 or
VSS level.
For a serial peripheral interface (SPI), The input data is fetched at the rising edge of the SCL
signal.
Serves as a 16-bit bi-directional data bus.
For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the VDD3
or VSS level.
For a serial peripheral interface (SPI), serves as the serial data output pin(SDO).
Successive bit values are output on the falling edge of the SCL signal.
Serves as a 16-bit bi-directional data bus.
For an 8-bit bus interface, data transfer uses DB15-DB8; fix unused DB7-DB0 to the VDD3
or VSS level.
Reset pin. Initializes the LSI when low. Must be reset after power-on.
17
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 10. Display pin description
Symbol
I/O
Description
Source driver output pins.
The SS bit can change the shift direction of the source signal.
For example, if SS = 0, RAM address 0000 is output from S1. If SS = 1, it is output from
S396.
S1, S4, S7, ... S(3n-1) : display Red
(R) (SS = 0)
S2, S5, S8, ... S(3n-2) : display Green (G) (SS = 0)
S3, S6, S9, ... S(3n) : display Blue (B) (SS = 0)
Gate driver output pins.
The output of driving circuit is whether VGH, output gate selecting level or Vgoff, gate nonselecting level.
S1 - S396
O
G1 - G176
O
G0,
G177
O
Gate driver output pins for IC maker’s testing.
Please, leave it disconnected.
CL1
O
Output pin for one-raster-row-cycle pulse.
M
O
Output pin for AC-cycle signal.
FLM
O
Output pin for frame-start pulse.
EQ
O
Output pin for timing for equalizing
Low : Normal display, High : Equalizing
DISPTMG
O
Gate off signal in the partial display
Low : Non-display, High : Normal output
Table 11. Oscillator and internal power regulator pin description
Symbol
I/O
OSC1/
OSC2
I/O
PregB
I
Internal power regulator control input pin.
When the internal regulated power (RDVDD) is used as VDD, PregB is fixed to “low” level.
When the external logic power(VDD3) is used as VDD, PregB is fixed to “high” level.
RDVDD
O
Internal power regulated-VDD output (typ. 1.9V).
When PregB is “low”, RDVDD is connected to VDD pin. When PRegB is “high”, leave this
pin open.
18
Description
Connect an external resistor for R-C oscillation.
When input the clock from outside, input to OSC1, and open OSC2.
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
FUNCTIONAL DESCRIPTION
System Interface
The S6D0110 has five high-speed system interfaces: an 80-system 16-bit/8-bit bus, a 68-system 16-bit/8-bit bus,
and a serial interface (SPI: Serial Peripheral Interface port). The IM2-0 pins select the interface mode.
The S6D0110 has three 16-bit registers: an index register (IR), a write data register (WDR), and a read data register
(RDR). The IR stores index information for control register and GRAM. The WDR temporarily stores data to be
written into control register and GRAM. The RDR temporarily stores data read from GRAM. Data written into the
GRAM from the MPU is first written into the WDR and then written into the GRAM by internal operation automatically.
Data is read through the RDR when reading from the GRAM, and the first read data is invalid and the second and
the following data are valid.
When a logic operation is performed inside of the S6D0110 by using the display data stored in the GRAM and the
data written from the MPU, the data read through the RDR is used. Accordingly, the MPU does not need to read data
twice nor to fetch the read data into the MPU. This enables high-speed processing.
Execution time for instruction, except oscillation start, i s 0-clock cycle so that instructions can be written in
succession.
Table 12. Register Selection (80-system 8/16 Parallel Interface)
/WR
0
1
0
1
/RD
1
0
1
0
RS
0
0
1
1
Operations
Write indexes into IR
Reads internal status
Writes into control registers and GRAM through WDR
Reads from GRAM through RDR
Table 13. Register Selection (Serial Peripheral Interface)
R/W Bits
0
1
0
1
RS Bits
0
0
1
1
Operations
Writes index into IR
Reads internal status
Writes data into control registers and GRAM through WDR
Reads data from GRAM through RDR
Bit Operation
The S6D0110 supports the following functions: a write data mask function that selects and writes data into the
GRAM in bit units, and a logic operation function that performs logic operations or conditional determination on the
display data set in the GRAM and writes into the GRAM. With the 16-bit bus interface, these functions can greatly
reduce the processing loads of the MPU graphics software and can rewrite the display data in the GRAM at high
speed. For details, see the Graphics Operation Function section.
19
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Address Counter (AC)
The address counter (AC) assign addresses to the GRAM. When an address set instruction is written into the IR, the
address information is sent from the IR to the AC.
After writing into the GRAM, the AC is automatically increased/decreased by 1 according to ID1-0 bit of control
register. After reading data from GRAM, the AC is not updated. A window address function allows data to be written
only to a window area specified by GRAM.
Graphics RAM (GRAM)
The graphics RAM (GRAM) has sixteen bits/pixel and stores the bit-pattern data for 132 RGB x 176 dot display.
Grayscale Voltage Generator
The grayscale voltage circuit generates a LCD driver circuit that corresponds to the grayscale levels as specified in
the grayscale ϒ-adjusting resistor. 65,536 colors can be displayed at the same time. For details, see the ϒ-adjusting
resistor section.
Timing Generator
The timing generator generates timing signals for the operation of internal circuits such as GRAM.
The RAM read timing for display and the internal operation timing for MPU access is generated separately to avoid
interference with one another. The timing generator generates the interface signals (M, FLM, CL1, EQ, DISPTMG).
Oscillation Circuit (OSC)
The S6D0110 can provide R-C oscillation simply through the addition of an external oscillation-resistor between the
OSC1 and OSC2 pins. The appropriate oscillation frequency for operating voltage, display size, and frame
frequency can be obtained by adjusting the external-resistor value. Clock pulses can also be supplied externally.
Since R-C oscillation stops during the standby mode, current consumption can be reduced. For details, see the
Oscillation Circuit section.
Source Driver Circuit
This liquid crystal display source driver circuit consists of 396 source drivers (S1 to S396).
Display pattern data is latched when 396-bit data has arrived. The latched data then enables the source drivers to
generate drive waveform outputs. The SS bit can change the shift direction of 396-bit data by selecting an
appropriate direction for the device-mounted configuration.
Gate Driver Circuit
This liquid crystal display gate driver circuit consists of 178 gate drivers (G0 to G177).
The VGH or Vgoff level is output by the signal from the gate control circuit.
G0 and G177 are IC maker’s test pins.
20
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Power Supply Circuit
Figure 2 shows a configuration of the voltage generation circuit for S6D0110. The step-up circuits consist of stepup circuits 1 to 4. Step-up circuit 1 doubles or triples the voltage supplied to Vci1, and that voltage is doubled, tripled,
or quadrupled in step-up circuit 2. Step-up circuit 3 reverses the VGH level with reference to VSS or VBS and
generates the VGL level. Step-up circuit 4 reverses the Vci level with reference to VSS and generates the VCL level.
These step-up circuits generate power supplies AVDD, GVDD, VGH, VGL, Vgoff, and Vcom. Reference voltages
GVDD, Vcom, and Vgoff for the grayscale voltage are amplified in amplification circuits 1 and 2 from the internalvoltage adjustment circuit or the REGP or REGN voltage, and generate each level depending on that voltage.
Connect Vcom to the TFT panel.
VREG2
OUT
VREG1
OUT
Amplfiication
circuit2
(Vgoff
adjustment)
VREG2 VREG1
Amplification
circuit1
(VDH
adjustment)
VDH output
amplifier
VcomH
adjustment
circuit
REGP
VDHout
VDH
Vcom
amplitude
adjustment
circuit
REGN
Vci
Vci
Regulator
Vciout
VcomH
output
amplifier
Voltage
adjustment
circuit
VcomH
Vcom
Adjust VcomH
voltage (when
using an external
variable resistor)
VcomR
VcomL
output
amplifier
Vci1
When
using
Vciout
C11C11+
C12-
Step-up
circuit 1
C12+
VcomL
VgoffH
amplitude
adjustment
circuit
VLOUT1
DDVDH
VgoffH
output
amplifier
DDVDH
Vci2
C21-
VgoffH
Vgoffout
C21+
C22C22+
Step-up
circuit 2
C23-
VgoffL
output
amplifier
VgoffL
C23+
VLOUT2
VGH
VGH
Vci3
C31C31+
Step-up
circuit 3
VLOUT3
VGL
VGL
Vci
Vci4
C41C41+
VLOUT4
VCL
Step-up
circuit 4
Vdd
Vss
Vci
Vss
Figure 5. Configuration of the Internal Power-Supply Circuit
Notes:
Use the 1uF capacitor.
21
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Pattern Diagrams for Voltage Setting
The following figure shows a pattern diagram for the voltage setting and an example of waveforms.
VGH(+7 ~ +20V)
BT2-0
AVDD(+3.5 ~ +5.5V)
DDVDH
VREG1OUT
BT2-0
VCOM4-0
VC2-0
Vci(2.5V ~ 3.3V)
Vci1
GVDD(+3.0 ~ +5.0V)
VDH
VcomH(+3.0 ~ VDH)
VRH3-0
VDD(1.8V ~ 3.3V)
VDV4-0
VSS(0V)
(-1 times)
(-1 times)
VcomL(VCL+0.5 to 1.0V)
VCL
VRL3-0
VgoffH(to -5.0V)
VREG2OUT
VgoffL
(VGL+0.5 to -16.0V)
VGL(-9 to -16.5V)
Note:
Adjust the conditions of AVDD-GVDD>0.5V, VcomL-VCL>0.5V, and Vgoff-VGL>0.5V with loads because they
differ depending on the display load to be driven. In addition, Vci can be directly input to Vci1.
VGH
Sn(source output)
GVDD(VDH)
VcomH
VCOM
VcomL
VgoffH
Gn(Gate output)
VgoffL
Figure 6. Pattern diagram and an example of waveforms
22
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Set up Flow of Power Supply
Apply the power in a sequence as shown in Figure 7. The stable time of the oscillation circuit, step-up circuit, and
operational amplifier depend on the external resistor or capacitance.
Power Supply
(Vdd on)
1ms
Power-on reset
and display off
10ms or more
(Stable time of the
oscillation circuit)
Bits for power-supply
initial
setting: VCOM, VC20, VRH3Issues instructions for
0, CAD, VRL3power supply setting (1) 0, VCM4-0, VDV40, VRN4-0, VRP4-0
(setting of the sourcedriver grayscale
voltage)
Issues instruction for
power supply setting (2)
50ms or more
(Stable times of step-up
circuit 1 and 2)
200ms or more
(Stable time of the stepup operational
amplifier)
Bits for display off.
DTE=0
D1-0=00
GON=0
PON=0
Issues instruction for
power supply setting (3)
Bits for power-supply
operation start
setting: BT2-0, DC20, AP2-0
Bits for source-driver
operational amplifier
operaton-start
setting: SAP2-0
Bits for step-up
circuit3 operation
start PON=1
Issues instruction for
other mode setting
Bits for display
on: DTE =1, D10=11, GON=1
Display off
sequence*
Display off
Bits for display
off: DTE =0, D10=00, GON=0
Bits for source-driver
operational amplifier
Instruction for
power supply setting(1)operation-stop setting:
SAP2-0
Bits for power supply
stop setting: AP2-0
for operational
Instruction for
power supply setting(2) amplifier, DC2-0 for
step-up circuit
Power supply
(Vdd off)
Power-off sequence
Display-on
Sequence*
Diplay on
Normal Display
Bits for display
on: DTE =1, D10=11, GON=1
Power-on sequence
Figure 7. Set up Flow of Power Supply
23
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
GRAM ADDRESS
Table 14. GRAM address (SS=”0”)
… … …
S385
S386
S387
S388
S389
S390
S391
S392
S393
S394
S395
S396
DB
… …
15
DB
0
G176
"0000"H
"0001"H
"0002"H
"0003"H
G2
G175
"0100"H
"0101"H
"0102"H
"0103"H
G3
G174
"0200"H
"0201"H
"0202"H
"0203"H
G4
G173
"0300"H
"0301"H
"0302"H
"0303"H
G5
G172
"0400"H
"0401"H
"0402"H
"0403"H
G6
G171
"0500"H
"0501"H
"0502"H
"0503"H
G170
"0600"H
"0601"H
"0602"H
"0603"H
G8
G169
"0700"H
"0701"H
"0702"H
"0703"H
"0903"H
G11
G166
"0A00"H
"0A01"H
"0A02"H
"0A03"H
G12
G165
"0B00"H
"0B01"H
"0B02"H
"0B03"H
G13
G164
"0C00"H
"0C01"H
"0C02"H
"0C03"H
G14
G163
"0D00"H
"0D01"H
"0D02"H
"0D03"H
G15
G162
"0E00"H
"0E01"H
"0E02"H
"0E03"H
G16
G161
"0F00"H
"0F01"H
"0F02"H
"0F03"H
G17
G160
"1000"H
"1001"H
"1002"H
"1003"H
G18
G159
"1100"H
"1101"H
"1102"H
"1103"H
G19
G158
"1200"H
"1201"H
"1202"H
"1203"H
G20
G157
"1300"H
"1301"H
"1302"H
"1303"H
……
"0803"H
"0902"H
……
"0802"H
"0901"H
……
"0801"H
"0900"H
……
"0800"H
G167
……
G168
……
G9
G10
G169
G168
"A800"H
"A801"H
"A802"H
"A803"H
G170
G167
"A900"H
"A901"H
"A902"H
"A903"H
G171
G166
"AA00"H
"AA01"H
"AA02"H
"AA03"H
G172
G165
"AB00"H
"AB01"H
"AB02"H
"AB03"H
G173
G164
"AC00"H
"AC01"H
"AC02"H
"AC03"H
G174
G163
"AD00"H
"AD01"H
"AD02"H
"AD03"H
G175
G162
"AE00"H
"AE01"H
"AE02"H
"AE03"H
G176
G161
"AF00"H
"AF01"H
"AF02"H
"AF03"H
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
DB DB
… …
0 15
DB DB
… …
0 15
DB DB
… …
0 15
DB
0
"0080"H
"0081"H
"0082"H
"0083"H
"0180"H
"0181"H
"0182"H
"0183"H
"0280"H
"0281"H
"0282"H
"0283"H
"0380"H
"0381"H
"0382"H
"0383"H
"0480"H
"0481"H
"0482"H
"0483"H
"0580"H
"0581"H
"0582"H
"0583"H
"0680"H
"0681"H
"0682"H
"0683"H
"0780"H
"0781"H
"0782"H
"0783"H
"0880"H
"0881H
"0882"H
"0883"H
"0980"H
"0981"H
"0982"H
"0983"H
"0A80"H
"0A81"H
"0A82"H
"0A83"H
"0B80"H
"0B81"H
"0B82"H
"0B83"H
"0C80"H
"0C81"H
"0C82"H
"0C83"H
"0D80"H
"0D81"H
"0D82"H
"0D83"H
"0E80"H
"0E81"H
"0E82"H
"0E83"H
"0F80"H
"0F81"H
"0F82"H
"0F83"H
"1080"H
"1081"H
"1082"H
"1083"H
"1180"H
"1181"H
"1182"H
"1183"H
"1280"H
"1281"H
"1282"H
"1283"H
"1380"H
"1381"H
"1382"H
"1383"H
……
DB DB
… …
0 15
……
DB DB
… …
0 15
……
DB DB
… …
0 15
G1
G7
24
DB
… …
15
……
GS=0 GS=1
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S/G Output
"A880"H
"A881"H
"A880"H
"A883"H
"A980"H
"A981"H
"A980"H
"A983"H
"AA80"H
"AA81"H
"AA80"H
"AA83"H
"AB80"H
"AB81"H
"AB80"H
"AB83"H
"AC80"H
"AC81"H
"AC80"H
"AC83"H
"AD80"H
"AD81"H
"AD80"H
"AD83"H
"AE80"H
"AE81"H
"AE80"H
"AE83"H
"AF80"H
"AF81"H
"AF80"H
"AF83"H
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 15. GRAM address (SS=”1”)
… … …
S385
S386
S387
S388
S389
S390
S391
S392
S393
S394
S395
S396
DB
… …
15
DB
… …
15
DB
0
G1
G176
"0083"H
"0082"H
"0081"H
"0080"H
G2
G175
"0183"H
"0182"H
"0181"H
"0180"H
G3
G174
"0283"H
"0282"H
"0281"H
"0280"H
G4
G173
"0383"H
"0382"H
"0381"H
"0380"H
G5
G172
"0483"H
"0482"H
"0481"H
"0480"H
G6
G171
"0583"H
"0582"H
"0581"H
"0580"H
G7
G170
"0683"H
"0682"H
"0681"H
"0680"H
G8
G169
"0783"H
"0782"H
"0781"H
"0780"H
G9
G168
"0883"H
"0882"H
"0881H
"0880"H
G10
G167
"0983"H
"0982"H
"0981"H
"0980"H
G11
G166
"0A83"H
"0A82"H
"0A81"H
"0A80"H
G12
G165
"0B83"H
"0B82"H
"0B81"H
"0B80"H
G13
G164
"0C83"H
"0C82"H
"0C81"H
"0C80"H
G163
"0D83"H
"0D82"H
"0D81"H
"0D80"H
G15
G162
"0E83"H
"0E82"H
"0E81"H
"0E80"H
G16
G161
"0F83"H
"0F82"H
"0F81"H
"0F80"H
G17
G160
"1083"H
"1082"H
"1081"H
"1080"H
G18
G159
"1183"H
"1182"H
"1181"H
"1180"H
G19
G158
"1283"H
"1282"H
"1281"H
"1280"H
G20
G157
"1383"H
"1382"H
"1381"H
"1380"H
……
……
……
……
……
……
G14
G169
G168
"A883"H
"A880"H
"A881"H
"A880"H
G170
G167
"A983"H
"A980"H
"A981"H
"A980"H
G171
G166
"AA83"H
"AA80"H
"AA81"H
"AA80"H
G172
G165
"AB83"H
"AB80"H
"AB81"H
"AB80"H
G173
G164
"AC83"H
"AC80"H
"AC81"H
"AC80"H
G174
G163
"AD83"H
"AD80"H
"AD81"H
"AD80"H
G175
G162
"AE83"H
"AE80"H
"AE81"H
"AE80"H
G176
G161
"AF83"H
"AF80"H
"AF81"H
"AF80"H
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
…
DB DB
… …
0 15
DB DB
… …
0 15
DB DB
… …
0 15
DB
0
"0003"H
"0002"H
"0001"H
"0000"H
"0103"H
"0102"H
"0101"H
"0100"H
"0203"H
"0202"H
"0201"H
"0200"H
"0303"H
"0302"H
"0301"H
"0300"H
"0403"H
"0402"H
"0401"H
"0400"H
"0503"H
"0502"H
"0501"H
"0500"H
"0603"H
"0602"H
"0601"H
"0600"H
"0703"H
"0702"H
"0701"H
"0700"H
"0803"H
"0802"H
"0801"H
"0800"H
"0903"H
"0902"H
"0901"H
"0900"H
"0A03"H
"0A02"H
"0A01"H
"0A00"H
"0B03"H
"0B02"H
"0B01"H
"0B00"H
"0C03"H
"0C02"H
"0C01"H
"0C00"H
"0D03"H
"0D02"H
"0D01"H
"0D00"H
"0E03"H
"0E02"H
"0E01"H
"0E00"H
"0F03"H
"0F02"H
"0F01"H
"0F00"H
"1003"H
"1002"H
"1001"H
"1000"H
"1103"H
"1102"H
"1101"H
"1100"H
"1203"H
"1202"H
"1201"H
"1200"H
"1303"H
"1302"H
"1301"H
"1300"H
……
DB DB
… …
0 15
……
DB DB
… …
0 15
……
DB DB
… …
0 15
……
GS=0 GS=1
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S/G Output
"A803"H
"A802"H
"A801"H
"A800"H
"A903"H
"A902"H
"A901"H
"A900"H
"AA03"H
"AA02"H
"AA01"H
"AA00"H
"AB03"H
"AB02"H
"AB01"H
"AB00"H
"AC03"H
"AC02"H
"AC01"H
"AC00"H
"AD03"H
"AD02"H
"AD01"H
"AD00"H
"AE03"H
"AE02"H
"AE01"H
"AE00"H
"AF03"H
"AF02"H
"AF01"H
"AF00"H
25
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
INSTRUCTIONS
The S6D0110 uses the 16-bit bus architecture. Before the internal operation of the S6D0110 starts, control
information is temporarily stored in the registers described below to allow high-speed interfacing with a highperformance microcomputer. The internal operation of the S6D0110 is determined by signals sent from the
microcomputer. These signals, which include the register selection signal (RS), the read/write signal (R/W), and the
data bus signals (DB15 to DB0), make up the S6D0110 instructions.
