MOTOROLA MRF136

Order this document
by MRF136/D
SEMICONDUCTOR TECHNICAL DATA
The RF MOSFET Line
!
. . . designed for wideband large–signal amplifier and oscillator applications up
to 400 MHz range, in either single ended or push–pull configuration.
• Guaranteed 28 Volt, 150 MHz Performance
MRF136
MRF136Y
Output Power = 15 Watts
Output Power = 30 Watts
Narrowband Gain = 16 dB (Typ)
Broadband Gain = 14 dB (Typ)
Efficiency = 60% (Typical)
Efficiency = 54% (Typical)
15 W, 30 W, to 400 MHz
N–CHANNEL
MOS BROADBAND
RF POWER FETs
• Small–Signal and Large–Signal
Characterization
• 100% Tested For Load
Mismatch At All Phase
Angles With 30:1 VSWR
MRF136
D
• Space Saving Package For
Push–Pull Circuit
Applications — MRF136Y
CASE 211–07, STYLE 2
MRF136
• Excellent Thermal Stability,
Ideally Suited For Class A
Operation
G
S
• Facilitates Manual Gain
Control, ALC and
Modulation Techniques
MRF136Y
D
G
S
(FLANGE)
G
CASE 319B–02, STYLE 1
MRF136Y
D
MAXIMUM RATINGS
Rating
Symbol
Value
MRF136
MRF136Y
Unit
Drain–Source Voltage
VDSS
65
65
Vdc
Drain–Gate Voltage (RGS = 1.0 MΩ)
VDGR
65
65
Vdc
Gate–Source Voltage
± 40
VGS
Vdc
Drain Current — Continuous
ID
2.5
5.0
Adc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD
55
0.314
100
0.571
Watts
W/°C
Storage Temperature Range
Tstg
– 65 to +150
°C
TJ
200
°C
Operating Junction Temperature
THERMAL CHARACTERISTICS
Characteristic
Thermal Resistance, Junction to Case
Symbol
RθJC
Max
MRF136
MRF136Y
3.2
1.75
Unit
°C/W
Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
REV 6
RF DEVICE DATA
MOTOROLA
Motorola, Inc. 1994
MRF136 MRF136Y
1
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.)
Characteristic
Symbol
Min
Typ
Max
Unit
Drain–Source Breakdown Voltage
(VGS = 0, ID = 5.0 mA)
V(BR)DSS
65
—
—
Vdc
Zero–Gate Voltage Drain Current
(VDS = 28 V, VGS = 0)
IDSS
—
—
2.0
mAdc
Gate–Source Leakage Current
(VGS = 40 V, VDS = 0)
IGSS
—
—
1.0
µAdc
Gate Threshold Voltage
(VDS = 10 V, ID = 25 mA)
VGS(th)
1.0
3.0
6.0
Vdc
Forward Transconductance
(VDS = 10 V, ID = 250 mA)
gfs
250
400
—
mmhos
Input Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Ciss
—
24
—
pF
Output Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Coss
—
27
—
pF
Reverse Transfer Capacitance
(VDS = 28 V, VGS = 0, f = 1.0 MHz)
Crss
—
5.5
—
pF
MRF136
NF
—
1.0
—
dB
Common Source Power Gain (Figure 1)
MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA)
Gps
13
16
—
dB
Common Source Power Gain (Figure 2)
MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA)
Gps
12
14
—
dB
Drain Efficiency (Figure 1)
MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA)
η
50
60
—
%
Drain Efficiency (Figure 2)
MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA)
η
50
54
—
%
Electrical Ruggedness (Figure 1)
MRF136
(VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA,
VSWR 30:1 at all Phase Angles)
ψ
Electrical Ruggedness (Figure 2)
MRF136Y
(VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA,
VSWR 30:1 at all Phase Angles)
ψ
OFF CHARACTERISTICS (1)
ON CHARACTERISTICS (1)
DYNAMIC CHARACTERISTICS (1)
FUNCTIONAL CHARACTERISTICS (2)
Noise Figure
(VDS = 28 Vdc, ID = 500 mA, f = 150 MHz)
No Degradation in Output Power
No Degradation in Output Power
NOTES:
