Order this document by MRF137/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line N–Channel Enhancement–Mode . . . designed for wideband large–signal output and driver stages up to 400 MHz range. • Guaranteed 28 Volt, 150 MHz Performance Output Power = 30 Watts Minimum Gain = 13 dB Efficiency — 60% (Typical) 30 W, to 400 MHz N–CHANNEL MOS BROADBAND RF POWER FET • Small–Signal and Large–Signal Characterization • Typical Performance at 400 MHz, 28 Vdc, 30 W Output = 7.7 dB Gain • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR • Low Noise Figure — 1.5 dB (Typ) at 1.0 A, 150 MHz • Excellent Thermal Stability, Ideally Suited For Class A Operation • Facilitates Manual Gain Control, ALC and Modulation Techniques CASE 211–07, STYLE 2 & MAXIMUM RATINGS Rating Symbol Value Unit Drain–Source Voltage VDSS 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 Vdc VGS ±40 Vdc Drain Current — Continuous ID 5.0 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 100 0.571 Watts W/°C Storage Temperature Range Tstg –65 to +150 °C Operating Junction Temperature TJ 200 °C Symbol Max Unit RθJC 1.75 °C/W Gate–Source Voltage THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 1 MRF137 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit V(BR)DSS 65 — — Vdc Zero Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 4.0 mAdc Gate–Source Leakage Current (VGS = 20 V, VDS = 0) IGSS — — 1.0 µAdc VGS(th) 1.0 3.0 6.0 Vdc gfs 500 750 — mmhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 48 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 54 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 11 — pF Noise Figure (VDS = 28 Vdc, ID = 1.0 A, f = 150 MHz) NF — 1.5 — dB Common Source Power Gain (VDD = 28 Vdc, Pout = 30 W, IDQ = 25 mA) Gps 13 — 16 7.7 — — 50 60 — OFF CHARACTERISTICS Drain–Source Breakdown Voltage (VGS = 0, ID = 10 mA) ON CHARACTERISTICS Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) Forward Transconductance (VDS = 10 V, ID = 500 mA) DYNAMIC CHARACTERISTICS FUNCTIONAL CHARACTERISTICS Drain Efficiency (Figure 1) (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA) η Electrical Ruggedness (Figure 1) (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 25 mA, VSWR 30:1 at All Phase Angles) ψ % % % C1 — Arco 403, 3.0–35 pF, or equivalent C2 — Arco 406, 15–115 pF, or equivalent C3 — 56 pF Mini–Unelco, or equivalent C4 — Arco 404, 8.0–60 pF, or equivalent C5 — 680 pF, 100 Mils Chip C6 — 0.01 µF, 100 V, Disc Ceramic C7 — 100 µF, 40 V C8 — 0.1 µF, 50 V, Disc Ceramic C9, C10 — 680 pF Feedthru D1 — 1N5925A Motorola Zener (' % "('#(' L1 — 2 Turns, 0.29″ ID, #18 AWG Enamel, Closewound L2 — 1–1/4 Turns, 0.2″ ID, #18 AWG Enamel, Closewound L3 — 2 Turns, 0.2″ ID, #18 AWG Enamel, Closewound RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel, Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 10 kΩ, 1/2 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ R4 — 1.8 kΩ, 1/2 W Board — G10, 62 Mils Figure 1. 150 MHz Test Circuit 2 ) ) % REV 6 % % !#(' % No Degradation in Output Power % & (&' dB f = 150 MHz (Figure 1) f = 400 MHz (Figure 14) 1 C 1 C C #"('#('#"*%*''& 9?> #"('#('#"*%*''& 9?