There are nine categories of instructions that:
Specify the index
Read the status
Control the display
Control power management
Process the graphics data
Set internal GRAM addresses
Transfer data to and from the internal GRAM
Set grayscale level for the internal grayscale palette table
Interface with the gate driver and power supply IC
-
Normally, instructions that write data are used the most. However, an auto-update of internal GRAM addresses after
each data write can lighten the microcomputer program load. As instructions are executed in 0 cycles, they can be
written in succession.
26
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
INSTRUCTION TABLE
Table 16. Instruction table 1
Reg.
No
RS
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
R/W
DB
9
DB
8
DB
7
DB
6
DB
5
IR
0
0
*
*
*
*
*
*
*
*
*
ID6
ID5
SR
1
0
L7
L6
L5
L4
L3
L2
L1
L0
0
0
0
0
1
*
*
*
*
*
*
*
*
*
*
*
1
1
0
0
0
0
0
0
0
1
0
0
0
R01h
0
1
0
0
0
0
0
SM
GS
SS
0
0
0
R02h
0
1
0
0
0
0
B/C
EOR
0
0
NW5
R03h
0
1
0
0
BT1
BT0
DC2
DC1
DC0
R04h
0
1
CAD
0
0
VRN4 VRN3 VRN2 VRN1 VRN0
0
0
0
R05h
0
1
0
0
0
BGR
R06h
0
1
CP15
R00h
FLD1 FDL0
SAP2 SAP1 SAP0
0
BT2
0
CP14 CP13 CP12 CP11 CP10
HWM
0
0
0
I/D1
CP9
CP8
CP7
CP6
CP5
DB
4
DB
3
DB
2
DB
1
DB
0
Register Name /
Description
Index
/
ID4
ID3
ID2
ID1
ID0
Sets the index register value
Status read /
0
0
0
0
0
Reads the driving raster-row position
Start oscillation /
*
*
*
*
1
Starts the oscillation circuit
Device code read /
1
0
0
0
0
Read 0110H
Driver output control /
SM: gate driver division drive control
NL4
NL3
NL2
NL1
NL0 GS: gate driver shift direction
SS: source driver shift direction
NL4-0: number of driving lines
LCD-Driving-waveform control /
FLD1-0: number of interlaced field
NW4 NW3 NW2 NW1 NW0 B/C: LCD drive AC waveform
NW5-0: number of n-raster-row of Cpattern
Power control 1 /
SAP2-0:
BT2-0:
AP2
AP1
AP0
SLP
STB DC2-0:
AP2-0:
SLP:
STB:
Power control 2 /
VRP4 VRP3 VRP2 VRP1 VRP0 CAD:
VRN4-0:
VRP4-0:
Entry mode /
BGR:
I/D0
AM
LG2
LG1
LG0 HWM:
I/D1-0:
AM:
LG2-0:
CP4
CP3
CP2
CP1
CP0
R07h
0
1
0
0
0
PT1
PT0
VLE2 VLE1
SPT
0
0
GON
DTE
CL
REV
D1
D0
R08h
0
1
0
0
0
0
FP3
FP2
FP0
0
0
0
0
BP3
BP2
BP1
BP0
R09h
0
1
0
0
0
0
BLP2
2
BLP2
1
BLP2
0
0
0
0
0
R0Bh
0
1
NO1
NO0
SDT1 SDT0
R0Ch
0
1
0
0
0
0
R0Dh
0
1
0
0
0
0
R0Eh
0
1
0
0
VCO
MG
R0Fh
0
1
0
0
0
FP1
BLP1 BLP1 BLP1 BLP1 BLP2
3
2
1
0
3
EQ1
EQ0
DIV1
DIV0
0
0
0
0
0
0
0
0
0
0
0
0
VRL3 VRL2 VRL1 VRL0
0
0
0
PON
VDV4 VDV3 VDV2 VDV1 VDV0
0
0
0
VCM4 VCM3 VCM2 VCM1 VCM0
0
0
0
SCN4 SCN3 SCN2 SCN1 SCN0
0
0
0
0
0
RTN3 RTN2 RTN1 RTN0
0
VC2
VC1
VC0
VRH3 VRH2 VRH1 VRH0
Compare register /
Display control /
PT1-0:
VLE2-1:
SPT:
GON:
DTE:
CL:
REV:
D1-0:
Blank period control 1/
BP3-0: Back porch setting
FP3-0: Front porch setting
Blank period control 2/
Frame cycle control /
NO1-0:
SDT1-0:
EQ1-0:
DVI1-0:
RTN3-0:
Power control 3 /
VC2-0:
Power control 4 /
VRL3-0:
PON:
VRH3-0:
Power control 5 /
VCOMG:
VDV4-0:
VCM4-0:
Gate scan position /
SCN4-0: scan starting position of gate
27
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 17. Instruction table 2
Reg.
No
RS
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
R/W
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
R11h
0
1
0
0
0
0
0
0
0
0
VL7
VL6
VL5
VL4
VL3
VL2
VL1
VL0
R14h
0
1
SE17
SE16 SE15 SE14 SE13 SE12 SE11 SE10 SS17 SS16
SS15
SS14
SS13
SS12
SS11
SS10
R15h
0
1
SE27
SE26 SE25 SE24 SE23 SE22 SE21 SE20 SS27 SS26
SS25
SS24
SS23
SS22
SS21
SS20
R16h
0
1
HEA7 HEA6 HEA5 HEA4 HEA3 HEA2 HEA1 HEA0 HSA7 HSA6 HSA5 HSA4 HSA3 HSA2 HSA1 HSA0
R17h
0
1
VEA7
R20h
0
1
WM15 WM14 WM13 WM12 WM11 WM10 WM9
R21h
0
1
AD15
AD9
AD8
AD7
AD6
AD5
AD4
AD3
AD2
AD1
AD0
0
1
WD15 WD14 WD13 WD12 WD11 WD10 WD9
WD8
WD7
WD6
WD5
WD4
WD3
WD2
WD1
WD0
RD15 RD14 RD13 RD12 RD11 RD10
RD9
RD8
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
PKP
12
PKP
32
PKP
52
PRP
12
PKN
12
PKN
32
PKN
52
PRN
12
PKP
11
PKP
31
PKP
51
PRP
11
PKN
11
PKN
31
PKN
51
PRN
11
PKP
10
PKP
30
PKP
50
PRP
10
PKN
10
PKN
30
PKN
50
PRN
10
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PKP
02
PKP
22
PKP
42
PRP
02
PKN
02
PKN
22
PKN
42
PRN
02
PKP
01
PKP
21
PKP
41
PRP
01
PKN
01
PKN
21
PKN
41
PRN
01
PKP
00
PKP
20
PKP
40
PRP
00
PKN
00
PKN
20
PKN
40
PRN
00
VEA6 VEA5 VEA4 VEA3 VEA2 VEA1 VEA0 VSA7 VSA6
AD14 AD13 AD12 AD11 AD10
WM8
WM7
WM6
VSA5
VSA4
VSA3
VSA2
VSA1
VSA0
WM5
WM4
WM3
WM2
WM1
WM0
R22h
1
1
R30h
0
1
0
0
0
0
0
R31h
0
1
0
0
0
0
0
R32h
0
1
0
0
0
0
0
R33h
0
1
0
0
0
0
0
R34h
0
1
0
0
0
0
0
R35h
0
1
0
0
0
0
0
R36h
0
1
0
0
0
0
0
R37h
0
1
0
0
0
0
0
28
Register Name /
Description
Vertical scroll control /
VL7-0:
1st screen driving position /
SE17-10:
SS17-10
2nd screen driving position /
SE27-20:
SS27-20
Horizontal RAM Address position /
HEA7-0:
HSA7-0
Vertical RAM Address position /
HEA7-0:
HSA7-0
RAM write data mask /
WM15-0:
RAM address set /
AD15-0:
Write data to GRAM /
WD15-0:
Read data from GRAM /
RD15-0:
Gamma control 1 /
Adjust Gamma voltage
Gamma control 2 /
Adjust Gamma voltage
Gamma control 3 /
Adjust Gamma voltage
Gamma control 4 /
Adjust Gamma voltage
Gamma control 5 /
Adjust Gamma voltage
Gamma control 6 /
Adjust Gamma voltage
Gamma control 7 /
Adjust Gamma voltage
Gamma control 8 /
Adjust Gamma voltage
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
INSTRUCTION DESCRIPTIONS
Index
The index instruction specifies the RAM control indexes (R00h to R3Fh). It sets the register number in the range of
00000 to 111111 in binary form. However, R40 to R44 are disabled since they are test registers.
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
0
*
*
*
*
*
*
*
*
*
ID6
ID5
ID4
ID3
ID2
ID1
ID0
Status Read
The status read instruction read out the internal status of the IC.
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
R
0
L7
L6
L5
L4
L3
L2
L1
L0
0
0
0
0
0
0
0
0
L7–0: Indicate the driving raster-row position where the liquid crystal display is being driven.
Start Oscillation (R00h)
The start oscillation instruction restarts the oscillator from the Halt State in the standby mode. After this instruction,
wait at least 10 ms for oscillation to stabilize before giving the next instruction. (See the Standby Mode section)
If this register is read forcibly, *0110H is read.
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
1
R
1
0
0
0
0
0
0
0
1
0
0
0
1
0
0
0
0
29
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Driver Output Control (R01h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
0
0
0
0
0
SM
GS
SS
0
0
0
NL4
NL3
NL2
NL1
NL0
GS: Selects the output shift direction of the gate driver. When GS = 0, G1 shifts to G176. When GS = 1, G176 shifts
to G1.
SM: Select the division drive method of the gate driver. When SM = 0, even/odd division is selected; SM = 1,
upper/lower division drive is selected. Various connections between TFT panel and the IC can be supported with the
combination of SM and GS bit.
SS: Selects the output shift direction of the source driver. When SS = 0, S1 shifts to S396. When SS = 1, S396 shifts
to S1. When SS = 0, <R><G><B> color is assigned from S1. When SS = 1, <R><G><B> color is assigned from
S396. Re-write to the RAM when intending to change the SS bit.
NL4–0: Specify number of lines for the LCD drive. Number of lines for the LCD drive can be adjusted for every eight
raster-rows. GRAM address mapping does not depend on the setting value of the drive duty ratio. Select the set
value for the panel size or higher.
Table 18. NL bit and Drive Duty (SCN4-0=00000)
NL4
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
NL3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
NL2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
NL1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
NL0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Display size
Setting disabled
396 X 16 dots
396 X 24 dots
396 X 32 dots
396 X 40 dots
396 X 48 dots
396 X 56 dots
396 X 64 dots
396 X 72 dots
396 X 80 dots
396 X 88 dots
396 X 96 dots
396 X 104 dots
396 X 112 dots
396 X 120 dots
396 X 128 dots
396 X 136 dots
396 X 144 dots
396 X 152 dots
396 X 160 dots
396 X 168 dots
396 X 176 dots
Number of LCD driver lines
Setting disabled
16
24
32
40
48
56
64
72
80
88
96
104
112
120
128
136
144
152
160
168
176
Gate driver used
Setting disabled
G1 to G16
G1 to G24
G1 to G32
G1 to G40
G1 to G48
G1 to G56
G1 to G64
G1 to G72
G1 to G80
G1 to G88
G1 to G96
G1 to G104
G1 to G112
G1 to G120
G1 to G128
G1 to G136
G1 to G144
G1 to G152
G1 to G160
G1 to G168
G1 to G176
NOTE: Blank period (All gates output Vgoff level) have to be inserted after all gates are scanned.
30
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
LCD-Driving-Waveform Control (R02h)
R/W
W
RS
1
DB15
0
DB14
0
DB13
0
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
FLD
1
FLD
0
B/C
EOR
0
0
NW5
NW4
NW3
NW2
NW1
NW0
FLD1-0: These bits are for the set up of the interlaced driver’s n raster-row. See the following table and figure for the
set up value and field raster-row and scanning method.
Table 19. Association chart for scanning FLD1-0 and n raster-row
FLD1
0
FLD0
0
Scanning method
Set up disabled
0
1
1 field
1
0
Set up disabled
1
1
3 field (interlaced)
G1 4
G3 4
G175 4
G2 4
..... G174 4
G176
TFT Panel
(a) When FLD1-0= 01(normal scanning)
G1 4 G4 4
G7 4 .....4 G174
G2 4 G5 4
G8 4 .....4 G175
G3 4 G6 4
G9 4 .....4 G176
TFT Panel
TFT Panel
TFT Panel
Frame 1/3
Frame 2/3
Frame 3/3
1 frame
(b) When FLD1-0= 11(interlaced scanning)
Figure 8. n raster-row interlaced scanning method
B/C: When B/C = 0, a B-pattern waveform is generated and alternates in every frame for LCD drive. When B/C = 1,
a n raster-row waveform is generated and alternates in each raster-row specified by bits EOR and NW4–NW0 in the
LCD-driving-waveform control register (R02h). For details, see the n-raster-row Reversed AC Drive section.
31
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
EOR: When the C-pattern waveform is set (B/C = 1) and EOR = 1, the odd/even frame-select signals and the nraster-row reversed signals are EORed(Exclusive-OR) for alternating drive. EOR is used when the LCD is not
alternated by combining the set values of the number of the LCD drive raster-row and the n raster-row. For details,
see the n-raster-row Reversed AC Drive section.
NW5–0: Specify the number of raster-rows that will alternate in the C-pattern waveform setting (B/C = 1).
NW4– NW0 alternate for every set value + 1 raster-row, and the first to the 64th raster-rows can be selected.
32
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Power Control 1 (R03h)
Power Control 2 (R04h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
0
0
BT0
DC2
DC1
DC0
AP2
AP1
AP0
SLP
STB
CAD
0
SAP
0
VRN
3
BT1
1
SAP
1
VRN
4
BT2
W
SAP
2
0
VRN
2
VRN
1
VRN
0
0
0
0
VRP
4
VRP
3
VRP
2
VRP
1
VRP
0
SAP2-0: The amount of fixed current from the fixed current source in the operational amplifier for the source driver is
adjusted. When the amount of fixed current is large, LCD driving ability and the display quality become high, but the
current consumption is increased. Adjust the fixed current considering the display quality and the current
consumption. During no display, when SAP2-0 = “000”, the current consumption can be reduced by ending the
operational amplifier and step-up circuit operation.
SAP2
SAP1
SAP0
Amount of Current in Operational Amplifier
0
0
0
Operation of the operational amplifier and step-up circuit stops.
0
0
1
Small
0
1
0
Small or medium
0
1
1
Medium
1
0
0
Medium or large
1
0
1
Large
1
1
0
Setting Inhibited
1
1
1
Setting Inhibited
BT2–0: The output factor of step-up is switched. Adjust scale factor of the step-up circuit by the voltage used. When
the step-up operating frequency is high, the driving ability of the step-up circuit and the display quality become high,
but the current consumption is increased. Adjust the frequency considering the display quality and the current
consumption.
BT2
BT1
BT0
VLOUT1 Output
VLOUT2 Output
Notes*
0
0
0
2 X Vci1
3 X Vci2
VLOUT2 = Vci1 X six times
0
0
1
2 X Vci1
4 X Vci2
VLOUT2 = Vci1 X eight times
0
1
0
3 X Vci1
3 X Vci2
VLOUT2 = Vci1 X nine times
0
1
1
3 X Vci1
2 X Vci2
VLOUT2 = Vci1 X six times
1
0
0
2 X Vci1
Vci1 + 2 X Vci2
VLOUT2 = Vci1 X five times
1
0
1
2 X Vci1
Vci1 + 3 X Vci2
VLOUT2 = Vci1 X seven times
1
1
0
Step-up stopped
3 X Vci2
VLOUT2 = Vci2 X three times
1
1
1
Step-up stopped
4 X Vci2
VLOUT2 = Vci2 X four times
Notes: The step-up factors of VLOUT2 are derived from Vci1 when VLOUT1 and Vci2 are shorted. The conditions of VLOUT1
5.5V and VLOUT2 15.0V must be satisfied.
33
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
DC2-0: The operating frequency in the step-up circuit is selected. When the step-up operating frequency is high, the
driving ability of the step-up circuit and the display quality become high, but the current consumption is increased.
Adjust the frequency considering the display quality and the current consumption.
DC2
DC1
DC0
Step-up Cycle in Step-up Circuit1
Step-up Cycle in Step-up Circuit 2/3/4
0
0
0
DCCLK / 1
DCCLK / 4
0
0
1
DCCLK / 2
DCCLK / 4
0
1
0
DCCLK / 4
DCCLK / 4
0
1
1
DCCLK / 2
DCCLK / 16
1
0
0
DCCLK
DCCLK / 8
1
0
1
DCCLK / 2
DCCLK / 8
1
1
0
DCCLK / 4
DCCLK / 8
1
1
1
DCCLK / 4
DCCLK / 16
AP2– 0: The amount of fixed current in the operational amplifier for the power supply can be adjusted. When the
amount of fixed current is large, the LCD driving ability and the display quality become high, but the current
consumption is increased. Adjust the fixed current considering the display quality and the current consumption.
During no display, when AP2-0 = “000”, the current consumption can be reduced by ending the operational amplifier
and step-up circuit operation.
AP2
AP1
AP0
Amount of Current in Operational Amplifier
0
0
0
Operation of the operational amplifier and step-up circuit stops.
0
0
1
Small
0
1
0
Small or medium
0
1
1
Medium
1
0
0
Medium or large
1
0
1
Large
1
1
0
Setting Inhibited
1
1
1
Setting Inhibited
SLP: When SLP = 1, the S6D0110 enters the sleep mode, where the internal display operations are halted except
for the R-C oscillator, thus reducing current consumption. Only the following instructions can be executed during the
sleep mode.
− Power control (BT2 –0, DC3–0, AP2–0, SLP, STB, VC2-0, CAD, VR3-0, VRL3-0, VRH4-0, VCOMG,
VDV4-0, and VCM4-0 bits)
During the sleep mode, the other GRAM data and instructions cannot be updated although they are retained and G1
to G228 output is fixed to VSS level, and register set-up is protected (maintained).
34
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
STB: When STB = 1, the S6D0110 enters the standby mode, where display operation completely stops, halting all
the internal operations including the internal R-C oscillator. Further, no external clock pulses are supplied. For
details, see the Standby Mode section. Only the following instructions can be executed during the standby mode.
−
−
Standby mode cancel(STB = “0”)
Start oscillation
CAD: Set this bit according to the structure for the TFT-display retention volume.
CAD = 0: Set this bit when the Cst retention volume is structured. In this case, Vgoff level is fixed to VgoffL level
regardless of the Vcom alternating drive.
CAD = 1: Set this bit when the Cadd retention volume is structured. At the Vcom alternating drive, the Vgoff voltage
is output in the VgoffL voltage reference by the amount of Vcom alternating amplitude.
VRP4-0: Control oscillation (positive polarity) of 64-grayscale. For details, see the Oscillation Adjusting Circuit
section.
VRN4-0: Control oscillation (negative polarity) of 64-grayscale. For details, see the Oscillation Adjusting Circuit
section.
35
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Power Control 3 (R0Ch)
Power Control 4 (R0Dh)
Power Control 5 (R0Eh)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
0
0
0
0
0
0
0
0
0
0
0
0
0
VC2
VC1
Vc0
W
1
0
0
0
0
PON
0
VCO
MG
VDV
4
VRL
0
VDV
0
0
0
VRL
1
VDV
1
0
1
VRL
2
VDV
2
0
W
VRL
3
VDV
3
0
0
0
VCM
4
VRH
3
VCM
3
VRH
2
VCM
2
VRH
1
VCM
1
VRH
0
VCM
0
VC2-0: Adjust reference voltage of VREG1, VREG2OUT and Vciout to optional rate of Vci. Also, when VC2 = “1”, it
is possible to stop the internal reference voltage generator. This leads to optional power on for VREG1OUT/Vciout
with REGP and VREG2OUT with REGN externally.
Internal Reference Voltage (REGP) of
Internal Reference Voltage (REGN) of
VC2
VC1
VC0
VREG1OUT and Vciout
VREG2OUT
0
0
0
0.92 X Vci
0.08 X Vci
0
0
1
0.83 X Vci
0.17 X Vci
0
1
0
0.73 X Vci
0.27 X Vci
0
1
1
0.68 X Vci
0.32 X Vci
1
0
0
Vci
VSS
1
*
*
Stops generation of the internal reference
voltages of VREG1OUT and Vciout (REGP
can be input externally)
Stops generation of the internal reference
voltage of VREG2OUT (REGN can be input
externally).
Notes: Leave these settings open because the voltage other than that for halting the internal circuit is output for REGP and
REGN.
VRL3-0: Set magnification of amplification for VREG2OUT voltage (voltage for the reference voltage, VREG2 while
generating Vgoffout.) It allows magnifying the amplification of REGN from 2 to 8.5 times.
