MA-COM MRF137

Order this document
by MRF137/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
N–Channel Enhancement–Mode
. . . designed for wideband large–signal output and driver stages up to
400 MHz range.
• Guaranteed 28 Volt, 150 MHz Performance
Output Power = 30 Watts
Minimum Gain = 13 dB
Efficiency — 60% (Typical)
30 W, to 400 MHz
N–CHANNEL MOS
BROADBAND RF POWER
FET
• Small–Signal and Large–Signal Characterization
• Typical Performance at 400 MHz, 28 Vdc, 30 W
Output = 7.7 dB Gain
• 100% Tested For Load Mismatch At All Phase Angles
With 30:1 VSWR
• Low Noise Figure — 1.5 dB (Typ) at 1.0 A, 150 MHz
• Excellent Thermal Stability, Ideally Suited For Class A
Operation
• Facilitates Manual Gain Control, ALC and Modulation
Techniques
CASE 211–07, STYLE 2
&
MAXIMUM RATINGS
Rating
Symbol
Value
Unit
Drain–Source Voltage
VDSS
65
Vdc
Drain–Gate Voltage
(RGS = 1.0 MΩ)
VDGR
65
Vdc
VGS
±40
Vdc
Drain Current — Continuous
ID
5.0
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
100
0.571
Watts
W/°C
Storage Temperature Range
Tstg
–65 to +150
°C
Operating Junction Temperature
TJ
200
°C
Symbol
Max
Unit
RθJC
1.75
°C/W
Gate–Source Voltage
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 6
1
MRF137
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
V(BR)DSS
65
—
—
Vdc
Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0)
IDSS
—
—
4.0
mAdc
Gate–Source Leakage Current (VGS = 20 V, VDS = 0)
IGSS
—
—
1.0
µAdc
VGS(th)
1.0
3.0
6.0
Vdc
gfs
500
750
—
mmhos
Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
48
—
pF
Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
54
—
pF
Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
11
—
pF
Noise Figure
(VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz)
NF
—
1.5
—
dB
Common Source Power Gain
(VDD = 28 Vdc, Pout = 30 W,
IDQ = 25 mA)
Gps
13
—
16
7.7
—
—
50
60
—
OFF CHARACTERISTICS
Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA)
ON CHARACTERISTICS
Gate Threshold Voltage (VDS = 10 V, ID = 25 mA)
Forward Transconductance (VDS = 10 V, ID = 500 mA)
DYNAMIC CHARACTERISTICS
FUNCTIONAL CHARACTERISTICS
Drain Efficiency (Figure 1)
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA)
η
Electrical Ruggedness (Figure 1)
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at All Phase Angles)
ψ
%
%
%
C1 — Arco 403, 3.0–35 pF, or equivalent
C2 — Arco 406, 15–115 pF, or equivalent
C3 — 56 pF Mini–Unelco, or equivalent
C4 — Arco 404, 8.0–60 pF, or equivalent
C5 — 680 pF, 100 Mils Chip
C6 — 0.01 µF, 100 V, Disc Ceramic
C7 — 100 µF, 40 V
C8 — 0.1 µF, 50 V, Disc Ceramic
C9, C10 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
('
%
"('#('
L1 — 2 Turns, 0.29″ ID, #18 AWG Enamel, Closewound
L2 — 1–1/4 Turns, 0.2″ ID, #18 AWG Enamel, Closewound
L3 — 2 Turns, 0.2″ ID, #18 AWG Enamel, Closewound
RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel, Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
R1 — 10 kΩ, 1/2 W Thin Film
R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ
R4 — 1.8 kΩ, 1/2 W
Board — G10, 62 Mils
Figure 1. 150 MHz Test Circuit
2
) )
%
REV 6
%
%
!#('
%
No Degradation in Output Power
%
&
(&'
dB
f = 150 MHz (Figure 1)
f = 400 MHz (Figure 14)
1 C
1 C
C
#"('#('#"*%*''&
9?>
#"('#('#"*%*''&
9?>
C
) )
$ 7
#48 !#(' #"*% *''&
C
) )
$ 7
Figure 2. Output Power versus Input Power
#"('#('#"*%*''&
9?>
#"('#('#"*%*''&
9?>
) )
) )
#48 !#(' #"*% *''&
*
*
$ 7
1 C
#48 *
*
*
#"('#('#"*%*''&
9?>
) &(##+ )"' )"'&
Figure 5. Output Power versus Supply Voltage
#"('#('#"*%*''&
9?>
#48 *
Figure 4. Output Power versus Input Power
$ 7
1 C
) &(##+ )"' )"'&
Figure 6. Output Power versus Supply Voltage
3
#48 !#(' #"*% *''&
1 C
$ 7
REV 6
Figure 3. Output Power versus Input Power
C
#48 *
*
*
$ 7
1 C
) &(##+ )"' )"'&
Figure 7. Output Power versus Supply Voltage
#"('#('#"*%*''&
9?>
#"('#('#"*%*''&
9?>
#48 *
*
*
$ 7
1 C
) &(##+ )"' )"'&
) )
$ 7
#48 "!&'!'