1. For MRF136Y, each side measured separately.
2. For MRF136Y measured in push–pull configuration.
MRF136 MRF136Y
2
MOTOROLA RF DEVICE DATA
R4
+
C8
D1
BIAS
ADJUST
R3
VDD = + 28 V
RFC1
L2
R1
C1
C11
C9
–
C7
R2
RFC2
C10
C6
L3
RF OUTPUT
L1
RF INPUT
C3
C4
C2
C5
DUT
L1 — 2 Turns, 0.29″ ID, #18 AWG, 0.10″ Long
L2 — 2 Turns, 0.23″ ID, #18 AWG, 0.10″ Long
L3 — 2–1/4 Turns, 0.29″ ID, #18 AWG, 0.125″ Long
RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel Closewound
RFC2 — Ferroxcube VK–200 — 19/4B
R1 — 27 Ω, 1 W Thin Film
R2 — 10 kΩ, 1/4 W
R3 — 10 Turns, 10 kΩ
R4 — 1.8 kΩ, 1/2 W
Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided
C1, C2 — Arco 406, 15– 115 pF or Equivalent
C3 — Arco 404, 8 – 60 pF or Equivalent
C4 — 43 pF Mini–Unelco or Equivalent
C5 — 24 pF Mini–Unelco or Equivalent
C6 — 680 pF, 100 Mils Chip
C7 — 0.01 µF Ceramic
C8 — 100 µF, 40 V
C9 — 0.1 µF Ceramic
C10, C11 — 680 pF Feedthru
D1 — 1N5925A Motorola Zener
Figure 1. 150 MHz Test Circuit (MRF136)
R6
R4
BIAS
ADJUST
D1
C11
RFC1
C2
C3
R2
R5
C6
R1
T1
C1
A
C8
VDD = + 28 V
C7
D
G
RF INPUT
RFC2
C5
T2
RF OUTPUT
S
B
G
D
DUT
R3
C9
C10
C4
C1 — 5.0 pF
C2, C3, C4, C6, C7, C9, C11 — 0.1 µF Ceramic
C5, C8 — 680 pF Feedthru
C10 — 15 pF
D1 — 1N4740 Motorola Zener
RFC1 — 17 Turns, #24 AWG Wound on R5
RFC2 — Ferroxcube VK–200–19/4B or Equivalent
R1 — 10 kΩ, 1/4 W
R2, R3 — 560 Ω, 1/2 W
R4 — 10 Turns, 10 kΩ
R5 — 56 kΩ, 1 W
R6 — 1.6 kΩ, 1/4 W
T1 — Primary Winding — 3 Turns #28 Enameled Wire.
T1 — Secondary Winding — 2 Turns #28 Enameled Wire.
T1 — Both windings wound through a Fair/Rite Balun 65 core.
T1 — Part #2865002402.
T2 — 1:1 Transformer Wound Bifilar — 2 Turns Twisted Pair
T1 — #24 Enameled Wire through a Indiana General Balun Q1
T1 — core. Part #18006–1–Q1. Primary winding center tapped.
Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided
Figure 2. 30 – 150 MHz Test Circuit (MRF136Y)
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y
3
20
16
f = 100 MHz
150 MHz
9
200 MHz
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
18
10
14
12
10
8
6
VDD = 28 V
IDQ = 25 mA
4
2
7
200 MHz
5
4
3
VDD = 13.5 V
IDQ = 25 mA
2
400
600
800
Pin, INPUT POWER (MILLWATTS)
200
0
0
1000
Figure 3. Output Power versus Input Power
200
400
600
800
Pin, INPUT POWER (MILLWATTS)
1000
Figure 4. Output Power versus Input Power
20
24
f = 400 MHz
IDQ = 25 mA
VDD = 28 V
Pout , OUTPUT POWER (WATTS)
18
Pout , OUTPUT POWER (WATTS)
150 MHz
6
1
0
0
16
f = 100 MHz
8
14
12
10
8
VDD = 13.5 V
6
4
21
Pin = 600 mW
18
15
400 mW
12
200 mW
9
6
IDQ = 25 mA
f = 100 MHz
3
2
0
0
1
2
Pin, INPUT POWER (WATTS)
3
0
12
4
Figure 5. Output Power versus Input Power
14
18
22
16
20
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 6. Output Power versus Supply Voltage
24
24
21
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
Pin = 900 mW
18
600 mW
15
12
300 mW
9
6
IDQ = 25 mA
f = 150 MHz
3
0
12
14
18
22
16
20
24
VDD, SUPPLY VOLTAGE (VOLTS)
Pin = 1 W
18
15
0.7 W
12
0.4 W
9
6
IDQ = 25 mA
f = 200 MHz
3
26
Figure 7. Output Power versus Supply Voltage
MRF136 MRF136Y
4
21
28
0
12
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
28
Figure 8. Output Power versus Supply Voltage
MOTOROLA RF DEVICE DATA
16
IDQ = 25 mA
f = 400 MHz
18
16
Pin = 3 W
14
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
20
2W
12
10
1W
8
6
4
VDD = 28 V
IDQ = 25 mA