VRL VRL
VRL
VRL
VREG2OUT Voltage
VRL
VRL
VRL
VRL
VREG2OUT Voltage
3
2
1
0
3
2
1
0
0
0
0
0
-(Vci – REGN) X 3.0
1
0
0
0
-(Vci – REGN) X 6.5
0
0
0
1
-(Vci – REGN) X 3.5
1
0
0
1
-(Vci – REGN) X 7.0
0
0
1
0
-(Vci – REGN) X 4.0
1
0
1
0
-(Vci – REGN) X 7.5
0
0
1
1
-(Vci – REGN) X 4.5
1
0
1
1
-(Vci – REGN) X 8.0
0
1
0
0
-(Vci – REGN) X 5.0
1
1
0
0
-(Vci – REGN) X 8.5
0
1
0
1
-(Vci – REGN) X 5.5
1
1
0
1
-(Vci – REGN) X 9.0
0
1
1
0
-(Vci – REGN) X 6.0
1
1
1
0
-(Vci – REGN) X 9.5
0
1
1
1
Stopped
1
1
1
1
Stopped
Notes:
1. These settings apply when the internal reference-voltage generation circuit is stopped and the VREG2OUT voltage is
generated specifying REGN as the reference voltage.
2. Adjust the settings between the voltage set by (Vci – VC2-0) or the (Vci – REGN) voltage and VRL0 to VRL3 so that the
VREG2OUT voltage is higher than –16.0 V.
3. The VREG2OUT voltage is the factor when Vci is the reference voltage.
36
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
PON: This is an operation-starting bit for the booster circuit 4. PON = 0 is to stop and PON = 1 to start operation. For
further information about timing for adjusting to the PON = 1, please refer to the set up flow of power supply circuit.
VRH3-0: Set the amplified factor of the VREG1OUT voltage (the voltage for the reference voltage, VREG2 while
generating VgoffOUT). It allows to amplify from 1.45 to 2.85 times of REGN input voltage.
VRH
3
VRH
2
VRH
1
VRH
0
VREG1OUT Voltage
VRH
3
VRH
2
VRH
1
VRH
0
VREG1OUT Voltage
0
0
0
0
REGP X 1.45 times
1
0
0
0
REGP X 2.175 times
0
0
0
1
REGP X 1.55 times
1
0
0
1
REGP X 2.325 times
0
0
1
0
REGP X 1.65 times
1
0
1
0
REGP X 2.475 times
0
0
1
1
REGP X 1.75 times
1
0
1
1
REGP X 2.625 times
0
1
0
0
REGP X 1.80 times
1
1
0
0
REGP X 2.700 times
0
1
0
1
REGP X 1.85 times
1
1
0
1
REGP X 2.775 times
0
1
1
0
REGP X 1.90 times
1
1
1
0
REGP X 2.850 times
0
1
1
1
Stopped
1
1
1
1
Stopped
Notes:
1. These settings apply when the internal reference-voltage generation circuit is stopped and the VREG1OUT voltage is
generated specifying REGP as the reference voltage.
2. Adjust the settings between the voltage set by VC2-0 or the REGP voltage and VRH0 to VRH3 so that the VREG1OUT
voltage is lower than 5.0 V.
VCOMG: When VCOMG = 1, VcomL voltage can output to negative voltage (-5V).
When VCOMG = 0, VcomL voltage becomes VSS and stops the amplifier of the negative voltage. Therefore, low
power consumption is accomplished. Also, When VCOMG = 0 and when Vcom is driven in A/C, set up of the
VDV4-0 is invalid. In this case, adjustment of Vcom/Vgoff A/C oscillation must be adjusted VcomH with VCM4-0.
VDV4-0: Set the alternating amplitudes of Vcom and Vgoff at the Vcom alternating drive. These bits amplify Vcom
and Vgoff 0.6 to 1.23 times the VREG1 voltage. When the Vcom alternation is not driven, the settings become
invalid.
VDV
4
VDV
3
VDV
2
VDV
1
VDV
0
Vcom
Amplitude
VDV
4
VDV
3
VDV
2
VDV
1
VDV
0
Vcom
Amplitude
0
0
0
0
0
VREG1 X 0.60
1
0
0
0
1
VREG1 X 1.08
0
0
0
0
1
VREG1 X 0.63
1
0
0
1
0
VREG1 X 1.11
0
0
0
1
0
VREG1 X 0.66
1
0
0
1
1
VREG1 X 1.14
:
:
:
:
:
:
1
0
1
0
0
VREG1 X 1.17
0
1
1
0
0
VREG1 X 0.96
1
0
1
0
1
VREG1 X 1.20
0
1
1
0
1
VREG1 X 0.99
1
0
1
1
0
VREG1 X 1.23
0
1
1
1
0
VREG1 X 1.02
1
0
1
1
1
Setting Inhibited
0
1
1
1
1
Setting Inhibited
1
1
*
*
*
Setting Inhibited
1
0
0
0
0
VREG1 X 1.05
Notes : Adjust the settings between VREG1 and VDV0 to VDV4 so that the Vcom and Vgoff amplitudes are lower than 6.0 V.
37
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
VCM4-0: Set the VcomH voltage (a high-level voltage at the Vcom alternating drive). These bits amplify the VcomH
voltage 0.4 to 0.98 times the VREG1 voltage. When VCOM4-0 = 1, the adjustment of the internal volume stops, and
VcomH can be adjusted from VcomR by an external resistor.
VCM4
VCM3
VCM2
VCM1
VCM0
VcomH Voltage
0
0
0
0
0
VREG1 X 0.40 times
0
0
0
0
1
VREG1 X 0.42 times
0
0
0
1
0
VREG1 X 0.44 times
:
:
:
:
:
0
1
1
0
0
VREG1 X 0.64 times
0
1
1
0
1
VREG1 X 0.66 times
0
1
1
1
0
VREG1 X 0.68 times
0
1
1
1
1
The internal volume stops, and VcomH can be adjusted from
VcomR by an external variable resistor.
1
0
0
0
0
VREG1 X 0.70 times
1
0
0
0
1
VREG1 X 0.72 times
1
0
0
1
0
VREG1 X 0.74 times
:
:
:
:
:
:
1
1
1
0
0
VREG1 X 0.94 times
1
1
1
0
1
VREG1 X 0.96 times
1
1
1
1
0
VREG1 X 0.98 times
1
1
1
1
1
The internal volume stops, and VcomH can be adjusted from
VcomR by an external variable resistor.
:
Notes: Adjust the settings between VREG1 and VCM0 to VCM4 so that the VcomH voltage is lower than GVDD.
38
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Entry Mode (R05h)
Compare Register (R06h)
R/W
W
RS
1
DB15
0
DB14
0
DB13
0
DB12
BGR
DB11
0
DB10
0
DB9
HWM
DB8
0
DB7
0
DB6
0
DB5
I/D1
DB4
I/D0
DB3
AM
DB2
LG2
DB1
LG1
DB0
LG0
W
1
CP15
CP14
CP13
CP12
CP11
CP10
CP9
CP8
CP7
CP6
CP5
CP4
CP3
CP2
CP1
CP0
The write date sent from the microcomputer is modified in the S6D0110 written to the GRAM. The display data in the
GRAM can be quickly rewritten to reduce the load of the microcomputer software processing. For details, see the
Graphics Operation Function section.
HWM: When HWM=1, data can be written to the GRAM at high speed. In high-speed write mode, four words of data
are written to the GRAM in a single operation at the writing to RAM four times. Write to RAM four times, otherwise
the four words cannot be written to the GRAM. Thus, set the lower 2 bits to 0 when setting the RAM address.
For details, see the High Speed RAM Write Mode section.
I/D1-0: When I/D1-0 = 1, the address counter (AC) is automatically increased by 1 after the data is written to the
GRAM. When I/D1-0 = 0, the AC is automatically decreased by 1 after the data is written to the GRAM. Automatic
address counter updating is not performed when reading data from GRAM. The increment/decrement setting of the
address counter by I/D1-0 is performed independently for the upper (AD15-8) and lower (AD7-0) addresses. The
AM bit sets the direction of moving through the addresses when the GRAM is written.
AM: Set the automatic update method of the AC after the data is written to the GRAM. When AM = 0, the data is
continuously written in parallel. When AM = 1, the data is continuously written vertically. When window address
range is specified, the GRAM in the window address range can be written to according to the I/D1-0 and AM
settings.
Table 20. Address Direction Setting
I/D1-0=”00”
H: decrement
V: decrement
I/D1-0=”01”
H: increment
V: increment
0000h
0000h
I/D1-0=”10”
H: decrement
V: increment
0000h
I/D1-0=”11”
H: increment
V: increment
0000h
AM=0
Horizontal
AF83h
0000h
AF83h
AF83h
0000h
0000h
AF83h
0000h
AM=1
Vertical
AF83h
AF83h
AF83h
AF83h
39
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
BGR: When 16-bit data is written to GRAM, bit-order of the data can be reversed by use of this bit. Therefore, bitorder of the data is set to be <R><G><B> when BGR is 0, <B><G><R> when BGR is 1.
Please be aware that setting BGR to 1 will convert the order of the CP15-0 and WM15-0 bits in the same way.
LG2– 0: Compare the data read from the GRAM by the microcomputer with the compare registers (CP7–0) by a
compare/logical operation and write the results to GRAM. For details, see the Logical/Compare Operation Function.
CP15–0: Set the compare register for the compare operation with the data read from the GRAM or written by the
microcomputer.
Write data sent
from the
micro computer
(DB15-0)
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
0
0
0
0
0
0
0
1
1
1
0
0
1
1
1
0
Logical/compare
operation
(LG2-0)
Logical operation (with read data and write data)
LG2-0 = “000”: Replace
LG2-0 = “001”: OR
LG2-0 = “010”: AND
LG2-0 = “011”: EOR
Write data mask*
(WM15-0)
Compare operation (with read data and write data)
LG2-0 = “100”: Replacement of matched read data
LG2-0 = “101”: Replacement of unmatched read data
LG2-0 = “110”: Replacement of matched write data
LG2-0 = “111”: Replacement of unmatched write data
Write data mask (WM15-0)
GRAM
NOTE: The write data mask (WM11-0) is set by the register in the RAM Write Data Mask section
Figure 9. Logical/compare operation
Display Control (R07h)
R/W
W
RS
1
DB15
0
DB14
0
DB13
0
DB12
PT1
DB11
PT0
DB10
VLE2
DB9
VLE1
DB8
SPT
DB7
0
DB6
0
DB5
GON
DB4
DTE
DB3
CL
DB2
REV
DB1
D1
DB0
D0
PT1-0: Normalize the source outputs when non-displayed area of the partial display is driven. For details, see the
Screen-division Driving Function section.
VLE2–1: When VLE1 = 1, a vertical scroll is performed in the 1st screen. When VLE2 = 1, a vertical scroll is
performed in the 2nd screen. Vertical scrolling on the two screens cannot be controlled at the same time.
VLE2
0
0
1
1
40
VLE1
0
1
0
1
2nd Screen
Fixed display
Fixed display
Scroll display
Setting disabled
1st Screen
Fixed display
Scroll display
Fixed display
Setting disabled
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SPT: When SPT = 1, the 2-division LCD drive is performed. For details, see the Screen-division Driving Function
section.
GON: Gate off level is set to be VSS when GON = 0.
When GON= 0 and DISPTMG= 0, G1 to G176 output is fixed to VSS level. When GON= 1, G1 to G176 output is
fixed to VGH or Vgoff level. See the instruction set up flow for further description on the display on/off flow.
GON
0
1
Gate output
VGH/VSS
VGH/Vgoff
DTE: DISPTMG output is fixed to VSS when DTE = 0.
DTE
0
1
DISPTMG output
Halt (VSS)
Operation (VDD/VSS)
CL: When CL = 1, number of display is 8-color mode. For details, see the 8-color Display Mode.
CL
0
1
Number of display colors
65,536 colors
8 colors
41
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
REV: Displays all character and graphics display sections with reversal when REV = 1. For details, see the
Reversed Display Function section. Since the grayscale level can be reversed, display of the same data is enabled
on normally white and normally black panels.
1) Combination with the partial display
REV
0
1
GRAM
data
16’h0000
:
16’hFFFF
16’h0000
:
16’hFFFF
Display data
Vcom=L
V63
:
V0
V0
:
V63
Vcom=H
V0
:
V63
V63
:
V0
Source output level
Non-display area
PT1-0=(0,1)
PT1-0=(1,0)
Vcom=L
Vcom=H
Vcom=L
Vcom=H
PT1-0=(1,1)
Vcom=L
Vcom=H
V63
V0
VSS
VSS
Hi-z
Hi-z
V63
V0
VSS
VSS
Hi-z
Hi-z
2) Combination with the D1-0
REV
0
1
GRAM
data
16’h0000
:
16’hFFFF
16’h0000
:
16’hFFFF
D1-0=(1,1)
Vcom=L
Vcom=H
V63
V0
:
:
V0
V63
V0
V63
:
:
V63
V0
Source output level
D1-0=(1,0)
D1-0=(0,1)
Vcom=L
Vcom=H
Vcom=L
Vcom=H
D1-0=(0,0)
Vcom=L
Vcom=H
V63
V0
VSS
VSS
VSS
VSS
V63
V0
VSS
VSS
VSS
VSS
D1– 0: Display is on when D1 = 1 and off when D1 = 0. When off, the display data remains in the GRAM, and can be
displayed instantly by setting D1 = 1. When D1 is 0, the display is off with the entire source outputs set to the VSS
level. Because of this, the S6D0110 can control the charging current for the LCD with AC driving. Control the display
on/off while control GON and DTE. For details, see the Instruction Set Up Flow.
When D1–0 = 01, the internal display of the S6D0110 is performed although the display is off. When D1-0 = 00, the
internal display operation halts and the display is off.
D1
D0
Source output
S6D0110 internal display operation
Master/slave signal (CL1, FLM, M,
DISPTMG)
Halt
Operate
Operate
Operate
0
0
VSS
Halt
0
1
VSS
Operate
1
0
Unlit display
Operate
1
1
Display
Operate
Notes:
1. Writing from the microcomputer to the GRAM is independent from D1–0.
2. In sleep and standby mode, D1–0 = 00. However, the register contents of D1–0 are not modified.
42
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Blanking period control 1 (R08h)
Blanking period control 2 (R09h)
R/W
W
RS
1
DB15
0
DB14
0
DB13
0
DB12
0
DB11
FP3
DB10
FP2
DB9
FP1
DB8
FP0
DB7
0
DB6
0
DB5
0
DB4
0
DB3
BP3
DB2
BP2
DB1
BP1
DB0
BP0
W
1
0
0
0
0
BLP1
3
BLP1
2
BLP1
1
BLP1
0
BLP2
3
BLP2
2
BLP2
1
BLP2
0
0
0
0
0
The blanking period in the front and end of the display area can be defined using this register.
When N-raster-row is driving, a blank period is inserted after all screens are drawn. Front and Back porch can be
adjusted using FP3-0 and BP3-0 bits (R08h). In interlace drive mode, Blank period can be adjusted using BLP130 and BLP23-0 bit (R09h).the GRAM can be quickly rewritten to reduce the load of the microcomputer software
processing. For details, see the Graphics Operation Function section.
FP3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
FP2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
FP1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
FP0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Blanking period
0 raster-row
1 raster-row
2 raster-row
3 raster-row
4 raster-row
5 raster-row
6 raster-row
7 raster-row
8 raster-row
9 raster-row
10 raster-row
11raster-row
12 raster-row
13 raster-row
14 raster-row
15 raster-row
BP3
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BP2
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BP1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BP0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Blanking period
0 raster-row
1 raster-row
2 raster-row
3 raster-row
4 raster-row
5 raster-row
6 raster-row
7 raster-row
8 raster-row
9 raster-row
10 raster-row
11raster-row
12 raster-row
13 raster-row
14 raster-row
15 raster-row
BLP13
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BLP12
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BLP11
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BLP10
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Blanking period
0 raster-row
1 raster-row
2 raster-row
3 raster-row
4 raster-row
5 raster-row
6 raster-row
7 raster-row
8 raster-row
9 raster-row
10 raster-row
11raster-row
12 raster-row
13 raster-row
14 raster-row
15 raster-row
BLP23
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
BLP22
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
BLP21
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
BLP20
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
Blanking period
0 raster-row
1 raster-row
2 raster-row
3 raster-row
4 raster-row
5 raster-row
6 raster-row
7 raster-row
8 raster-row
9 raster-row
10 raster-row
11raster-row
12 raster-row
13 raster-row
14 raster-row
15 raster-row
43
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Frame Cycle Control (R0Bh)
R/W
W
RS
1
DB15
NO1
DB14
NO0
DB13
SDT1
DB12
SDT0
DB11
EQ1
DB10
EQ0
DB9
DIV1
DB8
DIV0
DB7
0
DB6
0
DB5
0
DB4
0
DB3
RTN3
DB2
RTN2
DB1
RTN1
DB0
RTN0
RTN3-0: Set the 1H period.
RTN3
0
0
0
.
.
.
1
1
RTN2
0
0
0
.
.
.
1
1
RTN1
0
0
1
.
.
.
1
1
RTN0
0
1
0
.
.
.
0
1
Clock cycles per raster row
16
17
18
.
.
.
30
31
DIV1-0: Set the division ratio of clocks for internal operation (DIV1-0). Internal operations are driven by clocks, which
are frequency divided according to the DIV1-0 setting. Frame frequency can be adjusted along with the 1H period
(RTN3-0). When changing number of the drive cycle, adjust the frame frequency. For details, see the Frame
Frequency Adjustment Function section.
DIV1
0
0
1
1
DIV0
0
1
0
1
Division Ratio
1
2
4
8
Internal operation clock frequency
fosc/1
fosc/2
fosc/4
fosc/8
*fosc = R-C oscillation frequency
EQ1-0: EQ period is sustained for the number of clock cycle which is set on EQ1-0. When VcomL<0, set these bits
as “00” for preventing the abnormal function.
EQ1
0
0
1
1
Frame Frequency =
EQ0
0
1
0
1
fOSC
Clock cycles per raster-row x division ratio x (Line+B)
fOSC : R-C oscillation frequency
Line: Number of raster-rows (NL bit)
Clock cycles per raster-row: RTN bit
Division ratio: DIV bit
B: Blank period(Back porch + Front Porch)
Figure 10. Formula for the frame frequency
44
EQ period
No EQ
1 clock cycle
2 clock cycle
3 clock cycle
[Hz]
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SDT1-0: Set delay amount from gate edge (end) to source output.
SDT1
0
0
1
1
SDT0
0
1
0
1
Delay amount of the source output
1 clock cycle
2 clock cycle
3 clock cycle
4 clock cycle
1H period
1H period
Gn
Sn
EQ
Delay amount of
the source output
Equalizing period
Figure 11. Set Delay from Gate Output to Source Output
NO1-0: Set amount of non-overlay for the gate output.
NO1
0
0
1
1
NO0
0
1
0
1
1H period
Amount of non-overlab
0 clock cycle
4 clock cycle
6 clock cycle
8 clock cycle
1H period
CL1
Gn
Gn+1
Non-overlap period
Figure 12. Non-overlap Period
45
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Gate Scan Position (R0fh)
R/W
W
RS
1
DB15
NO1
DB14
0
DB13
0
DB12
0
DB11
0
DB10
0
DB9
0
DB8
0
DB7
0
DB6
0
DB5
0
DB4
SCN4
DB3
SCN3
DB2
SCN2
DB1
SCN1
SCN 4-0: Set the scanning starting position of the gate driver.
SCN4
SCN3
SCN2
SCN1
SCN0
0
0
0
:
:
1
1
1
0
0
0
:
:
0
0
0
0
0
0
:
:
0
1
1
0
0
1
:
:
1
0
0
0
1
0
:
:
1
0
1
G1
Scanning start position
GS=0
GS=1
G1
G176
G9
G168
G17
G160
:
:
:
:
G153
G24
G161
G16
G169
G8
G1
G16
G17
G160
G161
G160
G161
G176
G176
GS = 0
NL = 10010
SCN4-0 = 00000
GS = 1
NL = 10010
SCN4-0 = 00010
Note: Set NL4-0 on the gate scan end that does not exceed value 176
Figure 13. Relationship between NL and SCN set up value
46
DB0
SCN0
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Vertical Scroll Control (R11h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
0
0
0
0
0
0
0
0
VL7
VL6
VL5
VL4
VL3
VL2
VL1
VL0
VL7-0: Specify scroll length at the scroll display for vertical smooth scrolling. Any raster-row from the first to 176 th
can be scrolled for the number of the raster-row. After 176th raster-row is displayed, the display restarts from the first
raster-row. The display-start raster-row (VL7-0) is valid when VLE1 = 1 or VLE2 = 1. The raster-row display is fixed
when VLE2-1 = 00.