> C ) ) $ 7 #48 !#(' #"*% *''& C ) ) $ 7 Figure 2. Output Power versus Input Power #"('#('#"*%*''& 9?> #"('#('#"*%*''& 9?> ) ) ) ) #48 !#(' #"*% *''& * * $ 7 1 C #48 * * * #"('#('#"*%*''& 9?> ) &(##+ )"' )"'& Figure 5. Output Power versus Supply Voltage #"('#('#"*%*''& 9?> #48 * Figure 4. Output Power versus Input Power $ 7 1 C ) &(##+ )"' )"'& Figure 6. Output Power versus Supply Voltage 3 #48 !#(' #"*% *''& 1 C $ 7 REV 6 Figure 3. Output Power versus Input Power C #48 * * * $ 7 1 C ) &(##+ )"' )"'& Figure 7. Output Power versus Supply Voltage #"('#('#"*%*''& 9?> #"('#('#"*%*''& 9?> #48 * * * $ 7 1 C ) &(##+ )"' )"'& ) ) $ 7 #48 "!&'!' '+# ) &"*! )&>3 ) Figure 8. Output Power versus Supply Voltage )&'F&"(%)"'!"% , %!(%%!' #& '+# ) &"*! )&>3 ) )& ) )& '&"(% )"' )"'& D D D )& '&"(% )"' )"'& 7 7 )& ) Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics) 7 7 ' & ' #%'(% ° Figure 11. Gate Source Voltage versus Case Temperature %!(%%!' #& )& ) 1 C #'!: D Figure 9. Output Power versus Gate Voltage C D C 9== 4== <== ' ° )& %!&"(% )"' )"'& Figure 12. Capacitance versus Drain–Source Voltage REV 6 4 )& %!&"(% )"' )"'& Figure 13. DC Safe Operating Area % & (&' % % ) ) % % % % !#(' , , , , , , (' C1, C2, C3, C4 — 0–20 pF Johanson, or equivalent C5, C8 — 270 pF, 100 Mil Chip C6, C7 — 24 pF Mini–Unelco, or equivalent C9 — 0.01 µF, 100 V, Disc Ceramic C10 — 100 µF, 40 V C11 — 0.1 µF, 50 V, Disc Ceramic C12, C13 — 680 pF Feedthru D1 — 1N5925A Motorola Zener R1, R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ R4 — 1.8 kΩ, 1/2 W Z1 — 2.9″ x 0.166″ Microstrip Z2, Z4 — 0.35″ x 0.166″ Microstrip Z3 — 0.40″ x 0.166″ Microstrip Z5 — 1.05″ x 0.166″ Microstrip Z6 — 1.9″ x 0.166″ Microstrip RFC1 — 6 Turns, 0.300″ ID, #20 AWG Enamel, Closewound RFC2 — Ferroxcube VK–200 — 19/4B Board — Glass Teflon, 62 Mils Figure 14. 400 MHz Test Circuit ,48 1 C ," 1 C ) ) $ 7 #9?> * 1 C ,48 "37= ," "37= 5 5E 5E 5E 5 5 5 5 ," 985?2->0 91 >30 9:>47?7 69-/ 47:0/-8.0 48>9 A34.3 >30 /[email protected] 9?>:?> 9:0<->0= -> - 24@08 9?>F :?> :9A0< @96>-20 -8/ 1<0;?08.B Figure 15. Large–Signal Series Equivalent Input and Output Impedance, Zin, ZOL* REV 6 5 % "('#(' S11 f (MHz) |S11| 2.0 0.977 5.0 0.919 10 S21 ∠φ S12 |S21| ∠φ –32 59.48 –70 48.67 0.852 –109 20 0.817 30 0.814 40 ∠φ |S22| 163 0.011 67 0.661 –36 142 0.024 44 0.692 –78 33.50 122 0.032 29 0.747 –117 –140 19.05 106 0.037 16 0.768 –146 –153 13.11 99 0.038 14 0.774 –157 0.811 –159 9.88 95 0.038 13 0.782 –162 50 0.812 –164 7.98 92 0.038 12 0.787 –165 60 0.813 –166 6.66 89 0.038 12 0.787 –168 70 0.815 –168 5.708 86 0.038 11 0.787 –169 80 0.816 –170 5.003 84 0.038 11 0.787 –170 90 0.817 –171 4.560 83 0.038 12 0.787 –171 100 0.817 –172 4.170 81 0.039 13 0.787 –172 110 0.818 –173 3.670 80 0.039 13 0.788 –172 120 0.820 –173 3.420 79 0.039 13 0.788 –173 130 0.821 –173 3.170 79 0.039 13 0.788 –173 140 0.822 –174 2.980 78 0.039 13 0.788 –173 150 0.823 –175 2.826 77 0.039 14 0.788 –173 160 0.824 –175 2.650 76 0.039 14 0.790 –174 170 0.825 –176 2.438 75 0.039 14 0.792 –174 180 0.827 –176 2.325 73 0.039 15 0.793 –174 190 0.829 –177 2.175 72 0.039 16 0.796 –174 200 0.831 –177 2.084 71 