'+# ) &"*!
)&>3 )
Figure 8. Output Power versus Supply Voltage
)&'F&"(%)"'!"% ,
%!(%%!' #&
'+# ) &"*!
)&>3 )
)& )
)& '&"(% )"' )"'&
D
D
D
)& '&"(% )"' )"'&
7
7
)& )
Figure 10. Drain Current versus Gate Voltage
(Transfer Characteristics)
7
7
' & ' #%'(% °
Figure 11. Gate Source Voltage versus
Case Temperature
%!(%%!' #&
)& )
1 C
#'!:
D
Figure 9. Output Power versus Gate Voltage
C
D
C
9==
4==
<==
' °
)& %!&"(% )"' )"'&
Figure 12. Capacitance versus
Drain–Source Voltage
REV 6
4
)& %!&"(% )"' )"'&
Figure 13. DC Safe Operating Area
%
&
(&'
%
%
) )
%
%
%
%
!#('
,
,
,
,
,
,
('
C1, C2, C3, C4 — 0–20 pF Johanson, or equivalent
C5, C8 — 270 pF, 100 Mil Chip
C6, C7 — 24 pF Mini–Unelco, or equivalent
C9 — 0.01 µF, 100 V, Disc Ceramic
C10 — 100 µF, 40 V
C11 — 0.1 µF, 50 V, Disc Ceramic
C12, C13 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
R1, R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ
R4 — 1.8 kΩ, 1/2 W
Z1 — 2.9″ x 0.166″ Microstrip
Z2, Z4 — 0.35″ x 0.166″ Microstrip
Z3 — 0.40″ x 0.166″ Microstrip
Z5 — 1.05″ x 0.166″ Microstrip
Z6 — 1.9″ x 0.166″ Microstrip
RFC1 — 6 Turns, 0.300″ ID, #20 AWG Enamel, Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
Board — Glass Teflon, 62 Mils
Figure 14. 400 MHz Test Circuit
,48
1 C
,"
1 C
) ) $ 7
#9?> *
1
C
,48
"37=
,"
"37=
5
5E
5E
5E
5
5
5
5
," 985?2->0 91 >30 9:>47?7 69-/ 47:0/-8.0
48>9 A34.3 >30 /[email protected] 9?>:?> 9:0<->0= -> - 24@08 9?>F
:?> :9A0< @96>-20 -8/ 1<0;?08.B
Figure 15. Large–Signal Series Equivalent Input and Output Impedance, Zin, ZOL*
REV 6
5
%
"('#('
S11
f
(MHz)
|S11|
2.0
0.977
5.0
0.919
10
S21
∠φ
S12
|S21|
∠φ
–32
59.48
–70
48.67
0.852
–109
20
0.817
30
0.814
40
∠φ
|S22|
163
0.011
67
0.661
–36
142
0.024
44
0.692
–78
33.50
122
0.032
29
0.747
–117
–140
19.05
106
0.037
16
0.768
–146
–153
13.11
99
0.038
14
0.774
–157
0.811
–159
9.88
95
0.038
13
0.782
–162
50
0.812
–164
7.98
92
0.038
12
0.787
–165
60
0.813
–166
6.66
89
0.038
12
0.787
–168
70
0.815
–168
5.708
86
0.038
11
0.787
–169
80
0.816
–170
5.003
84
0.038
11
0.787
–170
90
0.817
–171
4.560
83
0.038
12
0.787
–171
100
0.817
–172
4.170
81
0.039
13
0.787
–172
110
0.818
–173
3.670
80
0.039
13
0.788
–172
120
0.820
–173
3.420
79
0.039
13
0.788
–173
130
0.821
–173
3.170
79
0.039
13
0.788
–173
140
0.822
–174
2.980
78
0.039
13
0.788
–173
150
0.823
–175
2.826
77
0.039
14
0.788
–173
160
0.824
–175
2.650
76
0.039
14
0.790
–174
170
0.825
–176
2.438
75
0.039
14
0.792
–174
180
0.827
–176
2.325
73
0.039
15
0.793
–174
190
0.829
–177
2.175
72
0.039
16
0.796
–174
200
0.831
–177
2.084
71
0.039
16
0.799
–174
225
0.836
–178
1.824
69
0.039
18
0.805
–174
250
0.846
–178
1.621
66
0.039
21
0.816
–174
275
0.853
–179
1.462
64
0.039
23
0.822
–174
300
0.853
–179
1.319
61
0.040
25
0.833
–174
325
0.856
–179
1.194
59
0.040
27
0.828
–174
350
0.857
+179
1.089
56
0.040
30
0.842
–174
375
0.861
+179
1.014
54
0.042
32
0.849
–174
400
0.865
+178
0.927
51
0.043
35
0.856
–174
425
0.875
+178
0.876
49
0.045
37
0.866
–174
450
0.881
+178
0.810
46
0.046
40
0.870
–174
475
0.886
+177
0.755
44
0.046
43
0.875
–174
500
0.887
+177
0.694
41
0.051
43
0.888
–174
525
0.888
+176
0.677
39
0.052
43
0.890
–174
550
0.896
+176
0.625
36
0.055
45
0.898
–174
575
0.907
+175
0.603
34
0.058
45
0.913
–174
600
0.910
+175
0.585
32
0.061
45
0.918
–174
625
0.910
+174
0.563
30
0.065
45
0.945
–174
650
0.920
+174
0.543
28
0.069
46
0.952
–174
675
0.938
+173
0.533
26
0.074
47
0.974
–174
700
0.943
+171
0.515
24
0.078
47
0.958
–176