VL7
0
0
0
VL6
0
0
0
VL5
0
0
0
VL4
0
0
0
VL3
0
0
0
VL2
0
0
0
VL1
0
0
1
VL0
0
1
0
1
1
1
1
0
1
Scroll length
0 raster-row
1 raster-row
2 raster-row
.
.
.
174 raster-row
175 raster-row
.
.
.
1
0
1
0
1
1
0
1
0
1
Note: Don’t set any higher raster-row than 175 (“AF”H)
1st Screen Driving Position (R14h)
2nd Screen Driving Position (R15h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
W
1
1
SE17
SE27
SE16
SE26
SE15
SE25
SE14
SE24
SE13
SE23
SE12
SE22
SE11
SE21
SE10
SE20
SS17
SS27
SS16
SS26
SS15
SS25
SS14
SS24
SS13
SS23
SS12
SS22
SS11
SS21
SS10
SS20
SS17–10: Specify the driving start position for the first screen in a line unit. The LCD driving starts from the ‘set value
+1’ common driver.
SE17–10: Specify the driving end position for the first screen in a line unit. The LCD driving is performed to the 'set
value + 1' gate driver. For instance, when SS17–10 = 07h and SE17–10 = 10h are set, the LCD driving is performed
from G8 to G17, and black display driving is performed for G1 to G7, G18, and others. Ensure that SS17–10
≤ SE17–10 ≤ AFh. For details, see the Screen-division Driving Function section.
SS27–10: Specify the driving start position for the second screen in a line unit. The LCD driving starts from the 'set
value + 1' gate driver. The second screen is driven when SPT = 1.
SE27–20: Specify the driving end position for the second screen in a line unit. The LCD driving is performed to the
'set value + 1' gate driver. For instance, when SPT = 1, SS27–20 = 20h, and SE27– 20 = AFh are set, the LCD
driving is performed from G33 to G80. Ensure that SS17–10 ≤ SE17–10 ≤ SS27–20 ≤ SE27– 20 ≤ AFh. For details,
see the Screen-division Driving Function section.
47
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Horizontal Ram Address Position (R16h)
Vertical Ram Address Position (R17h)
R/W
W
RS
1
DB15
HEA
7
DB14
HEA
6
DB13
HEA
5
DB12
HEA
4
DB11
HEA
3
DB10
HEA
2
DB9
HEA
1
DB8
HEA
0
DB7
HSA
7
DB6
HSA
6
DB5
HSA
5
DB4
HSA
4
DB3
HSA
3
DB2
HSA
2
DB1
HSA
1
DB0
HSA
0
W
1
VEA
7
VEA
6
VEA
5
VEA
4
VEA
3
VEA
2
VEA
1
VEA
0
VSA
7
VSA
6
VSA
5
VSA
4
VSA
3
VSA
2
VSA
1
VSA
0
HSA7-0/HEA7-0: Specify the horizontal start/end positions of a window for access in memory. Data can be written
to the GRAM from the address specified by HEA 7-0 from the address specified by HSA7-0. Note that an address
must be set before RAM is written. Ensure 00h ≤ HSA7-0 ≤ HEA7-0 ≤ 83h.
VSA7-0/VEA7-0: Specify the vertical start/end positions of a window for access in memory. Data can be written to
the GRAM from the address specified by VEA7-0 from the address specified by VSA7-0. Note that an address must
be set before RAM is written. Ensure 00h ≤ VSA7-0 ≤ VEA7-0 ≤ AFh.
HEA
HSA
0000H
VSA
Window address setting range
Window address
“00”h £ HSA7-0 ≤ HEA7-0 ≤ “83”h
“00”h ≤ VSA7-0 ≤ VEA7-0 ≤ “AF”h
VEA
GRAM address space
AF83H
NOTE: 1. Ensure that the window address area is within the GRAM address space
2. In high-speed write mode, data are written to GRAM in four-words.
Thus, dummy write operations should be inserted depending on the window address
area. For details, see the High-Speed Burst RAM Write Function section
Figure 14. Window address setting range
48
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
RAM Write Data Mask (R20h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
W
1
WM15
WB14
WM13
WM12
WM11
WM10
WM9
WM8
WM7
WM6
WM5
WM4
WM3
WM2
WM1
WM0
WM15–0: In writing to the GRAM, these bits mask writing in a bit unit. When WM15 = 1, this bit masks the write data
of DB15 and does not write to the GRAM. Similarly, the WM14 to 0 bits mask the write data of DB14 to 0 in a bit unit.
For details, see the Graphics Operation Function section.
RAM Address Set (R21h)
R/W
W
RS
1
DB15
AD15
DB14
AD14
DB13
AD13
DB12
AD12
DB11
AD11
DB10
AD10
DB9
AD9
DB8
AD8
DB7
AD7
DB6
AD6
DB5
AD5
DB4
AD4
DB3
AD3
DB2
AD2
DB1
AD1
DB0
AD0
AD15–0: Initially set GRAM addresses to the address counter (AC). Once the GRAM data is written, the AC is
automatically updated according to the AM and I/D bit settings. This allows consecutive accesses without resetting
address. Once the GRAM data is read, the AC is not automatically updated. GRAM address setting is not allowed in
the standby mode. Ensure that the address is set within the specified window address
AD15 to AD0
“0000H” to “0083”H
“0100H” to “0183”H
“0200H” to “0283”H
“0300H” to “0383”H
:
:
:
“AC00H” to “AC83”H
“AD00H” to “AD83”H
“AE00H” to “AE83”H
“AF00H” to “AF83”H
GRAM setting
Bitmap data for G1
Bitmap data for G2
Bitmap data for G3
Bitmap data for G4
:
:
:
Bitmap data for G173
Bitmap data for G174
Bitmap data for G175
Bitmap data for G176
49
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Write Data to Gram (R22h)
R/W
W
RS
1
DB15
WD15
DB14
WD14
DB13
WD13
DB12
WD12
DB11
WD11
DB10
WD10
DB9
WD9
DB8
WD8
DB7
WD7
DB6
WD6
DB5
WD5
DB4
WD4
DB3
WD3
DB2
WD2
DB1
WD1
DB0
WD0
WD15-0: Write 16-bit data to the GRAM. This data selects the grayscale level. After a write, the address is
automatically updated according to AM and I/D bit settings. During the standby mode, the GRAM cannot be
accessed.
DB15
WD15
DB14
WD14
DB13
WD13
DB12
WD12
DB11
WD11
DB10
WD10
DB9
WD9
DB8
WD8
DB7
WD7
DB6
WD6
DB5
WD5
DB4
WD4
DB3
WD3
DB2
WD2
DB1
WD1
DB0
WD0
↓
R4
↓
R3
↓
R2
↓
R1
↓
R0
↓
G5
↓
G4
↓
G3
1 pixel
↓
G2
↓
G1
↓
G0
↓
B4
↓
B3
↓
B2
↓
B1
↓
B0
Figure 15. Write data to GRAM
Table 21. GRAM Data and Grayscale Level
GRAM data setup
Selected
grayscale
N
P
GRAM data setup
Selected
grayscale
N
P
GRAM data setup
Selected
grayscale
N
P
GRAM data setup
G
R/B
G
R/B
G
R/B
000000
00000
V0
V63
010000
01000
V16
V47
100000
-
V32
V31
110000
-
V48
V15
000001
000010
00001
V1
V2
V62
V61
010001
010010
01001
V17
V18
V46
V45
100001
100010
10000
-
V33
V34
V30
V29
110001
110010
11000
-
V49
V50
V14
V13
000011
-
V3
V60
010011
-
V19
V44
100011
10001
V35
V28
110011
11001
V51
V12
000100
000101
00010
-
V4
V5
V59
V58
010100
010101
01010
-
V20
V21
V43
V42
100100
100101
10010
V36
V37
V27
V26
110100
110101
11010
V52
V53
V11
V10
000110
00011
V6
V57
010110
01011
V22
V41
100110
-
V38
V25
110110
-
V54
V9
000110
001000
00100
V7
V8
V56
V55
010110
011000
01100
V23
V24
V40
V39
100110
101000
10011
-
V39
V40
V24
V23
110110
111000
11011
-
V55
V56
V8
V7
001001
-
V9
V54
011001
-
V25
V38
101001
10100
V41
V22
111001
11100
V57
V6
001010
001011
00101
-
V10
V11
V53
V52
011010
011011
01101
-
V26
V27
V37
V36
101010
101011
10101
V42
V43
V21
V20
111010
111011
11101
V58
V59
V5
V4
001100
00110
V12
V51
011000
01100
V28
V35
101100
-
V44
V19
111100
-
V60
V3
001101
001100
00110
V13
V14
V50
V49
011001
011010
01101
V29
V30
V34
V33
101101
101100
10110
-
V45
V46
V18
V17
111101
111110
11110
-
V61
V62
V2
V1
001101
-
V15
V48
011011
-
V31
V32
101101
10111
V47
V16
111111
11111
V63
V0
50
G
R/B
Selected
grayscale
N
P
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Read Data from GRAM (R22h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
DB10
DB9
DB8
DB7
DB6
DB5
DB4
DB3
DB2
DB1
DB0
R
1
RD15
RD14
RD13
RD12
RD11
RD10
RD9
RD8
RD7
RD6
RD5
RD4
RD3
RD2
RD1
RD0
RD11–0: Read 16-bit data from the GRAM. When the data is read to the microcomputer, the first-word read
immediately after the GRAM address setting is latched from the GRAM to the internal read-data latch. The data on
the data bus (DB15– 0) becomes invalid and the second-word read is normal.
When bit processing, such as a logical operation, is performed within the S6D0110, only one read can be processed
since the latched data in the first word is used.
Sets the I/D, AM, HSA/HEA,
and VSA/VEA bits
Sets the I/D, AM, HSA/HEA,
and VSA/VEA bits
Address: N set
Address: N set
First word
Dummy read (invalid data)
GRAM -> Read data latch
First word
Second word
Read (data of address N)
Read data latch -> DB15-0
Second word
Address: M set
Dummy read (invalid data)
GRAM -> Read data latch
Write (data of address N)
DB15-0 -> GRAM
Automatic address update: N+α
First word
Dummy read (invalid data)
GRAM -> Read data latch
First word
Second word
Read (data of address M)
Read-data latch -> DB15-0
Second word
i) Data read to the microcomputer
Dummy read (invalid data)
GRAM -> Read data latch
Write (data of address N+α)
DB15-0 -> GRAM
ii) Logical operation processing
in S6D0110
Figure 16. GRAM read sequence
51
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Gamma Control (R30h To R37h)
R/W
RS
DB15
DB14
DB13
DB12
DB11
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
W
1
0
0
0
0
0
DB10
PKP
12
DB9
PKP
11
DB8
PKP
10
PKP
32
PKP
52
PRP
12
PKP
31
PKP
51
PRP
11
PKP
30
PKP
50
PRP
10
PKN
12
PKN
32
PKN
52
PKN
11
PKN
31
PKN
51
PKN
10
PKN
30
PKN
50
PRN
12
PRN
11
PRN
10
DB7
DB6
DB5
DB4
DB3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
PKP52–00: Gamma micro adjustment register for the positive polarity output
PRP12-00: Gradient adjustment register for the positive polarity output
PKN52-00: Gamma micro adjustment register for the negative polarity output
PRN12-00: Gradient adjustment register for the negative polarity output
For details, see the Gamma Adjustment Function.
52
DB2
PKP
02
DB1
PKP
01
DB0
PKP
00
PKP
22
PKP
42
PRP
02
PKP
21
PKP
41
PRP
01
PKP
20
PKP
40
PRP
00
PKN
02
PKN
22
PKN
42
PKN
01
PKN
21
PKN
41
PKN
00
PKN
20
PKN
40
PRN
02
PRN
01
PRN
00
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
RESET FUNCTION
The S6D0110 is internally initialized by RESET input. The reset input must be held for at least 1 ms. Do not access
the GRAM or initially set the instructions until the R-C oscillation frequency is stable after power has been supplied
(10 ms).
Instruction Set Initialization
1.
2.
3.
4.
Start oscillation executed
Driver output control (NL4–0 = 10101, SS = 0, CS = 0)
B-pattern waveform AC drive (FLD1-0 = 01, B/C = 0, EOR = 0, NW5–0 = 00000)
Power control 1 (SAP2-0 = 000, BT2-0 = 000, DC2–0 = 000, AP2–0 = 000: LCD power off, SLP = 0, STB = 0:
Standby mode off)
5. Power control 2 (CAD = 0, VRN4-0 = 00000, VRP4-0 = 00000)
6. Entry mode set (HWM = 0, I/D1-0 = 11: Increment by 1, AM = 0: Horizontal move, LG2–0 = 000: Replace mode)
7. Compare register (CP15–0: 0000000000000000)
8. Display control (PT1-0 = 00, VLE2– 1 = 00: No vertical scroll, SPT = 0, GON = 0, DTE = 0, CL = 0: 65536 color
mode, REV = 0, D1–0 = 00: Display off)
9. Display control (FP3-0=0101, BP3-0=0011, BLP13-0=0010, BLP23-0=0010)
10. Frame cycle control (NO1-0 = 00, SDT1-0 = 00, EQ1-0 = 00: no equalizer, DIV1-0 = 00: 1-divided clock, RTN3-0
= 0000: 16 clock cycle in 1H period)
11. Power control 3 (VC2-0 = 000)
12. Power control 4 (VRL3-0 = 0000, PON=0, VRH3-0 = 0000)
13. Power control 5 (VCOMG = 0, VDV4-0 = 00000, VCM4-0 = 00000)
14. Gate scanning starting position (SCN4-0 = 00000)
15. Vertical scroll
(VL7–0 = 0000000)
16. 1st screen division (SE17-10 = 11111111, SS17-10 = 00000000)
17. 2nd screen division (SE27-20 = 11111111, SS27-20 = 00000000)
18. Horizontal RAM address position (HEA7-0 = 10000011, HSA7-0 = 00000000)
19. Vertical RAM address position
(VEA7-0 = 10101111, VSA7-0 = 00000000)
20. RAM write data mask (WM15– 0 = 0000h: No mask)
21. RAM address set (AD15– 0 = 0000h)
22. Gamma control
(PKP02– 00 = 000, PKP12–10 = 000, PKP22–20 = 000, PKP32– 30 = 000,
PK42–40 = 000, PKP52– 50 = 000, PRP02–00 = 000, PRP12– 10 = 000)
(PKN02– 00 = 000, PKN12–10 = 000, PKN22–20 = 000, PKN32– 30 = 000,
PKN42– 40 = 000, PKN52–50 = 000, PRN02–00 = 000, PRN12–10 = 000)
GRAM Data Initialization
GRAM is not automatically initialized by reset input but must be initialized by software while display is off (D1– 0 =
00).
Output Pin Initialization
1. LCD driver output pins (Source output) : Output VSS level
(Gate output) : Output Vgoff level
2. Oscillator output pin (OSC2): Outputs oscillation sign
53
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
VOLTAGE REGULATION FUNCTION
The S6D0110 have internal voltage regulator. Voltage regulation function is controlled by PregB pin.
If PregB= “H”, voltage regulation is stopped. PregB= “L” enables internal voltage regulation function.
By use of this function, internal logic circuit damage can be prohibited. Furthermore, power consumption also be
obtained. Detailed function description and application setup is described in the following diagram.
Internal VDD
Level
Shifter
INPUT
INTERNAL
LOGIC
GND
PREGB
VDD3
(External Power)
Range: 2.5~3.3V
PregB= 'L' : REGULATOR ON
VOLTAGE
REGULATOR
RVDD
Internal VDD
(1.9V)
VDD
(a) Voltage regulation function enabled
Internal VDD
Level
Shifter
INPUT
PREGB
VDD3
VOLTAGE
REGULATOR
PregB= 'H' : REGULATOR OFF
RVDD
VDD
(External Power)
1.8~2.5V
Internal VDD
(b) Voltage regulation function disabled
Figure 13. Voltage regulation function
54
INTERNAL
LOGIC
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SYSTEM INTERFACE
System interface mode of S6D0110 can be fixed by use of IM2/1/0 pin. Instruction setting and GRAM access is
executed via system interface.
Table 22. IM bits and System Interface
IM2
0
0
0
0
1
1
*
IM1
0
0
1
1
0
1
*
IM0
0
1
0
1
*
*
*
System Interface
68-system 16-bit interface
68-system 8-bit interface
80-system 16-bit interface
80-system 8-bit interface
Serial peripheral interface (SPI)
Setting disabled
Setting disabled
DB Pin
DB15 ~ 0
DB15 ~ 8
DB15 ~ 0
DB15 ~ 8
DB1 ~ 0
-
PARALLEL DATA TRANSFER
16-BIT BUS INTERFACE
Setting the IM2/1/0 (interface mode) to the VSS/VSS/VSS level allows 68-system E-clock-synchronized 16-bit
parallel data transfer. Setting the IM2/1/0 to the VSS/VDD3/VSS level allows 80-system 16-bit parallel data transfer.
When the number of bus or the mounting area is limited, use an 8-bit bus interface.
CSn
CSB
A1
MPU
RS
/WR
/WR
/RD
/RD
D15-D0
16
S6D0110
DB15-DB0
Figure 17. Interface to 16-bit microcomputer
55
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
8-BIT BUS INTERFACE
Setting the IM2/1/0 (interface mode) to the VSS/VSS/VDD3 level allows 68-system E-clock-synchronized 8-bit
parallel data transfer using pins DB15–DB8. Setting the IM2/1/0 to the VSS/VDD3/VDD3 level allows 80-system 8bit parallel data transfer. The 16-bit instructions and RAM data are divided into upper/lower eight bits and the
transfer starts from the upper eight bits. Fix unused pins DB7– DB0 to the VDD3 or VSS level. Note that the upper
bytes must also be written when the index register is written.
MPU
CSn
CSB
A1
RS
/WR
/WR
/RD
/RD
D7-D0
S6D0110
DB15-DB8
8
DB7-DB0
8
Figure 18. Interface to 8-bit microcomputer
Note: The S6D0110 supports the transfer synchronization function, which resets the upper/lower counter to count
upper/lower 8-bit data transfer in the 8-bit bus interface. Noise causing transfer mismatch between the eight upper
and lower bits can be corrected by a reset triggered by consecutively writing a 00H instruction four times. The next
transfer starts from the upper eight bits. Executing synchronization function periodically can recover any runaway in
the display system
RS
R/W
E
DB15
to
DB8
Upper or
Lower
“00 ”H
“00”H
“00”H
“00”H
(1)
(2)
(3)
(4)
Upper
Lower
8-bit transfer synchronization
Figure 19. 8-bit transfer synchronization
56
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SERIAL DATA TRANSFER
Setting the IM 2/1 pin to the VDD3/VSS level allows serial peripheral interface (SPI) transfer, using the chip select
line (CS*), serial transfer clock line (SCL), serial input data (SDI), and serial output data (SDO). For a serial interface,
the IM0/ID pin function uses an ID pin. If the chip is set up for serial interface, the DB15-2 pins that are not used must
be fixed at VDD3 or VSS.
The S6D0110 initiates serial data transfer by transferring the start byte at the falling edge of CS* input. It ends serial
data transfer at the rising edge of CS* input.
The S6D0110 is selected when the 6-bit chip address in the start byte matches the 6-bit device identification code
that is assigned to the S6D0110. When selected, the S6D0110 receives the subsequent data string. The LSB of the
identification code can be determined by the ID pin. The five upper bits must be 01110. Two different chip addresses
must be assigned to a single S6D0110 because the seventh bit of the start byte is used as a register select bit (RS):
that is, when RS = 0, data can be written to the index register or status can be read, and when RS = 1, an instruction
can be issued or data can be written to or read from RAM. Read or write is selected according to the eighth bit of the
start byte (R/W bit). The data is received when the R/W bit is 0, and is transmitted when the R/W bit is 1.
After receiving the start byte, the S6D0110 receives or transmits the subsequent data byte-by-byte. The data is
transferred with the MSB first. All S6D0110 instructions are 16 bits. Two bytes are received with the MSB first (DB15
to 0), then the instructions are internally executed. After the start byte has been received, the first byte is fetched as
the upper eight bits of the instruction and the second byte is fetched as the lower eight bits of the instruction.
Four bytes of RAM read data after the start byte are invalid. The S6D0110 starts to read correct RAM data from the
fifth byte.
Table 23. Start Byte Format
Transfer bit
S
Start byte format
Transfer start
1
2
0
1
3
4
Device ID code
1
1
5
6
0
ID
7
RS
8
R/W
NOTE: ID bit is selected by the IM0/ID pin.