0.039 16 0.799 –174 225 0.836 –178 1.824 69 0.039 18 0.805 –174 250 0.846 –178 1.621 66 0.039 21 0.816 –174 275 0.853 –179 1.462 64 0.039 23 0.822 –174 300 0.853 –179 1.319 61 0.040 25 0.833 –174 325 0.856 –179 1.194 59 0.040 27 0.828 –174 350 0.857 +179 1.089 56 0.040 30 0.842 –174 375 0.861 +179 1.014 54 0.042 32 0.849 –174 400 0.865 +178 0.927 51 0.043 35 0.856 –174 425 0.875 +178 0.876 49 0.045 37 0.866 –174 450 0.881 +178 0.810 46 0.046 40 0.870 –174 475 0.886 +177 0.755 44 0.046 43 0.875 –174 500 0.887 +177 0.694 41 0.051 43 0.888 –174 525 0.888 +176 0.677 39 0.052 43 0.890 –174 550 0.896 +176 0.625 36 0.055 45 0.898 –174 575 0.907 +175 0.603 34 0.058 45 0.913 –174 600 0.910 +175 0.585 32 0.061 45 0.918 –174 625 0.910 +174 0.563 30 0.065 45 0.945 –174 650 0.920 +174 0.543 28 0.069 46 0.952 –174 675 0.938 +173 0.533 26 0.074 47 0.974 –174 700 0.943 +171 0.515 24 0.078 47 0.958 –176 725 0.934 +170 0.491 22 0.079 46 0.953 –177 750 0.940 +170 0.475 22 0.084 48 0.943 –177 775 0.953 +169 0.477 21 0.090 48 0.957 –177 800 0.959 +168 0.467 17 0.093 48 0.957 –179 Table 1. Common Source Scattering Parameters 50 Ω System VDS = 28 V, ID = 0.75 A REV 6 6 S22 |S12| ∠φ D5 D° D5 D° ° D5 D5 ° D5 D5 D5 ° D° 1 C ° D5 1 C D5 D5 & & ° D5 D5 D5 D° D° ° D° D5 Figure 16. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.75 A Figure 17. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.75 A D5 D° ° 1 C D° D5 D5 D5 ° D° D5 D5 ° ° ° & D° D° ° 1 C D5 D5 D5 & D5 D5 D5 D° D5 Figure 18. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.75 A Figure 19. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.75 A REV 6 7 D5 DESIGN CONSIDERATIONS The MRF137 is a RF power N–Channel enhancement mode field–effect transistor (FET) designed especially for VHF power amplifier applications. M/A-COM RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V–groove vertical power FETs. M/A-COM Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. DC BIAS The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF137 was characterized at IDQ = 25 mA, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters. The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple REV 6 8 resistive divider network. Some special applications may require a more elaborate bias system. GAIN CONTROL Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.) AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See M/A-COM Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s–parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs. RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 s–parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See M/A-COM Application Note AN215A for a discussion of two port network theory and stability. PACKAGE DIMENSIONS A U !"'& !&"!! ! '"%!! #% !& + "!'%"! !&"! ! M M Q R S B D K J H C E CASE 211–07 ISSUE N Specifications subject to change without notice. n North America: Tel. (800) 366-2266, Fax (800) 618-8883 n Asia/Pacific: Tel.+81-44-844-8296, Fax +81-44-844-8298 n Europe: Tel. +44 (1344) 869 595, Fax+44 (1344) 300 020 Visit www.macom.com for additional data sheets and product information. REV 6 9 &'+ #! &"(% ' &"(% %!