725
0.934
+170
0.491
22
0.079
46
0.953
–177
750
0.940
+170
0.475
22
0.084
48
0.943
–177
775
0.953
+169
0.477
21
0.090
48
0.957
–177
800
0.959
+168
0.467
17
0.093
48
0.957
–179
Table 1. Common Source Scattering Parameters
50 Ω System
VDS = 28 V, ID = 0.75 A
REV 6
6
S22
|S12|
∠φ
D5
D°
D5
D°
°
D5
D5
°
D5
D5
D5
° D°
1 C
°
D5
1 C
D5
D5
&
&
°
D5
D5
D5
D°
D°
°
D°
D5
Figure 16. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
Figure 17. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
D5
D°
°
1 C
D°
D5
D5
D5
°
D°
D5
D5
° °
°
&
D°
D°
°
1 C
D5
D5
D5
&
D5
D5
D5
D°
D5
Figure 18. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
Figure 19. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.75 A
REV 6
7
D5
DESIGN CONSIDERATIONS
The MRF137 is a RF power N–Channel enhancement
mode field–effect transistor (FET) designed especially for
VHF power amplifier applications. M/A-COM RF MOS FETs
feature a vertical structure with a planar design, thus avoiding
the processing difficulties associated with V–groove vertical
power FETs.
M/A-COM Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal,
thus facilitating manual gain control, ALC and modulation.
DC BIAS
The MRF137 is an enhancement mode FET and, therefore,
does not conduct when drain voltage is applied. Drain current
flows when a positive voltage is applied to the gate. See Figure
10 for a typical plot of drain current versus gate voltage. RF
power FETs require forward bias for optimum performance.
The value of quiescent drain current (IDQ) is not critical for
many applications. The MRF137 was characterized at IDQ =
25 mA, which is the suggested minimum value of IDQ. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current.
Therefore, the gate bias circuit may generally be just a simple
REV 6
8
resistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of the MRF137 may be controlled from its
rated value down to zero (negative gain) by varying the dc gate
voltage. This feature facilitates the design of manual gain
control, AGC/ALC and modulation systems. (See Figure 9.)
AMPLIFIER DESIGN
Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM
Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of
RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal
impedances are provided. While the s–parameters will not
produce an exact design solution for high power operation,
they do yield a good first approximation. This is an additional
advantage of RF MOS power FETs.
RF power FETs are triode devices and, therefore, not
unilateral. This, coupled with the very high gain of the
MRF137, yields a device capable of self oscillation. Stability
may be achieved by techniques such as drain loading, input
shunt resistive loading, or output to input feedback. Two port
parameter stability analysis with the MRF137 s–parameters
provides a useful tool for selection of loading or feedback
circuitry to assure stable operation. See M/A-COM Application
Note AN215A for a discussion of two port network theory and
stability.
PACKAGE DIMENSIONS
A
U
!"'&
!&"!! ! '"%!! #% !&
+
"!'%"! !&"! !
M
M
Q
R
S
B
D
K
J
H
C
E
CASE 211–07
ISSUE N
Specifications subject to change without notice.
n North America: Tel. (800) 366-2266, Fax (800) 618-8883
n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298
n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020
Visit www.macom.com for additional data sheets and product information.
REV 6
9
&'+ #! &"(%
'
&"(%
%!