Table 24. RS and R/W Bit Function
RS
0
0
1
1
RW
0
1
0
1
Function
Set index register
Read status
Writes instruction or RAM data
Reads instruction or RAM data
57
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
A) Timing Basic Data Transfer through Clock Synchronized Serial Bus Interface
Transfer start
Transfer end
CS*
(input)
SCL
(input)
SDI
(input)
1
2
3
4
5
6
7
8
9
10
11
12
13
0
1
1
1
0
ID
R
RW
DB
15
DB
14
DB
13
DB
12
DB
11
14
DB
10
15
DB
9
16
DB
8
17
18
19
20
21
22
23
24
DB
7
DB
6
DB
5
DB
4
DB
3
DB
2
DB
1
DB
0
DB
2
DB
1
DB
0
RS R/W
Device ID
Index register setting instruction RAM data write
Start byte
SDO
(output)
DB
15
DB
14
DB
13
DB
12
DB
11
DB
10
DB
9
DB
8
DB
7
DB
6
DB
5
DB
4
DB
3
Status read instruction read RAM data read
B) Timing of Consecutive Data-Transfer through Clock-synchronized serial Bus Interface
CS*
(input)
1
SCL
(input)
2 3 4
SDI
(input)
5
6
7
8
Start byte
9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
Instruction 1: upper
Instruction 2: lower
Instruction 2: upper
Start
Instruction 1: execution time
End
NOTE: The first byte after the start byte is always the upper eight bits.
C) RAM-Data Read-Transfer Timing
CS*
(input)
SCL
(input)
Start byte
RS=1
R/W=1
SDI
(input)
SDO
(output)
Dummy
read 1
Dummy
read 2
Dummy
read 3
Dummy
read 4
Dummy
read 5
RAM read:
upper 8-bits
RAM read:
lower 8-bits
Start
End
NOTE: 5-byte of RAM read data after the start byte are invalid.
The S6D0110 starts to read the correct RAM data from sixth byte
Figure 20. Procedure for transfer on clock synchronized serial bus interface
58
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
D) Status Read/Instruction Read
CS*
(input)
Start byte
RS=1
R/W=1
SDI
(input)
SDO
(output)
Dummy
read 1
Start
Status read
upper 8-bit
Status read
lower 8-bit
End
NOTE: 2-byte of the RAM read after the start byte is invalid.
The S6D0110 starts to read the correct RAM data from the third data.
Figure 21. Procedure for transfer on clock synchronized serial bus interface (continued)
59
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
HIGH-SPEED BURST RAM WRITE FUNCTION
The S6D0110 has a high-speed burst RAM-write function that can be used to write data to RAM in one-fourth the
access time required for an equivalent standard RAM-write operation. This function is especially suitable for
applications that require the high-speed rewriting of the display data, for example, display of color animations, etc.
When the high-speed RAM-write mode (HWM) is selected, data for writing to RAM is once stored to the S6D0110
internal register. When data is selected four times per word, all data is written to the on-chip RAM. While this is
taking place, the next data can be written to an internal register so that high-speed and consecutive RAM writing can
be executed for animated displays, etc.
a) High-speed burst RAM write operation flow
Microcomputer
16
Address
counter
(AC)
Register 1
Register 2
Register 3
Register 4
64
16
“0000”H
“0001”H
“0002”H
“0003”H
GRAM
b) Example of the operation of high-speed consecutive writing to RAM
CS*
(input)
1
2
3
4
1
2
3
4
1
2
3
4
E
(input)
DB15-0
(input/output)
Index
(R22)
RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM RAM
data data data data data data data data data data data data
1
2
3
4
5
6
7
8
9
10 11
12
RAM write
execution time
RAM write data
(64 bits)
RAM address
(AC 15-0)
RAM
data 1 to 4
“0000”H
RAM write
execution time
Index
RAM write
execution time*
RAM
data 5 to 8
RAM
data 9 to 12
“0004”H
“0008”H
“000A”H
Figure 22. Example of the operation of high-speed consecutive writing to RAM
60
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
When high-speed write mode is used, note the following.
1. The logical and compare operations cannot be used.
2. Data is written to RAM each four words. When an address is set, the lower two bits in the address must be set to
the following values.
*When ID0=0, the lower two bits in the address must be set to 11 and be written to RAM.
*When ID0=1, the lower two bits in the address must be set to 00 and be written to RAM.
3. Data is written to RAM each four words. If less than four words of data is written to RAM, the last data will not be
written to RAM.
4. When the index register and RAM data write (R22h) have been selected, the data is always written first. RAM
cannot be written to and read from at the same time. HWM must be set to 0 while RAM is being read.
5. High-speed and normal RAM write operations cannot be executed at the same time. The mode must be switched
and the address must then be set.
6. When high-speed RAM write is used with a window address-range specified, dummy write operation may be
required to suit the window address range-specification. Refer to the High-Speed RAM Write in the Window Address
section.
Table 25. Comparison between Normal and High-speed RAM Write Operations
Logical operation function
Compare operation function
Swap function
Write mask function
Can
Can
Can
Can
RAM address set
Can be specified by word
RAM read
Can be read by word
RAM write
Can be written by word
Window address
NOTE: 1 word = 2 byte.
be
be
be
be
Normal RAM Write
(HWM=0)
used
used
used
used
Can be set by word
High-speed RAM Write
(HWM=1)
Cannot be used
Cannot be used
Can be used
Can be used
ID0 bit=0: Set the lower two bits to 11
ID0 bit=1: Set the lower two bits to 00
Cannot be used
Dummy write operations may have to
be inserted according to a window
address-range specification
Can be set by word
61
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
HIGH-SPEED RAM WRITE IN THE WINDOW ADDRESS
When a window address range is specified, GRAM data that is in an optional window area can be updated quickly
and continuously by use of dummy write operation. So that the number of RAM access become 4N as shown in the
table below.
Dummy write operation must be inserted at the first or last of a row of data, depending on the horizontal windowaddress range specification bits (HSA1 to 0, HEA1 to 0). Numbers of dummy write operations of a row must be 4N.
Table 26. Number of Dummy Write Operations in High-Speed RAM Write (HSA bits)
HSA1
0
0
1
1
HSA0
0
1
0
1
Number of dummy write operations to be inserted at the start of a row
0
1
2
3
Table 27. Table 28. Number of Dummy Write Operations in High-Speed RAM Write (HEA bits)
HEA1
0
0
1
1
HEA0
0
1
0
1
Number of dummy write operations to be inserted at the end of a row
3
2
1
0
NOTE: Each row of access must consist of 4 X N operations, including the dummy writes.
Horizontal access count = first dummy write count + write data count + last dummy write count = 4 X N
62
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
An example of high-speed RAM write with a window address-range specified is shown below.
The window address-range can be accessed consecutively and quickly by inserting two dummy writes at the start of
a row and three dummy writes at the end of a row, as determined by using the window address-range specification
bits (HSA1 to 0=10, HEA1 to 0=00).
Writing in the horizontal direction
AM=0, ID0=1
h0000
Window address-range setting
HSA=h12, HEA=h30
VSA=h08, VEA=hA0
GRAM address map
h0812
Window address
range specification
(rewritable area)
High-speed RAM write mode
setting HWM=1
hA030
Address set
AD=h0810*
hAF83
Window address-range setting
HSA=h12, HEA=h30
VSA=h08, VEA=hA0
Dummy RAM write X 2
RAM write X 31
X 153
Dummy RAM write X 3
NOTE: The address set for the high-speed RAM write must be 00 or 11 according to the value of the ID0 bit.
Only pre-specified window address-range will be overwritten.
Figure 23. Example of High-speed RAM Write with a window address-range specification
63
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
WINDOW ADDRESS FUNCTION
When data is written to the on-chip GRAM, a window address-range which is specified by the horizontal address
register (start: HSA7-0, end: HEA 7-0) and vertical address register (start: VSA7-0, end: VEA7-0) can be updated
consecutively.
Data is written to addresses in the direction specified by the AM and ID1-0bit. When image data, etc. is being written,
data can be written consecutively without thinking a data wrap by doing this.
The window must be specified to be within the GRAM address area described as following example. Addresses
must be set within the window address.
[Restriction on window address-range settings]
(horizontal direction) 00H ≤ HSA7-0 ≤ HEA7-0 ≤ 83H
(vertical direction) 00H ≤ VSA7-0 ≤ VEA7-0 ≤ AFH
[Restriction on address settings during the window address]
(RAM address) HSA7-0 ≤ AD7-0 ≤ HEA7-0
VSA7-0 ≤ AD15-8 ≤ VEA7-0
Note: In high-speed RAM-write mode, the lower two bits of the address must be set as shown below according to the
value of the ID0 bit.
ID0=0: The lower two bits of the address must be set to 11.
ID0=1: The lower two bits of the address must be set to 00.
GRAM address map
“0000”H
“0083”H
“2010”H
“2110”H
“202F”H
“212F”H
“5F10”H
“5F2F”H
“AF00”H
Window address-range specification area
HSA7-0 = “10”H, HSE7-0 = “2F”H
VSA7-0 = “20”H, VEA7-0 = “5F”H
“AF83”H
I/D = 1 (increment)
AM = 0 (horizontal writing)
Figure 24. Example of address operation in the window address specification
64
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
GRAPHICS OPERATION FUNCTION
The S6D0110 can greatly reduce the load of the microcomputer graphics software processing through the 16-bit bus
architecture and internal graphics-bit operation function. This function supports the following:
1. A write data mask function that selectively rewrites some of the bits in the 16-bit write data.
2. A logical operation write function that writes the data sent from the microcomputer and the original
RAM data by a logical operation.
3. A conditional write function that compares the original RAM data or write data and the compare-bit data and
writes the data sent from the microcomputer only when the conditions match.
Even if the display size is large, the display data in the graphics RAM (GRAM) can be quickly rewritten.
The graphics bit operation can be controlled by combining the entry mode register, the bit set value of the RAMwrite-data mask register, and the read/write from the microcomputer.
Table 29. Graphics Operation
I/D
Bit setting
AM
LG2-0
Write mode 1
0/1
0
000
Horizontal
drawing
Write mode 2
0/1
1
000
Vertical data replacement, vertical-border drawing
Write mode 3
0/1
0
110 111
Write mode 4
0/1
1
110 111
Read/write mode 1
0/1
0
Read/write mode 2
0/1
1
Read/write mode 3
0/1
0
100 101
Read/write mode 4
0/1
1
100 101
Operation mode
001 010
011
001 010
011
Operation and usage
data
replacement,
horizontal-border
Conditional horizontal data replacement, horizontalborder drawing
Conditional vertical data replacement, vertical-border
drawing
Horizontal data write with logical operation, horizontalborder drawing
Vertical data write with logical operation, verticalborder drawing
Conditional horizontal data replacement, horizontalborder drawing
Conditional vertical data replacement, vertical-border
drawing
65
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Microcomputer
16
+1/-1
Read-data latch
+256
Write-data latch
16
Address
counter
(AC)
16
Logical/Compare operation (LG2- 0):
16
000:replacement,001:OR,010:AND,011:EOR,
100:replacement with matched read,
101:replacement with unmatched read,
110:replacement with matched write,
111:replacement with unmatched write
3
Logical operation bit (LG2=0)
16
Compare bit (CP15-0)
16
Write bit mask
16
16
Graphic RAM (GRAM)
Figure 25. Data processing flow of graphic operation
66
Write-mask register
(WM15-0)
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
WRITE-DATA MASK FUNCTION
The S6D0110 has a bit-wise write-data mask function that controls writing the two-byte data from the microcomputer
to the GRAM. Bits that are 0 in the write-data mask register (WM15– 0) cause the corresponding DB bit to be written
to the GRAM. Bits that are 1 prevent writing to the corresponding GRAM bit to the GRAM; the data in the GRAM is
maintained. This function can be used when only one-pixel data is rewritten or the particular display color is
selectively rewritten.
DB15
Data from the
microcomputer
R4
DB0
R3
R2
R1
R0
G5
G4
G3
G2
G1
G0
B4
B3
B2
B1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
WM15
Write data mask
1
WM0
DB15
GRAM data
*
B0
1
DB0
*
*
*
*
G05
G04
G03
G02
G01
G00
*
*
*
*
*
Figure 26. Example of write-data mask function operation
67
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
GRAPHICS OPERATION PROCESSING
1. Write mode 1: AM = 0, LG2– 0 = 000
This mode is used when the data is horizontally written at high speed. It can also be used to initialize the graphics
RAM (GRAM) or to draw borders. The write-data mask function (WM15–0) is also enabled in these operations.
After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and
automatically jumps to the counter edge one-raster-row below after it has reached the left or right edge of the
GRAM.
Operation Examples:
1) I/D = “1”, AM = “0”, LG2-0 = “000”
2) WM15-0 = “07FF’H
3) AC = “0000”H
WM15
Write data mask:
WM0
0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
DB15
DB0
Write data (1):
1 0 0 1 1 1 1 1 1 0 0 1 0 1 0 0
Write data (2):
1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0
“0000”H
1 1 0 0 0 *
*
*
*
“0001”H
*
*
*
*
*
*
*
1 0 0 1 1 * *
Write data (1)
*
*
“0002”H
*
*
*
*
*
*
Write data (2)
GRAM
NOTE: The bits in the GRAM, *’s, are not changed
Figure 27. Writing operation of write mode 1
68
*
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
2. Write mode 2: AM = 1, LG2-0 = 000
This mode is used when the data is vertically written at high speed. It can also be used to initialize the GRAM,
develop the font pattern in the vertical direction, or draw borders. The write-data mask function (WM15– 0) is also
enabled in these operations. After writing, the address counter (AC) automatically increments by 256, and
automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) following the I/D bit after it has
reached the lower edge of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “1”, LG2-0 = “000”
2) WM15-0 = “07FF’H
3) AC = “0000”H
WM15
Write data mask:
WM0
0 0 0 0 0
1 1 1 1
1 1 1 1
1 1 1
DB15
DB0
Write data (1):
1 0 0 1 1
1 1 1 1
0 0 1 0
1 0 0
Write data (2):
1 1 0 0 0
0 0 0 0
0 1 1 0
0 0 0
Write data (3):
0
1 1 1 1 1
0 0 1 1
*
*
*
0 0 0 1 0 0
*
*
*
*
*
*
0 0 0 1
“0000”H
1
*
*
Write data (1)
“0100”H
1 1 0 0 0 * * * * * * * * * * *
Write data (2)
“0200”H
0 1 1 1 1 * * * * * * * * * * *
Write data (3)
GRAM
NOTE: 1. The bits in the GRAM, * ‘s, are not changed.
2. After writing to address “AF00”H, the AC jumps to “0001”H
Figure 28. Writing operation of write mode 2
69
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
3. Write mode 3: AM = 0, LG2-0 = 110/111
This mode is used when the data is horizontally written by comparing the write data and the set value of the
compare register (CP15–0). When the result of the comparison in a byte unit satisfies the condition, the write data
sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–0) is
also enabled. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or decrements by 1
(I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached the left or right
edge of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “0”, LG2-0 = “110”
2) CP15-0 = “2860”H
3) WM15-0 = “0000”H
4) AC = “0000”H
WM15
Write data mask:
0
WM0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
CP15
Compare register:
0
CP0
0
1
0
1
0
0
0
0
1
0
1
0
0
0
0
1
1
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
1
Compare
operation
0
Conditional
replacement
DB0
0
0
0
0
(Unmatched)
DB15
Write data (2):
0
(Matched)
DB15
Write data (1):
0
DB0
1
1
0
0
C
0
0
Compare Conditional
operation replacement
C
R
“0000”H
0
0
1
0
1
0
0
0
R
0
0
1
1
1
0
0
*
*
*
* * * * * * * * * * * * * * * *
Matched replacement of write data (1)
GRAM
Figure 29. Writing operation write mode 3
70
1
0
0
0
0
1
1
0
0
0
0
0
*
*
Replacement
“0001”H
0
0
*
*
*
*
*
*
*
*
*
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
4. Write mode 4: AM =1, LG2-0 = 110/111
This mode is used when a vertical comparison is performed between the write data and the set value of the compare
register (CP15– 0) to write the data. When the result by the comparison in a byte unit satisfies the condition, the write
data sent from the microcomputer is written to the GRAM. In this operation, the write-data mask function (WM15–
0) are also enabled. After writing, the address counter (AC) automatically increments by 256, and automatically
jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D = 0) after it has reached the lower edge of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “1”, LG2-0 = “111”
2) CP15-0 = “2860”H
3) WM15-0 = “0000”H
4) AC = “0000”H
WM15
WM0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Write data mask:
CP15
Compare register:
0
CP0
0
1
0
1
0
0
1
0
0
1
1
0
0
0
1
1
0
0
0
0
0
1
1
0
0
1
0
1
0
0
0
0
1
0
1
1
1
1
1
DB0
1
0
0
0
0
“0000”H
1
“0100”H
* * * * * * * * * * * * * * * *
0
1
1
0
0
1
1
0
C
R
Compare
operation
0
Conditional
replacement
C
R
1
0
0
1
1
0
0
1
1
0
0
1
1
1
1
1
Replacement
* * * * * * * * * * * * * * * *
“0001”H
“0000”H
0
Conditional
replacement
DB0
(Matched)
DB15
Write data (2):
0
(Unmatched)
DB15
Write data (1):
0
Compare
operation
0
1
1
1
1
1 Write data (1)
Write data (2)
GRAM
“AF00”H
NOTE: 1. The bits in the GRAM, * ‘s, are not changed.
2. After writing to address “AF00”H, the AC jumps to “0001”H
Figure 30. Writing operation of write mode 4
71
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
5. Read/Write mode 1: AM = 0, LG2-0 = 001/010/011
This mode is used when the data is horizontally written at high speed by performing a logical operation with the
original data. It reads the display data (original data), which has already been written in the GRAM, performs a
logical operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode
reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as the
write operation since reading the original data does not latch the read data into the microcomputer but temporarily
holds it in the read-data latch.
However, the bus cycle requires the same time as the read operation. The write-data mask function (WM15–0) is
also enabled in these operations. After writing, the address counter (AC) automatically increments by 1 (I/D = 1) or
decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row below after it has reached
the left or right edges of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “0”, LG2-0 = “001”(OR)
2) WM15-0 = “0000 ”H
3) AC = “0000 ”H
WM15
Write data mask:
0
WM0
0
0
0
0 0
0
0
0
0
0
0
0
0 0
DB15
0
DB0
Write data (1):
1
0
0
1
1
0
0 1
0
1
0
0
0
0
0
0
Read data (1):
1
0
1
1
1
1
0 0
0
1
1
0
0
0
0
0
Write data (2):
0
0
0
0
1
1
1 1
0
0
0
0
0
0
0
0
Read data (2):
1
1
0
0
0
0
1 1
1
0
0
0
0
0
0
0
Logical
operation(OR)
0
1 1
1
1
0
1
0
1
1
1
1
0
1
0
1 1
0
0
0
0
0
1
0 0
1
1
1
1
1
0
0 0
0
0
0
Logical
operation(OR)
“0000 ”H
1
1 0
1
“0001 ”H
1
1
0 0
Read data(1) + Write data (1)
0
0
0
1 1
0
0
1
1
1
1
1
0 0
0
0
0
0
Read data(2) + Write data (2)
GRAM
Figure 31. Writing operation of read/write mode 1
72
0
0
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
6. Read/Write mode 2: AM = 1, LG1-0 = 001/010/011
This mode is used when the data is vertically written at high speed by performing a logical operation with the original
data. It reads the display data (original data), which has already been written in the GRAM, performs a logical
operation with the write data sent from the microcomputer, and rewrites the data to the GRAM. This mode can read
the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as for the
write operation since the read operation of the original data does not latch the read data into the microcomputer and
temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation. The
write-data mask function (WM15–0) is also enabled in these operations. After writing, the address counter (AC)
automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge (I/D =
0) following the I/D bit after it has reached the lower edge of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “1”, LG2-0 = “001”(OR)
2) WM15-0 = “FFE0 ”H
3) AC = “0000”H
WM15
Write data mask:
1
WM0
1
1
1
1
1
1 1
1
1
1
0
0
0
0
DB15
0
DB0
Write data (1):
1
0
0
1
1
0
0 1
0
1
0
0
0
0
0
0
Read data (1):
1
0
1
1
1
1
0 0
0
1
1
0
0
0
0
0
Write data (2):
0
0
0
0
1
1
1 1
0
0
0
0
0
0
0
0
Read data (2):
1
1
0
0
0
0
1 1
1
0
0
0
0
0
0
0
“0000”H
Logical
operation(OR)
1 0
1
1
1
1
0
1
0
1 1
0
0
0
0
0
1
0 0
1
1
1
1
1
0
0 0
0
0
0
Logical
operation(OR)
1
0
“0001”H
“0000”H
*
*
*
*
*
*
*
*
*
*
*
1
1
1
1
1
Read data (1) + Write data (1)
“0100”H
*
*
*
*
*
*
*
*
*
*
*
0
0
0
0
0
Read data (2) + Write data (2)
GRAM
“AF00”H
NOTE: 1. The bits in the GRAM, * ‘s, are not changed.
2. After writing to address “AF00”H, the AC jumps to “0001”H
Figure 32. Writing operation of read/write mode 2
73
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
7. Read/Write mode 3: AM = 0, LG2-0 = 100/101
This mode is used when the data is horizontally written by comparing the original data and the set value of compare
register (CP15– 0). It reads the display data (original data), which has already been written in the GRAM, compares
the original data and the set value of the compare register in byte units, and writes the data sent from the
microcomputer to the GRAM only when the result of the comparison satisfies the condition. This mode reads the
data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as write
operation since reading the original data does not latch the read data into the microcomputer but temporarily holds it
in the read-data latch. However, the bus cycle requires the same time as the read operation. The write-data mask
function (WM15–0) is also enabled in these operations. After writing, the address counter (AC) automatically
increments by 1 (I/D = 1) or decrements by 1 (I/D = 0), and automatically jumps to the counter edge one-raster-row
below after it has reached the left or right edges of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “0”, LG2-0 = “100”
2) CP15-0 = “2860”H
3) WM15-0 = “0000”H
4) AC = “0000”H
WM15
Write data mask:
WM0
0 0
0 0 0
0 0 0
0 0 0
0 0 0
CP15
Compare register:
0 0
CP0
0 0
1 0 1
0 0 0
0 1 1
0 0 0
(Matched)
DB15
Read data (1):
0 0
Write data (1):
1 0 1 1
1 0 1
0 0 0
1 1 0
0 0 0
1 0 0
(Unmatched)
DB15
0 0
DB0
0 1 1
0 0 1
0 0
DB0
0 0 0 0
1 1 1
1 0 0
0 0 0
0 0 0
Write data (2):
1 1 0 0
0 0 1
1 1 0
0 0 0
0 0 0
“0000”H
1 1 1
1 0 0
C
0 0 0
Read data (2):
1 0
Compare
operation
Compare
operation
R
Conditional
replacement
1 0
1 1 1
0 0 0
0
0 0
0 0 1
0 0 0
0
0 0 0
0
C
R
Conditional
replacement
0 0
0 0 1
1 1 1
0 0 0 0
0 0 0
0
Matched replacement of write data (1)
GRAM
Figure 33. Writing operation of read/write mode 3
74
0 1 1 0
Replacement
“0001”H
0 1 1 0
1 0 0
1 1 1
0 0 0 0
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
8. Read/Write mode 4: AM =1, LG2-0 = 100/101
This mode is used when the data is vertically written by comparing the original data and the set value of the
compare register (CP15–0). It reads the display data (original data), which has already been written in the GRAM,
compares the original data and the set value of the compare register in byte units, and writes the data sent from
the microcomputer to the GRAM only when the result of the compare operation satisfies the condition. This mode
reads the data during the same access-pulse width (68-system: enabled high level, 80-system: RD* low level) as
the write operation since reading the original data does not latch the read data into the microcomputer but
temporarily holds it in the read-data latch. However, the bus cycle requires the same time as the read operation.
The write-data mask function (WM15– 0) is also enabled in these operations. After writing, the address counter
(AC) automatically increments by 256, and automatically jumps to the upper-right edge (I/D = 1) or upper-left edge
(I/D = 0) following the I/D bit after it has reached the lower edge of the GRAM.
Operation Examples:
1) I/D = “1”, AM = “1”, LG2-0 = “101”
2) CP15-0 = “2860”H
3) WM15-0 = “0000”H
4) AC = “0000”H
WM15
Write data mask:
0 0
WM0
0 0 0 0
0 0 0 0
0 0 0
0 0 0
CP15
Compare register:
0 0
CP0
1 0 1 0
0 0 0 1
1 0 0
0 0 0
(Unmatched)
DB15
DB0
Read data (1):
1 0
0 1 1
0 0 1 0
1 0 1
1 1 1 1
Write data (1):
1 0
1 1 1
1 0 0 0
1 1 0
0 0 0 0
(Matched)
DB15
Read data (2):
Write data (2):
0 0
1 0 1 0
1 1
0 0 0
DB0
0 0 0 1
0 1 1 1
Compare
operation
1 0 0
0 0 0
C
Compare
operation
R
Conditional
replacement
1 0 1 1
1 1 0 0
0 1 1 0
0 0 0
0
0 0 0
0
Replacement
C
0 0 0
R
0 0 0 0
0 0 1 0
1 0 0 0
0 1 1 0
Conditional
replacement
“0000”H
“0000”H
“0100”H
“0001”H
1 0 1 1
1 1 0 0
0 1 1 0
0 0 0
0
0 0 1 0
1 0 0 0
0 1 1 0
0 0 0
0
Write data (1)
Write data (2)
GRAM
“AF00”H
NOTE: 1. The bits in the GRAM, * ‘s, are not changed.
2. After writing to address “AF00”H, the AC jumps to “0001”H
Figure 34. Writing operation of read/write mode 4
75
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
GATE DRIVER SCAN MODE SETTING
Gate scan mode of S6D0110 is set by SM and GS bit. GS bit determines the scan direction whether the gate driver
scans forward or reverse direction. SM bit determines the method of display division (Even/Odd or Upper/Lower
division drive). Using this function, various connections between S6D0110 and the liquid crystal panels can be
accomplished
Figure 35. Scan mode setting
SM
GS
Scan Mode
G1
ODD
0
G2
EVEN
TFT
Panel
G1èG2èG3è
G4è····èG173è
G174èG175èG176
0
G1
G175
G176
G175
G176
G2
S6D0110
G1
ODD
0
G2
EVEN
TFT
Panel
G174èG175èG176
G173è····èG4è
G1èG2èG3è
1
G1
G175
G176
G175
G176
G2
S6D0110
G1
G175
TFT
Panel
G1èG3è
G5è····èG173èG175
G2èG4è
G6è····èG174èG176
G2
1
0
G176
G1
G175
G176
G2
S6D0110
G1
G175
TFT
Panel
G176èG174è
G172è····èG4èG2
G175èG173è
G171è····èG3èG1
G2
1
1
G176
G1
G175
G176
S6D0110
76
G2
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
GAMMA ADJUSTMENT FUNCTION
The S6D0110 provides the gamma adjustment function to display 65,536 colors simultaneously. The gamma
adjustment executed by the gradient adjustment register and the micro-adjustment register that determines 8
grayscale levels. Furthermore, since the gradient adjustment register and the micro-adjustment register have the
positive polarities and negative polarities, adjust them to match LCD panel respectively.
Graphics RAM (GRAM)
MSB
R04
Positive
polarity
register
Negative
polarity
register
PKP02
PKP12
PKP22
PKP32
PKP42
PKP52
PRP02
PRP12
PKP01
PKP11
PKP21
PKP31
PKP41
PKP51
PRP01
PRP11
PKP00
PKP10
PKP20
PKP30
PKP40
PKP50
PRP00
PRP10
PKN02
PKN01
PKN00
PKN12
PKN11
PKN10
PKN22
PKN21
PKN20
PKN32
PKN31
PKN30
PKN42
PKN41
PKN40
PKN52
PKN51
PKN50
PRN02
PRN01
PRN00
PRN12
PRN11
PRN10
LSB
R03
R02
R01
R00
G05 G04 G03 G02 G01 G00
V0
5
B04
6
B03
B02
B01
B00
5
V1
8
Grayscale
amplifier
64
V63
32-grayscale
control
<R>
64-grayscale
control
<G>
32-grayscale
control
<B>
LCD driver
LCD driver
LCD driver
R
G
B
LCD
Figure 36. Grayscale control
77
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
STRUCTURE OF GRAYSCALE AMPLIFIER
The structure of the grayscale amplifier is shown as below. Determine 8 level (VIN0-VIN7) by the gradient adjuster
and the micro adjustment register. Also, Period of each level is split by the internal ladder resistance and generates
level between V0 to V63.
Gradient adjustment
register
VDH
PRP/N0
3
PRP/N1
3
Oscillation adjustment
register
Micro adjustment register (6 X 3 bits)
PKP/N0
3
PKP/N1
3
PKP/N2
PKP/N3
PKP/N4
PKP/N5
3
3
3
3
VRP/VRN
5
VINP0/VINN0
V0
VINP1/VINN1
V1
V2
8 to 1
selector
V3
VINP2/VINN2
V8
8 to 1
selector
V9
VINP3/VINN3
V20
8 to 1
selector
V21
Ladder
resistance
VINP4/VINN4
Grayscale
amplifier
8 to 1
selector
VINP5/VINN5
8 to 1
selector
V43
V44
V55
V56
V57
VINP6/VINN6
V62
8 to 1
selector
VINP7/VINN7
VGS
Figure 37. Structure of grayscale amplifier
78
V63
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
VDH
(
)
KVP0
5R
4R
RP0
v
RP1
RP2
RP3
RP4
RP5
RP6
RP7
VRHP
0 to 28R
1R
PKP0[2:0]
KVP1
KVP2
KVP3
KVP4
KVP5
KVP6
KVP7
KVP8
8 to1
SEL
v
5R
RP15
1R
RP16
RP17
RP18
RP19
RP20
RP21
RP22
v
KVP9
KVP10
KVP11
KVP12
KVP13
KVP14
KVP15
KVP16
VINP1
PKP1[2:0]
PRP0[2:0]
RP8
RP9
RP10
RP11
RP12
RP13
RP14
8 to1
SEL
VINP2
PKP2[2:0]
KVP17
KVP18
KVP19
KVP20
KVP21
KVP22
KVP23
KVP24
8 to1
SEL
VINP3
PKP3[2:0]
1 6R
RP23
1R
RP24
RP25
RP26
RP27
RP28
RP29
RP30
v
KVP25
KVP26
KVP27
KVP28
KVP29
KVP30
KVP31
KVP32
KVN0
VINP0
8 to1
SEL
VINP4
5R
4R
RN0
v
RN1
RN2
RN3
RN4
RN5
RN6
RN7
VRHN
0 to 28R
1R
VINN0
PKN0[2:0]
KVN1
KVN2
KVN3
KVN4
KVN5
KVN6
KVN7
KVN8
8 to1
SEL
PKN1[2:0]
PRN0[2:0]
v
RN8
RN9
RN10
RN11
RN12
RN13
RN14
5R
RN15
1R
RN16
RN17
RN18
RN19
RN20
RN21
RN22
v
KVN9
KVN10
KVN11
KVN12
KVN13
KVN14
KVN15
KVN16
8 to1
SEL
RP31
1R
RP32
RP33
RP34
RP35
RP36
RP37
RP38
v
VRLP
0 to 28R
4R
5R
8 to1
SEL
v
RP39
RP40
RP41
RP42
RP43
RP44
RP45
KVP41
KVP42
KVP43
KVP44
KVP45
KVP46
KVP47
KVP48
VINP5
PKP5[2:0]
PRP1[2:0]
8 to1
SEL
VINP6
RP46
KVN17
KVN18
KVN19
KVN20
KVN21
KVN22
KVN23
KVN24
8 to1
SEL
VRP[2:0]
RP47
VINN3
PKN3[2:0]
1 6R
RN23
1R
RN24
RN25
RN26
RN27
RN28
RN29
RN30
v
KVN25
KVN26
KVN27
KVN28
KVN29
KVN30
KVN31
KVN32
8 to1
SEL
VINN4
PKN4[2:0]
5R
RN31
1R
RN32
RN33
RN34
RN35
RN36
RN37
RN38
v
VRLN
0 to 28R
4R
5R
KVP49
VRP
0 to 31R
8R
KVP33
KVP34
KVP35
KVP36
KVP37
KVP38
KVP39
KVP40
VINN2
PKN2[2:0]
PKP4[2:0]
5R
VINN1
8 to1
SEL
v
RN39
RN40
RN41
RN42
RN43
RN44
RN45
RN46
VRN
0 to 31R
KVN41
KVN42
KVN43
KVN44
KVN45
KVN46
KVN47
KVN48
KVN49
VINN5
PKN5[2:0]
PRN1[2:0]
VINP7
8R
KVN33
KVN34
KVN35
KVN36
KVN37
KVN38
KVN39
KVN40
8 to1
SEL
VINN6
VINN7
VRN[2:0]
RN47
EXVR
Figure 38. Structure of Ladder/8 to 1 selector
79
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
GAMMA ADJUSTMENT REGISTER
Grayscale Voltage
Grayscale Voltage
Grayscale Voltage
This block is the register to set up the grayscale voltage adjusting to the gamma specification of the LCD panel. This
register can independent set up to positive/negative polarities and there are 3 types of register groups to adjust
gradient and oscillation on number of the grayscale, characteristics of the grayscale voltage. (but, R.G.B. is
commonness.) Following graphics indicates the operation of each adjusting register.
Grayscale Number
a) Gradient adjustment
Grayscale Number
b) Oscillation adjustment
Grayscale Number
c) Micro-adjustment
Figure 39. The operation of adjusting register
GRADIENT ADJUSTING RESISTOR
The gradient adjusting resistor is to adjust around middle gradient, specification of the grayscale number and the
grayscale voltage without changing the dynamic range. To accomplish the adjustment, it controls the variable
resistor (VRHP (N) / VRL (N)) of the ladder resistor for the grayscale voltage generator. Also, there is an
independent resistor on the positive/negative polarities in order for corresponding to asymmetry drive.
OSCILLATION ADJUSTING RESISTOR
The oscillation-adjusting resistor is to adjust oscillation of the grayscale voltage. To accomplish the adjustment, it
controls the variable resistor (VRP (N)) of the ladder resistor for the grayscale voltage generator located at lower
side of the ladder resistor. (Adjust upper side by input GVDD level.) Also, there is an independent resistor on the
positive/negative polarities as well as the gradient adjusting resistor.
MICRO-ADJUSTING RESISTOR
The micro-adjusting resistor is to make subtle adjustment of the grayscale voltage level. To accomplish the
adjustment, it controls the each reference voltage level by the 8 to 1 selector towards the 8-leveled reference voltage
generated from the ladder resistor. Also, there is an independent resistor on the positive/negative polarities as well
as other adjusting resistors.
80
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 30. Gamma adjusting register
Register
Gradient adjustment
Oscillation adjustment
Positive polarity
PRP0[2:0]
PRP1[2:0]
VRP[4:0]
Negative polarity
PRN0[2:0]
PRN1[2:0]
VRN[4:0]
PKP0[2:0]
PKN0[2:0]
PKP1[2:0]
PKN1[2:0]
PKP3[2:0]
PKN3[2:0]
PKP4[2:0]
PKN4[2:0]
PKP5[2:0]
PKN5[2:0]
PKP6[2:0]
PKN6[2:0]
Micro-adjustment
Set-up contents
Variable resistor VRHP(N)
Variable resistor VRLP(N)
Variable resistor VRP(N)
The voltage of grayscale number 1 is
selected by the 8 to 1 selector
The voltage of grayscale number 8 is
selected by the 8 to 1 selector
The voltage of grayscale number 20 is
selected by the 8 to 1 selector
The voltage of grayscale number 43 is
selected by the 8 to 1 selector
The voltage of grayscale number 55 is
selected by the 8 to 1 selector
The voltage of grayscale number 62 is
selected by the 8 to 1 selector
81
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
LADDER RESISTOR/8 TO 1 SELECTOR
This block outputs the reference voltage of the grayscale voltage. There are two ladder resistors including the
variable resistor and the 8 to 1 selector selecting voltage generated by the ladder resistance voltage. The variable
and 8 to 1 resistors are controlled by the gamma resistor. Also, there are pins that connect to the external volume
resistor. And it allows to compensate the dispersion of length between one panel to another.
VARIABLE RESISTOR
There are 2 types of the variable resistors that is for the gradient adjustment (VRHP (N) / VRLP (N)) and for the
oscillation adjustment (VRP (N)). The resistance value is set by the gradient adjusting resistor and the oscillation
adjusting resistor as below.
Table 31. Gradient Adjustment
Register value PRP(N) [2:0]
000
001
010
011
100
101
110
111
Resistance value PRP(N)
0R
4R
8R
12R
16R
20R
24R
28R
Table 32. Oscillation Adjustment
Register value VRP(N) [2:0]
00000
00001
00010
.
.
.
11101
11110
11111
82
Resistance value VRP(N)
0R
1R
2R
.
.
.
29R
30R
31R
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
THE 8 TO 1 SELECTOR
In the 8 to 1 selector, the voltage level must be selected given by the ladder resistance and the micro-adjusting
register. And output the voltage the six types of the reference voltage, the VIN1- to VIN6.
Following figure explains the relationship between the micro-adjusting register and the selecting voltage.
Table 33. Relationship between Micro-adjusting Register and Selected Voltage
Register value
PKP(N) [2:0]
000
001
010
011
100
101
110
111
VINP(N)1
KVP(N)1
KVP(N)2
KVP(N)3
KVP(N)4
KVP(N)5
KVP(N)6
KVP(N)7
KVP(N)8
VINP(N)2
KVP(N)9
KVP(N)10
KVP(N)11
KVP(N)12
KVP(N)13
KVP(N)14
KVP(N)15
KVP(N)16
Selected voltage
VINP(N)3
VINP(N)4
KVP(N)17
KVP(N)25
KVP(N)18
KVP(N)26
KVP(N)19
KVP(N)27
KVP(N)20
KVP(N)28
KVP(N)21
KVP(N)29
KVP(N)22
KVP(N)30
KVP(N)23
KVP(N)31
KVP(N)24
KVP(N)32
VINP(N)5
KVP(N)33
KVP(N)34
KVP(N)35
KVP(N)36
KVP(N)37
KVP(N)38
KVP(N)39
KVP(N)40
VINP(N)6
KVP(N)41
KVP(N)42
KVP(N)43
KVP(N)44
KVP(N)45
KVP(N)46
KVP(N)47
KVP(N)48
83
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 34. Gamma Adjusting Voltage Formula (Positive polarity)
Pins
KVP0
KVP1
KVP2
KVP3
KVP4
KVP5
KVP6
KVP7
KVP8
KVP9
KVP10
KVP11
KVP12
KVP13
KVP14
KVP15
KVP16
KVP17
KVP18
KVP19
KVP20
KVP21
KVP22
KVP23
KVP24
KVP25
KVP26
KVP27
KVP28
KVP29
KVP30
KVP31
KVP32
KVP33
KVP34
KVP35
KVP36
KVP37
KVP38
KVP39
KVP40
KVP41
KVP42
KVP43
KVP44
KVP45
KVP46
KVP47
KVP48
KVP49
Formula
GVDD
GVDD- ∆ V*5R/SUMRP
GVDD- ∆ V*9R/SUMRP
GVDD- ∆ V*13R/SUMRP
GVDD- ∆ V*17R/SUMRP
GVDD- ∆ V*21R/SUMRP
GVDD- ∆ V*25R/SUMRP
GVDD- ∆ V*29R/SUMRP
GVDD- ∆ V*33R/SUMRP
GVDD- ∆ V*(33R+VRHP) /SUMRP
GVDD- ∆ V*(34R+VRHP) /SUMRP
GVDD- ∆ V*(35R+VRHP) /SUMRP
GVDD- ∆ V*(36R+VRHP) /SUMRP
GVDD- ∆ V*(37R+VRHP) /SUMRP
GVDD- ∆ V*(38R+VRHP) /SUMRP
GVDD- ∆ V*(39R+VRHP) /SUMRP
GVDD- ∆ V*(40R+VRHP) /SUMRP
GVDD- ∆ V*(45R+VRHP) /SUMRP
GVDD- ∆ V*(46R+VRHP) /SUMRP
GVDD- ∆ V*(47R+VRHP) /SUMRP
GVDD- ∆ V*(48R+VRHP) /SUMRP
GVDD- ∆ V*(49R+VRHP) /SUMRP
GVDD- ∆ V*(50R+VRHP) /SUMRP
GVDD- ∆ V*(51R+VRHP) /SUMRP
GVDD- ∆ V*(52R+VRHP) /SUMRP
GVDD- ∆ V*(68R+VRHP) /SUMRP
GVDD- ∆ V*(69R+VRHP) /SUMRP
GVDD- ∆ V*(70R+VRHP) /SUMRP
GVDD- ∆ V*(71R+VRHP) /SUMRP
GVDD- ∆ V*(72R+VRHP) /SUMRP
GVDD- ∆ V*(73R+VRHP) /SUMRP
GVDD- ∆ V*(74R+VRHP) /SUMRP
GVDD- ∆ V*(75R+VRHP) /SUMRP
GVDD- ∆ V*(80R+VRHP) /SUMRP
GVDD- ∆ V*(81R+VRHP) /SUMRP
GVDD- ∆ V*(82R+VRHP) /SUMRP
GVDD- ∆ V*(83R+VRHP) /SUMRP
GVDD- ∆ V*(84R+VRHP) /SUMRP
GVDD- ∆ V*(85R+VRHP) /SUMRP
GVDD- ∆ V*(86R+VRHP) /SUMRP
GVDD- ∆ V*(87R+VRHP) /SUMRP
GVDD- ∆ V*(87R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(91R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(95R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(99R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(103R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(107R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(111R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(115R+VRHP+VRLP) /SUMRP
GVDD- ∆ V*(120R+VRHP+VRLP) /SUMRP
Micro-adjusting
register value
Reference
voltage
PKP02-00 = “000”
PKP02-00 = “001”
PKP02-00 = “010”
PKP02-00 = “011”
PKP02-00 = “100”
PKP02-00 = “101”
PKP02-00 = “110”
PKP02-00 = “111”
PKP12-10 = “000”
PKP12-10 = “001”
PKP12-10 = “010”
PKP12-10 = “011”
PKP12-10 = “100”
PKP12-10 = “101”
PKP12-10 = “110”
PKP12-10 = “111”
PKP22-20 = “000”
PKP22-20 = “001”
PKP22-20 = “010”
PKP22-20 = “011”
PKP22-20 = “100”
PKP22-20 = “101”
PKP22-20 = “110”
PKP22-20 = “111”
PKP32-30 = “000”
PKP32-30 = “001”
PKP32-30 = “010”
PKP32-30 = “011”
PKP32-30 = “100”
PKP32-30 = “101”
PKP32-30 = “110”
PKP32-30 = “111”
PKP42-40 = “000”
PKP42-40 = “001”
PKP42-40 = “010”
PKP42-40 = “011”
PKP42-40 = “100”
PKP42-40 = “101”
PKP42-40 = “110”
PKP42-40 = “111”
PKP52-50 = “000”
PKP52-50 = “001”
PKP52-50 = “010”
PKP52-50 = “011”
PKP52-50 = “100”
PKP52-50 = “101”
PKP52-50 = “110”
PKP52-50 = “111”
-
VINP0
VINP1
VINP2
VINP3
VINP4
VINP5
VINP6
VINP7
SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP
SUMRP: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN
∆ V: Potential difference between KV0 and KV49 = GVDD*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]
84
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 35. Gamma Voltage Formula (Positive Polarity)
Grayscale voltage
V0
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
Formula
VINP0
VINP1
V3+(V1-V3)*(8/24)
V8+(V1-V8)*(450/800)
V8+(V3-V8)*(16/24)
V8+(V3-V8)*(12/24)
V8+(V3-V8)*(8/24)
V8+(V3-V8)*(4/24)
VINP2
V20+(V8-V20)*(22/24)
V20+(V8-V20)*(20/24)
V20+(V8-V20)*(18/24)
V20+(V8-V20)*(16/24)
V20+(V8-V20)*(14/24)
V20+(V8-V20)*(12/24)
V20+(V8-V20)*(10/24)
V20+(V8-V20)*(8/24)
V20+(V8-V20)*(6/24)
V20+(V8-V20)*(4/24)
V20+(V8-V20)*(2/24)
VINP3
V43+(V20-V43)*(22/23)
V43+(V20-V43)*(21/23)
V43+(V20-V43)*(20/23)
V43+(V20-V43)*(19/23)
V43+(V20-V43)*(18/23)
V43+(V20-V43)*(17/23)
V43+(V20-V43)*(16/23)
V43+(V20-V43)*(15/23)
V43+(V20-V43)*(14/23)
V43+(V20-V43)*(13/23)
V43+(V20-V43)*(12/23)
Grayscale voltage
V32
V33
V34
V35
V36
V37
V38
V39
V40
V41
V42
V43
V44
V45
V46
V47
V48
V49
V50
V51
V52
V53
V54
V55
V56
V57
V58
V59
V60
V61
V62
V63
Formula
V43+(V20-V43)*(11/23)
V43+(V20-V43)*(10/23)
V43+(V20-V43)*(9/23)
V43+(V20-V43)*(8/23)
V43+(V20-V43)*(7/23)
V43+(V20-V43)*(6/23)
V43+(V20-V43)*(5/23)
V43+(V20-V43)*(4/23)
V43+(V20-V43)*(3/23)
V43+(V20-V43)*(2/23)
V43+(V20-V43)*(1/23)
VINP4
V55+(V43-V55)*(22/24)
V55+(V43-V55)*(20/24)
V55+(V43-V55)*(18/24)
V55+(V43-V55)*(16/24)
V55+(V43-V55)*(14/24)
V55+(V43-V55)*(12/24)
V55+(V43-V55)*(10/24)
V55+(V43-V55)*(8/24)
V55+(V43-V55)*(6/24)
V55+(V43-V55)*(4/24)
V55+(V43-V55)*(2/24)
VINP5
V60+(V55-V60)*(20/24)
V60+(V55-V60)*(16/24)
V60+(V55-V60)*(12/24)
V60+(V55-V60)*(8/24)
V62+(V55-V62)*(350/800)
V62+(V60-V62)*(16/24)
VINP6
VINP7
85
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 36. Gamma Adjusting Voltage Formula (Negative polarity)
Pins
KVN0
KVN1
KVN2
KVN3
KVN4
KVN5
KVN6
KVN7
KVN8
KVN9
KVN10
KVN11
KVN12
KVN13
KVN14
KVN15
KVN16
KVN17
KVN18
KVN19
KVN20
KVN21
KVN22
KVN23
KVN24
KVN25
KVN26
KVN27
KVN28
KVN29
KVN30
KVN31
KVN32
KVN33
KVN34
KVN35
KVN36
KVN37
KVN38
KVN39
KVN40
KVN41
KVN42
KVN43
KVN44
KVN45
KVN46
KVN47
KVN48
KVN49
Formula
GVDD
GVDD- ∆ V*5R/SUMRN
GVDD- ∆ V*9R/SUMRN
GVDD- ∆ V*13R/SUMRN
GVDD- ∆ V*17R/SUMRN
GVDD- ∆ V*21R/SUMRN
GVDD- ∆ V*25R/SUMRN
GVDD- ∆ V*29R/SUMRN
GVDD- ∆ V*33R/SUMRN
GVDD- ∆ V*(33R+VRHN)/SUMRN
GVDD- ∆ V*(34R+VRHN)/SUMRN
GVDD- ∆ V*(35R+VRHN)/SUMRN
GVDD- ∆ V*(36R+VRHN)/SUMRN
GVDD- ∆ V*(37R+VRHN)/SUMRN
GVDD- ∆ V*(38R+VRHN)/SUMRN
GVDD- ∆ V*(39R+VRHN)/SUMRN
GVDD- ∆ V*(40R+VRHN)/SUMRN
GVDD- ∆ V*(45R+VRHN)/SUMRN
GVDD- ∆ V*(46R+VRHN)/SUMRN
GVDD- ∆ V*(47R+VRHN)/SUMRN
GVDD- ∆ V*(48R+VRHN)/SUMRN
GVDD- ∆ V*(49R+VRHN)/SUMRN
GVDD- ∆ V*(50R+VRHN)/SUMRN
GVDD- ∆ V*(51R+VRHN)/SUMRN
GVDD- ∆ V*(52R+VRHN)/SUMRN
GVDD- ∆ V*(68R+VRHN)/SUMRN
GVDD- ∆ V*(69R+VRHN)/SUMRN
GVDD- ∆ V*(70R+VRHN)/SUMRN
GVDD- ∆ V*(71R+VRHN)/SUMRN
GVDD- ∆ V*(72R+VRHN)/SUMRN
GVDD- ∆ V*(73R+VRHN)/SUMRN
GVDD- ∆ V*(74R+VRHN)/SUMRN
GVDD- ∆ V*(75R+VRHN)/SUMRN
GVDD- ∆ V*(80R+VRHN)/SUMRN
GVDD- ∆ V*(81R+VRHN)/SUMRN
GVDD- ∆ V*(82R+VRHN)/SUMRN
GVDD- ∆ V*(83R+VRHN)/SUMRN
GVDD- ∆ V*(84R+VRHN)/SUMRN
GVDD- ∆ V*(85R+VRHN)/SUMRN
GVDD- ∆ V*(86R+VRHN)/SUMRN
GVDD- ∆ V*(87R+VRHN)/SUMRN
GVDD- ∆ V*(87R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(91R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(95R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(99R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(103R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(107R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(111R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(115R+VRHN+VRLN)/SUMRN
GVDD- ∆ V*(120R+VRHN+VRLN)/SUMRN
SUMRP: Total of the positive polarity ladder resistance = 128R + VRHP + VRLP + VRP
SUMRN: Total of the negative polarity ladder resistance = 128R + VRHN + VRLN + VRN
∆ V: Potential difference between KV0 and KV49 = GVDD*SUMRP*SUMRN / [SUMRP*SUMRN+EXVR*(SUMRP+SUMRN)]
86
Micro-adjusting
register value
PKN02-00 = “000”
PKN02-00 = “001”
PKN02-00 = “010”
PKN02-00 = “011”
PKN02-00 = “100”
PKN02-00 = “101”
PKN02-00 = “110”
PKN02-00 = “111”
PKN12-10 = “000”
PKN12-10 = “001”
PKN12-10 = “010”
PKN12-10 = “011”
PKN12-10 = “100”
PKN12-10 = “101”
PKN12-10 = “110”
PKN12-10 = “111”
PKN22-20 = “000”
PKN22-20 = “001”
PKN22-20 = “010”
PKN22-20 = “011”
PKN22-20 = “100”
PKN22-20 = “101”
PKN22-20 = “110”
PKN22-20 = “111”
PKN32-30 = “000”
PKN32-30 = “001”
PKN32-30 = “010”
PKN32-30 = “011”
PKN32-30 = “100”
PKN32-30 = “101”
PKN32-30 = “110”
PKN32-30 = “111”
PKN42-40 = “000”
PKN42-40 = “001”
PKN42-40 = “010”
PKN42-40 = “011”
PKN42-40 = “100”
PKN42-40 = “101”
PKN42-40 = “110”
PKN42-40 = “111”
PKN52-50 = “000”
PKN52-50 = “001”
PKN52-50 = “010”
PKN52-50 = “011”
PKN52-50 = “100”
PKN52-50 = “101”
PKN52-50 = “110”
PKN52-50 = “111”
-
Reference
voltage
VINN0
VINN1
VINN2
VINN3
VINN4
VINN5
VINN6
VINN7
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 37. Gamma Voltage Formula (Negative Polarity)
Grayscale voltage
V0
V1
V2
V3
V4
V5
V6
V7
V8
V9
V10
V11
V12
V13
V14
V15
V16
V17
V18
V19
V20
V21
V22
V23
V24
V25
V26
V27
V28
V29
V30
V31
Formula
VINN0
VINN1
V3+(V1-V3)*(8/24)
V8+(V1-V8)*(450/800)
V8+(V3-V8)*(16/24)
V8+(V3-V8)*(12/24)
V8+(V3-V8)*(8/24)
V8+(V3-V8)*(4/24)
VINN2
V20+(V8-V20)*(22/24)
V20+(V8-V20)*(20/24)
V20+(V8-V20)*(18/24)
V20+(V8-V20)*(16/24)
V20+(V8-V20)*(14/24)
V20+(V8-V20)*(12/24)
V20+(V8-V20)*(10/24)
V20+(V8-V20)*(8/24)
V20+(V8-V20)*(6/24)
V20+(V8-V20)*(4/24)
V20+(V8-V20)*(2/24)
VINN3
V43+(V20-V43)*(22/23)
V43+(V20-V43)*(21/23)
V43+(V20-V43)*(20/23)
V43+(V20-V43)*(19/23)
V43+(V20-V43)*(18/23)
V43+(V20-V43)*(17/23)
V43+(V20-V43)*(16/23)
V43+(V20-V43)*(15/23)
V43+(V20-V43)*(14/23)
V43+(V20-V43)*(13/23)
V43+(V20-V43)*(12/23)
Grayscale voltage
V32
V33
V34
V35
V36
V37
V38
V39
V40
V41
V42
V43
V44
V45
V46
V47
V48
V49
V50
V51
V52
V53
V54
V55
V56
V57
V58
V59
V60
V61
V62
V63
Formula
V43+(V20-V43)*(11/23)
V43+(V20-V43)*(10/23)
V43+(V20-V43)*(9/23)
V43+(V20-V43)*(8/23)
V43+(V20-V43)*(7/23)
V43+(V20-V43)*(6/23)
V43+(V20-V43)*(5/23)
V43+(V20-V43)*(4/23)
V43+(V20-V43)*(3/23)
V43+(V20-V43)*(2/23)
V43+(V20-V43)*(1/23)
VINN4
V55+(V43-V55)*(22/24)
V55+(V43-V55)*(20/24)
V55+(V43-V55)*(18/24)
V55+(V43-V55)*(16/24)
V55+(V43-V55)*(14/24)
V55+(V43-V55)*(12/24)
V55+(V43-V55)*(10/24)
V55+(V43-V55)*(8/24)
V55+(V43-V55)*(6/24)
V55+(V43-V55)*(4/24)
V55+(V43-V55)*(2/24)
VINN5
V60+(V55-V60)*(20/24)
V60+(V55-V60)*(16/24)
V60+(V55-V60)*(12/24)
V60+(V55-V60)*(8/24)
V62+(V55-V62)*(350/800)
V62+(V60-V62)*(16/24)
VINN6
VINN7
87
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
V0
Output Level
Negative Polarity
Positive Polarity
DB15-11, 4-0: 11111
DB10-5: 111111
DB15-11, 4-0: 00000
DB10-5: 000000
V63
RAM data
Figure 40. Relationship between RAM data and output voltage
Sn
Negative polarity
Vcom
Positive polarity
Figure 41. Relationship between source output and Vcom
88
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
THE 8-COLOR DISPLAY MODE
The S6D0110 carries 8-color display mode. Using grayscale levels are V0 and V63 and all other level power
supplies are halt. So that it attempts to lower power consumption. Also, during the 8-color mode, the Gamma micro
adjustment register, PKP00-PKP52 and PKN00-PKN52 are invalid. Rewrite the data of GRAM R/B to 00000 or
11111, G to 000000 or 111111 before set the mode. The level power supply (V1-V62) is in OFF condition during the
8-color mode in order to select V0/V63.
Graphics RAM (GRAM)
MSB
R04
Positive
polarity
register
Negative
polarity
register
PKP02
PKP01
PKP00
PKP12
PKP11
PKP10
PKP22
PKP21
PKP20
PKP32
PKP31
PKP30
PKP42
PKP41
PKP40
PKP52
PKP51
PKP50
PRP02
PRP01
PRP00
PRP12
PRP11
PRP10
PKN02
PKN01
PKN00
PKN12
PKN11
PKN10
PKN22
PKN21
PKN20
PKN32
PKN31
PKN30
PKN42
PKN41
PKN40
PKN52
PKN51
PKN50
PRN02
PRN01
PRN00
PRN12
PRN11
PRN10
LSB
R03
R02
R01
R00
V0
8
Grayscale
amplifier
2
G05
G04
G03
G02
5
G01
G00
B04
6
B03
B02
B01
B00
5
ON/OFF control
<R>
ON/OFF control
<G>
ON/OFF control
<B>
LCD driver
LCD driver
LCD driver
R
G
B
V63
LCD
Figure 42. 8-color display control
89
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
< 6 5 , 5 3 6 -c o l o r = > 8 - c o l o r >
OFF
G O N =“1 ”
D T E = “1 ”
D 1 - 0 =“1 0”
Wait (2 frame or higher)
ON
G O N =“1 ”
D T E = “0 ”
D 1 - 0 =“1 0”
Wait (2 frame or higher)
OFF
<8-color => 65,536 -color>
OFF
G O N = “1 ”
D T E = “1 ”
D 1 - 0 =“1 0”
Wait (2 frame or higher)
ON
G O N = “1 ”
D T E = “0 ”
D 1 - 0 =“1 0”
Wait (2 frame or higher)
OFF
G O N =“0 ”
D T E = “0 ”
D 1 - 0 =“0 0”
G O N = “0 ”
D T E = “0 ”
D 1 - 0 =“0 0”
RAM setup
RAM setup
C L = “1 ”
C L = “0 ”
Wait (40ms or higher)
ON
Wait (40ms or higher)
ON
G O N =“0 ”
D T E = “0 ”
D 1 - 0 =“0 1”
Wait (2 frame or higher)
ON
G O N = “0 ”
D T E = “0 ”
D 1 - 0 =“0 1”
Wait (2 frame or higher)
ON
G O N =“1 ”
D T E = “0 ”
D 1 - 0 =“0 1”
ON
G O N =“1 ”
D T E = “0 ”
D 1 - 0 =“1 1”
Wait (2 frame or higher)
ON
G O N = “1 ”
D T E = “0 ”
D 1 - 0 =“0 1”
ON
G O N = “1 ”
D T E = “0 ”
D 1 - 0 =“1 1”
Wait (2 frame or higher)
ON
G O N =“1 ”
D T E = “1 ”
D 1 - 0 =“1 1”
Display by 8-color mode
G O N = “1 ”
D T E = “1 ”
D 1 - 0 =“1 1”
Display
by 65,536-color mode
Figure 43. Set up procedure for the 8-color mode
90
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SYSTEM STRUCTURE EXAMPLE
G174 G176
G173 G175
Following diagram indicates the system structure, which composes the 132 (width) x 176 (length) dots TFT-LCD
panel.
G2 G4
CSB
RS
E
R/W
DB[15:0]
IM[2:0]
RESETB
S6D0110
CSB
RS
E
R/W
DB[15:0]
IM[2:0]
RESETB
S1
S2
S3
S394
S395
S396
G1 G3
132RGB x 176 dot
TFT LCD Panel
Figure 44. System structure
91
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Instruction set up flow
< Display on>
<Display off>
EQ=0
Power setting
Display off
GON=
1
DTE= 1
Display on
D1-0= 10
GON=
0
DTE= 0
D1-0= 01
Wait (more than 2 frames)
Wait (more than 2 frames)
Display off
GON=
1
DTE= 0
Display on
D1-0= 10
GON=
1
DTE= 0
D1-0= 01
Wait (more than 2 frames)
Display on
Display off
GON=
GON=
0
1
DTE= 0
DTE= 0
D1-0= 11
D1-0= 00
Wait (more than 2 frames)
Power off
SAP2-0= 000
AP2-0= 000
Display on
GON=
1
DTE= 1
D1-0= 11
Display OFF
Display ON
Continue to the display on flow
Continue to the display on flow
Figure 45. Instruction set up flow
92
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
< Standby>
< Sleep>
Display off flow
Display off flow
Standby
Sleep
set
Standby set (STB=
1 )
set
Sleep set (SLP=
1 )
Sleep
Oscillation start
Sleep cancel (SLP= 0 )
Cancel
Standby
Wait 10ms
cancel
Power setting
Standby cancel (STB=
0 )
Display on flow
Power setting
Display on flow
Figure 46. Instruction setup flow (continued)
93
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
OSCILLATION CIRCUIT
The S6D0110 can oscillate between the OSC1 and OSC2 pins using an internal R-C oscillator with an external
oscillation resistor. Note that in R-C oscillation, the oscillation frequency is changed according to the external
resistance value, wiring length, or operating power-supply voltage. If Rf is increased or power supply voltage is
decrease, the oscillation frequency decreases. For the relationship between Rf resistor value and oscillation
frequency, see the Electric Characteristics Notes section.
1) External Clock Mode
Clock
OSC1
(200kHz)
Damping
resistance
(2 k Ω )
OSC2
S6D0110
2) External Resistance Oscillation Mode
OSC1
Rf
OSC2
S6D0110
N O T E : T h e Rf resistance must be located
near the OSC1/OSC2 pin on the chip
Figure 47. Oscillation Circuit
94
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
N-RASTER-ROW REVERSED AC DRIVE
The S6D0110 supports not only the LCD reversed AC drive in a one-frame unit but also the n-raster-row reversed
AC drive which alternates in an n-raster-row unit from one to 64 raster-rows. When a problem affecting display
quality occurs, the n-raster-row reversed AC drive can improve the quality.
Determine the number of the raster-rows n (NW bit set value +1) for alternating after confirmation of the display
quality with the actual LCD panel. However, if the number of AC raster-row is reduced, the LCD alternating
frequency becomes high. Because of this, the charge or discharge current is increased in the LCD cells.
1 frame
1 frame
Blank period
1
2
3
4
175 176
184
Blank period
1
2
3
4
175 176
184
1
2
Frame
A/C waveform drive
176 raster-row
N-raster-row
A/C waveform drive
176 raster-row
reverse 3 raster-row
E O R =“1 ”
Figure 48. Example of an AC signal under n-raster-row reversed AC drive
95
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
INTERLACE DRIVE
S6D0110 supports the interlace drive to protect from the flicker. It splits one frame into n fields and drives. Determine
the n fields (FLD bit stetting value) after confirming on the actual LCD display.
Following table indicates n fields: the gate selecting position when it is 1 or 3. and the diagram below indicates the
output waveform when the field interlace drive is active.
G S = ”0 ”
FLD1-0 setting value
Field
01
11
-
(1)
G1
Ο
Ο
G2
Ο
G3
Ο
G4
Ο
G5
Ο
G6
Ο
G7
Ο
G8
Ο
G9
Ο
Gate
(2)
(3)
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
⇓
⇓
G173
Ο
G174
Ο
G175
Ο
G176
Ο
G S = ”1 ”
FLD1-0 setting value
Field
01
11
-
(1)
G176
Ο
Ο
G175
Ο
G174
Ο
G173
Ο
G172
Ο
G171
Ο
G170
Ο
G169
Ο
G168
Ο
Gate
(2)
Ο
Ο
Ο
Ο
Ο
Ο
Ο
Ο
⇓
Ο
Ο
Ο
Ο
⇓
G4
Ο
G3
Ο
G2
Ο
G1
Ο
Ο
Ο
Ο
Ο
1 frame
Blank period
Field
Field
Field
Field
(1)
(2)
(3)
(1)
AC polarity
G1
G2
G3
G4
G5
G6
G3n+1
G3n+2
G3n+3
Figure 49. Interlace drive and output waveform
96
(3)
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
A/C TIMING
Following diagram indicates the A/C timing on the each A/C drive method. After every 1 drawing, the A/C timing is
occurred on the reversed frame AC drive. After the A/C timing, the blank (all gate output: Vgoff level) period
described below is inserted. When it is on the interlace drive, blank period is inserted every A/C timing. When the
reversed n-raster-row is driving, a blank period is inserted after all screens are drawn. Front and Back porch can be
adjusted using FP3-0 and BP3-0 bits (R08h). In interlace drive mode, Blank period can be adjusted using BLP130 and BLP23-0 bit (R09h).
Frame reverse AC drive
n-raster-row reversed AC drive
3 field interlace drive
Back porch
Back porch
Back porch
A/C
n-raster-row
A/C
Field 1
n-raster-row
A/C
n-raster-row
A/C
A/C
Blank period 1 (BLP1)
A/C
Blank period 2 (BLP2)
n-raster-row
A/C
n-raster-row
A/C
n-raster-row
1 frame period
Field 2
1 frame period
1 frame period
Frame 1
n-raster-row
A/C
A/C
n-raster-row
A/C
n-raster-row
Field 3
n-raster-row
A/C
timing
A/C
A/C
Front porch
Blank period = Back porch
+ Front Porch
A/C
Front porch
Blank period = Back porch
+ Blank period 1
+ Blank period 2
+ Front porch
Front porch
Blank period = Back porch
+ Front Porch
Figure 50. A/C timing
97
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
FRAME FREQUENCY ADJUSTING FUNCTION
The S6D0110 has an on-chip frame-frequency adjustment function. The frame frequency can be adjusted by the
instruction setting (DIV, RTN) during the LCD driver as the oscillation frequency is always same.
If the oscillation frequency is set to high, animation or a static image can be displayed in suitable ways by changing
the frame frequency. When a static image is displayed, the frame frequency can be set low and the low-power
consumption mode can be entered. When high-speed screen switching for an animated display, etc. is required, the
frame frequency can be set high.
RELATIONSHIP BETWEEN LCD DRIVE DUTY AND FRAME FREQUENCY
The relationships between the LCD drive duty and the frame frequency is calculated by the following expression.
The frame frequency can be adjusted in the 1H period adjusting bit (RTN) and in the operation clock division bit
(DIV) by the instruction.
fOSC
Frame Frequency =
Clock cycles per raster-row x division ratio x (Line+B)
[Hz]
f OSC: R-C oscillation frequency
Line: Number of raster-rows (NL bit)
Clock cycles per raster-row: RTN bit
Division ratio: DIV bit
B: Blank period(Back porch + Front Porch)
Figure 51. Formula for the frame frequency
Example calculation
Driver raster-row: 176
1H period: 16 clock (RTN3 to 0 = 0000)
Operation clock division ratio: 1division
B: Blank period (BP + FP): 8
fosc = 60Hz x (0+16) clock x 1 division x (176+B ) lines = 177 [kHz]
In this case, the RC oscillation frequency becomes 177 kHz. The external resistance value of the RC oscillator must
be adjusted to be 177 kHz.
Note: When FLD1-0=”11”(interlace drive), B = BP + FP + BLP1 + BLP2
98
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SCREEN-DIVISION DRIVING FUNCTION
The S6D0110 can select and drive two screens at any position with the screen-driving position registers (R14 and
R15). Any two screens required for display are selectively driven and reducing LCD-driving voltage and power
consumption.
For the 1s t division screen, start line (SS17 to 10) and end line (SE17 to 10) are specified by the 1st screen-driving
position register (R14). For the 2nd division screen, start line (SS27 to 20) and end line (SE27 to 20) are specified by
the 2nd screen-driving position register (R15). The 2nd screen control is effective when the SPT bit is 1. The total
count of selection-driving lines for the 1s t and 2nd screens must correspond to the LCD-driving duty set value.
G1
G7
Rm
*
1st screen:
7-raster-row driving
Non-display area
G26
G42
OCT 14th 10:18am
2nd screen:
17 raster-row driving
Non-display area
• Driving raster-row: NL4-0 = 10101 (176 lines)
• 1st screen setting: SS17-10 = 00H, SE17-10 = 06H
• 2nd screen setting: SS27-20 = 19H, SE27-20 = 29H, SPT = 1
Figure 52. Driving on 2 screen
99
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
ST
RESTRICTION ON THE 1 /2
ND
SCREEN DRIVING POSITION REGISTER SETTINGS
The following restrictions must be satisfied when setting the start line (SS17 to 10) and end line (SE17 to 10) of the
1st screen driving position register (R14) and the start line (SS27 to 20) and end line (SE27 to 20) of the 2nd screen
driving position register (R15) for the S6D0110. Note that incorrect display may occur if the restrictions are not
satisfied.
Table 38. Restrictions on the 1st /2nd Screen Driving Position Register Setting
1st Screen Driving (SPT=0)
Register setting
Display operation
Full screen display
(SE17 to 10) – (SS17 to 10) = NL
Normally displays (SE17 to 10) to (SS17 to 10)
Partial display
Normally displays (SE17 to 10) to (SS17 to 10)
(SE17 to 10) – (SS17 to 10) < NL
White display for all other times (RAM data is not related
at all)
(SE17 to 10) – (SS17 to 10) > NL
Setting disabled
NOTE 1: SS17 to 10 ≤ SE17 to 10 ≤ AFh
NOTE 2: Setting SE27 to 20 and SS27 to 20 are invalid
2nd Screen Driving (SPT=1)
Register setting
((SE17 to 10) – (SS17 to 10))
+ ((SE27 to 20) – (SS27-20)) = NL
((SE17 to 10) – (SS17 to 10))
+ ((SE27 to 20) – (SS27-20)) < NL
Display operation
Full screen display
Normally displays (SE27 to 10) to (SS17 to 10)
Partial display
Normally displays (SE27 to 10) to (SS17 to 10)
White display for all other times (RAM data is not related
at all)
((SE17 to 10) – (SS17 to 10))
Setting disabled
+ ((SE27 to 20) – (SS27-20)) > NL
NOTE 1: SS17 to 10 ≤ SE17 to 10 < SS27 to 20 ≤ SE27 to 20 ≤ AFh
NOTE 2: (SE27 to 20) – (SS17 to 10) ≤ NL
The driver output can’t be set for non-display area during the partial display. Determine based on specification of the
panels.
100
PT1
PT0
0
0
1
1
0
1
0
1
Source output in non-display area
Positive polarity
Negative polarity
V63
V0
V63
V0
VSS
VSS
Hi-Z
Hi-Z
Gate output in
Non-display area
Normal drive
Vgoff
Vgoff
Vgoff
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Refer to the following flow to set up the partial display.
Full screen display
PT1-0 = 00
Set SS/SE bits
Wait (more than 2 frames)
Split screen drive
set up flow
PT1-0 = 01
or
Set as need
PT1-0 = 10
or
PT1-0 = 11
Partial display on
Setting flow for
full screen driver
Set SS/SE bits
Full screen display
Figure 53. Partial display set up flow
101
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
APPLICATION CIRCUIT
The following figure indicates a schematic diagram of application circuit for S6D0110.
C11C11+
C12C12+
C21+
C21C22+
C22C23+
C23C31+
C31C41+
C41-
Notes)
1) All capacitor value : 1uF
2) Every pins descripted in this diagram have
to be wired out externally.
3) "Space only" means only space that can
arrange curcuit component on it must be
ensured.
(Only "space" is needed to arrange the
described circuit component on it.)
4) VSSO & VSS pin have to be connected
externally ( Refer to the following figure )
5) VDD3O & VDD3 pin have to be connected
externally ( Refer to the following figure )
VGH
VCI3
VGL
CGND
AVSS
Connect
Externally
VSSO
VSS
VSS
VSS
VSS
VSS
No.91
Internally
connected
No.96
VBS
Connect
VCI
Space
External
Power
VCI4
Only
Externally
VDD3O
VDD3
VDD3
VDD3
No.97
Internally
connected
*Note 3)
VDD3
RDVDD
External
Power
VDD3
No.100
VDD
VSS
VGS
VCOML
VCOMR
VREG1OUT
VREG1
VREG2OUT
VREG2
GVDD
VCOMOUT
Space
Only
* Note 3) Space
Only
VCOMH
VCL
VCI1
REGP
REGN
AVDD
Space
Only
* Note 3)
VCI2
VGOFFOUT
VGOFF
VGOFFH
VGOFFL
R = 2k
Signal
In
OSC1
Rf =
100k
OSC2
VSSO
PREGB
VDD3O
G0
G1
G3
G5
CONTACT1
CONTACT2
RESETB1
VDD3O
IM0/ID
VSSO
IM1
VDD3O
IM2
VDD3O
RESETB2
VSSO
DB15~8
VSSO
DB7~2
DB1/SDO
DB0/SDI
VSSO
RD
WR/SCL
RS
CS
VSSO
CL1
M
FLM
EQ
DISPTMG
TEST
RESETB3
G173
G175
S1
S2
S3
S4
S389
S390
S391
S392
S393
S394
S395
S396
G177
G176
G174
G4
G2
S6D0110
Figure 54. Application Circuit
102
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
Table 39. Absolute Maximum Rating
(VSS = 0V)
Item
Symbol
Rating
Unit
Supply voltage
VDD
- 0.3 ~ + 5.0
V
Supply voltage for step-up circuit
Vci
- 0.3 ~ + 5.0
V
LCD Supply Voltage range
|VGH – VGL|
30
V
Input Voltage range
Vin
- 0.3 to VDD +0.5
V
Operating temperature
Topr
-40 ~ +85
°C
Storage temperature
Tstg
-55 ~ +110
°C
Notes:
1. Absolute maximum rating is the limit value beyond which the IC may be broken. They do not assure operations.
2. Operating temperature is the range of device-operating temperature. They do not guarantee chip performance.
3. Absolute maximum rating is guaranteed when our company’s package used.
103
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
DC CHARACTERISTICS
Table 40. DC Characteristics
Characteristic
MIN
TYP
MAX
VDD
1.8
-
2.5
V
*1
VDD3
2.3
-
3.3
V
*1
VGH
+7
-
20.0
V
VGL
-7
-
-15.0
V
VGOFF
-5
-
-15
V
AVDD
3.5
5.5
V
GVDD
3.0
5.0
V
Input high voltage
VIH
0.7VDD3
-
VDD3
V
*2
Input low voltage
VIL
0
-
0.3VDD3
V
*2
Output high voltage
VOH
IOH = -2.0mA
VDD3-0.5
VDD3
V
*3
Output low voltage
VOL
IOL = 2.0mA
0.0
-
0.5
V
*3
Operating voltage
LCD driving voltage
Symbol
CONDITION
(VSS = 0V)
Unit Note
Input leakage current
IIL
VIN = VSS or VDD3
-1.0
-
1.0
µA
*2
Output leakage current
IOL
VIN = VSS or VDD3
-3.0
-
3.0
µA
*3
159
177
194
KHz
*4
Frame freq. = 60 Hz
Operating frequency
fosc
Internal reference power
supply voltage
VCI
2.5
-
3.3
V
1st step-up input voltage
VCI1
1.7
-
2.75
V
95
99
-
%
5.5
V
-
%
15
V
-
%
3.3
V
-
%
Display line = 176
st
1 step-up output
efficiency
2nd step-up input voltage
AVDD
ILOAD = TBD mA
3.4
VCI2
nd
2 step-up output
efficiency
VGH
3rd step-up input voltage
VCI3
3rd step-up output
efficiency
VGL
4th step-up input voltage
VCI4
ILOAD = TBD mA
95
99
6.8
ILOAD = TBD mA
95
99
2.5
th
4 step-up output
95
99
VCL
ILOAD = TBD mA
efficiency
Notes :
1. VSS = 0V.
2. Applied pins; IM2-1, CSB, E, R/W, RS, DB0 to DB15, PREGB, RESETB1,2,3.
3. Applied pins; DB0 to DB15, CL1, M, FLM, EQ, DISPTMG.
4. Target frame frequency = 60 Hz, Display line = 176, Back porch = 3, Front port = 5
Internal RTN[3:0] register = “0000”, Internal DIV[1:0] register = “00”
104
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 41. DC Characteristics for LCD driver outputs
Characteristic
LCD gate driver output
On resistance
Symbol
Ron
CONDITION
VGH –VGOFF=30.0V,
VGH=18V,
VGOFF=-12V,
MIN
(VDD = 1.8V, VDD3 = 3.0V, VSS = 0V)
TYP
MAX
Unit Note
-
-
2
K
*5
Vgo = VGH – 0.5V
LCD source driver
high-level output current
(Gradation output)
LCD source driver lowlevel output current
(Gradation output)
Output voltage deviation
(Mean value)
LCD source driver output
voltage range
LCD source driver highlevel output current
(Binary output)
LCD source driver lowlevel output current
(Binary output)
LCD source driver delay
Current consumption
during standby mode
Current consumption
during normal operation
IHOG
Vso = 4.5V,
Vsx = 3.5V
-
-
-50
A
*6
ILOG
Vso = 0.5V,
Vsx = 1.5V
50
-
-
A
*6
4.2V ≤ Vso
-
±20
±30
MV
*6
0.8V < Vso < 4.2V
-
±10
±20
*6
±20
±30
MV
MV
GVDD+0.1
-
GVDD-0.1
V
∆Vo
Vso ≤ 0.8V
Vso
-
*6
IHOB
Vso = 5.0V,
Vsx = 4.0V
-
-
-100
A
*6
ILOB
Vso = 0.0V,
Vsx = 1.0V
100
-
-
A
*6
-
-
TBD
S
*9
-
-
-
A
*7
-
TBD
TBD
A
*8
-
TBD
TBD
A
*8
tSD
Istby
IVDD
IVCI
AVDD = 5.5V
GVDD = 5.0V
SAP = “001”
Standby mode,
Ta = 25 °C
No load,
Ta = 25 °C
Notes :
5.
6.
7.
8.
Vgo is the output voltage of analog output pins G0 to G177.
Vsx is the voltage applied to analog output pins S1 to S396.
Vso the output voltage of analog output pins S1 to S396
VDD3 = 3.0V, VDD = 2.0V, VCI = 2.7V, VBS = VSS and standby mode.
VDD3 = 3.0V, VDD = 2.0V, VCI = 2.7V, VBS = VSS,
fosc = 177 kHz(176 display line), Internal register, NL[4:0] = “10101”, RTN[3:0] = “0000”, DIV[1:0] = “00”
Internal power registers, VC[2:0] = “011”, BT[2:0] = “010”, VRH[3:0] = “1100”, VRL[3:0] = “0110”
VCM[4:0] = “10110”, VDV[4:0] = “10000”
105
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
AC CHARACTERISTICS
Table 42. Parallel Write Interface Characteristics (68 Mode, HWM = 0)
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
tCYCW68
tCYCR68
600
800
-
250
500
tR , tF
-
25
tWHW68
tWHR68
tWLW68
tWLR68
90
350
300
400
-
RW, RS and CSB setup time
tAS68
10
-
10
RW, RS and CSB hold time
tAH68
5
-
2
Write data setup time
tWDS68
60
-
60
Write data hold time
tWDH68
15
-
2
Read data delay time
tRDD68
-
200
-
Read data hold time
tRDH68
5
Characteristic
Symbol
Write
Read
Cycle time
Pulse rise / fall time
Write
Read
Write
Read
E pulse width high
E pulse width low
Unit
Max.
25
40
250
70
200
-
ns
200
5
Table 43. Parallel Write Interface Characteristics (68 Mode, HWM = 1)
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
tCYCW68
tCYCR68
200
800
-
100
500
tR , tF
-
25
tWHW68
tWHR68
tWLW68
tWLR68
90
350
90
400
-
RW, RS and CSB setup time
tAS68
10
-
10
RW, RS and CSB hold time
tAH68
5
-
2
Write data setup time
tWDS68
60
-
60
Write data hold time
tWDH68
15
-
2
Read data delay time
tRDD68
Read data hold time
tRDH68
Characteristic
Cycle time
Symbol
Write
Read
Pulse rise / fall time
E pulse width high
E pulse width low
106
Write
Read
Write
Read
Unit
-
25
40
250
40
200
200
5
Max.
ns
200
5
S6D0110
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
Preliminary
Table 44. Parallel Write Interface Characteristics (80 Mode, HWM = 0)
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
tCYCW80
tCYCR80
600
800
-
250
500
tR , tF
-
25
tWLW80
tWLR80
tWHW80
tWHR80
90
350
300
400
-
RW, RS and CSB setup time
tAS80
10
-
10
RW, RS and CSB hold time
tAH80
5
-
2
Write data setup time
tWDS80
60
-
60
Write data hold time
tWDH80
15
-
2
Read data delay time
tRDD80
-
200
-
Read data hold time
tRDH80
5
Characteristic
Symbol
Write
Read
Cycle time
Pulse rise / fall time
Write
Read
Write
Read
Pulse width low
Pulse width high
Unit
Max.
25
40
250
70
200
-
ns
200
5
Table 45. Parallel Write Interface Characteristics (80 Mode, HWM = 1)
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
tCYCW80
tCYCR80
200
800
-
100
500
tR , tF
-
25
tWLW80
tWLR80
tWHW80
tWHR80
90
350
90
400
-
RW, RS and CSB setup time
tAS80
10
-
10
RW, RS and CSB hold time
tAH80
5
-
2
Write data setup time
tWDS80
60
-
60
Write data hold time
tWDH80
15
-
2
Read data delay time
tRDD80
Read data hold time
tRDH80
Characteristic
Cycle time
Symbol
Write
Read
Pulse rise / fall time
Pulse width low
Pulse width high
Write
Read
Write
Read
Unit
-
25
40
250
40
200
200
5
Max.
ns
200
5
107
132 RGB SOURCE & 176 GATE DRIVER WITH INTERNAL RAM FOR 65K COLORS TFT-LCD
S6D0110
Preliminary
Table 46. Clock Synchronized Serial Write Mode Characteristics
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
Characteristic
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
Max.
0.1
20
us
20
ns
Symbol
Unit
Serial clock cycle time
tscyc
0.1
20
Serial clock rise / fall time
tR , tF
-
20
Pulse width high for write
tSCHW
40
-
40
-
ns
Pulse width high for read
tSCHR
230
-
230
-
ns
Pulse width low for write
tSCLW
60
-
60
-
ns
Pulse width low for read
tSCLR
230
-
230
-
ns
Chip Select setup time
tCSS
20
-
20
-
ns
Chip Select hold time
tCSH
60
-
60
-
ns
Serial input data setup time
tSIDS
30
-
30
-
ns
Serial input data hold time
tSIDH
30
-
30
-
ns
Serial output data delay time
tSODD
-
200
-
130
ns
Serial output data hold time
tSODH
5
-
5
-
ns
Table 46. Reset Timing Characteristics
(VDD = 1.8V to 2.5V, TA = -30 to +85 oC)
Characteristic
Reset low pulse width
108
VDD3 = 1.8V to 2.5V
VDD3 = 2.6V to 3.3V
Min.
Max.
Min.
Max.
1
-
1
-
Symbol
tRES
Unit
us