Pin = CONSTANT
14
12
10
8
0
12
4
14
16
18
20
22
24
VDD, SUPPLY VOLTAGE (VOLTS)
26
0
–7
28
I D, DRAIN CURRENT (MILLAMPS)
2
1.8
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
1.6
1.4
1.2
1
VDS = 10 V
0.8
0.6
0.4
0.2
0
1
2
3
4
5
VDS, GATE–SOURCE VOLTAGE (VOLTS)
6
–5
7
1.04
–4
–3
–2
–1
0
1
VGS, GATE–SOURCE VOLTAGE (VOLTS)
VDS = 28 V
1.03
2
3
ID = 750 mA
1.02
500 mA
1.01
1
0.99
0.98
250 mA
0.97
0.96
25 mA
0.95
0.94
– 25
25
0
75
125
50
100
TC, CASE TEMPERATURE (°C)
150
175
Figure 12. Gate–Source Voltage versus
Case Temperature*
MRF136/MRF136Y
Figure 11. Drain Current versus Gate Voltage
(Transfer Characteristics)*
MRF136/MRF136Y
100
10
60
I D, DRAIN CURRENT (AMPS)
VGS = 0 V
f = 1 MHz
180
C, CAPACITANCE (pF)
–6
Figure 10. Output Power versus Gate Voltage
MRF136
VGS, GATE-SOURCE VOLTAGE (NORMALIZED)
Figure 9. Output Power versus Supply Voltage
MRF136
Coss
40
Ciss
20
Crss
0
400
150MHz
MHz
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
6
2
2
0
400 MHz
0
4
8
12
16
20
24
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
MRF136Y
5
MRF136
3
2
TC = 25°C
1
0.3
0.2
28
Figure 13. Capacitance versus Drain–Source Voltage*
MRF136/MRF136Y
0.1
1
2
3
5
20 30
50 70
10
VDS, DRAIN–SOURCE VOLTAGE (VOLTS)
100
Figure 14. DC Safe Operating Area
MRF136/MRF136Y
*Data shown applies to MRF136 and each half of MRF136Y.
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y
5
40
16
35
14
30
12
25
POWER GAIN (dB)
Pout , OUTPUT POWER (WATTS)
MRF136Y
TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT
(Refer to Figure 2)
f = 150 MHz
20
30 MHz
15
VDD = 28 V
IDQ = 100 mA
10
8
VDD = 28 V
IDQ = 100 mA
Pout = 30 W
6
4
5
0
10
2
0
0.5
1
1.5
Pin, INPUT POWER (WATTS)
2
0
2.5
0
Figure 15. Output Power versus Input Power
40
60
100
80
f, FREQUENCY (MHz)
140
120
160
Figure 16. Power Gain versus Frequency
30
100
80
Pout , OUTPUT POWER (WATTS)
VDD = 28 V
IDQ = 100 mA
Pout = 30 W
90
η, EFFICIENCY (%)
20
70
60
50
40
30
20
25
20
VDD = 28 V
IDQ = 100 mA
Pin = CONSTANT
f = 150 MHz
30 MHz
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
15
10
5
10
0
0
20
40
60
80
100
f, FREQUENCY (MHz)
120
140
0
–6
160
Figure 17. Drain Efficiency versus Frequency
–4
–2
0
2
VGS, GATE–SOURCE VOLTAGE (VOLTS)
4
6
Figure 18. Output Power versus Gate Voltage
40
40
35
35
Pout , OUTPUT POWER (WATTS)
Pout , OUTPUT POWER (WATTS)
TYPICAL 400 MHz PERFORMANCE
30
25
20
15
VDD = 28 V
IDQ = 100 mA
f = 400 MHz
10
5
0.5
1
1.5
2
2.5
Pin, INPUT POWER (WATTS)
3
Figure 19. Output Power versus Input Power
MRF136 MRF136Y
6
25
TYPICAL DEVICE
SHOWN, VGS(th) = 3 V
20
15
10
f = 400 MHz
5
0
0
30
VDD = 28 V
IDQ = 100 mA
Pin = CONSTANT
3.5
0
–4
–3
–1
1
–2
0
2
VGS, GATE–SOURCE VOLTAGE (VOLTS)
3
4
Figure 20. Output Power versus Gate Voltage
MOTOROLA RF DEVICE DATA
400
200
Zin{
150
400
200
ZOL*
f = 100 MHz
150
f = 100 MHz
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
f
MHz
Zin{
OHMS
100
150
200
400
7.5 – j9.73
4.11 – j7.56
2.66 – j6.39
2.39 – j2.18
VDD = 28 V, IDQ = 25 mA,
Pout = 15 W
{27 Ω Shunt Resistor Gate–to–Ground
f
MHz
ZOL*
OHMS
100
150
200
400
13.7 – j16.8
9.08 – j15.38
4.74 – j8.92
4.28 – j4.17
ZOL* = Conjugate of the
optimum load impedance into
which the device operates at
a given output power, voltage
and frequency.
Figure 22. Large–Signal Series Equivalent
Output Impedance, ZOL*
MRF136
Figure 21. Large–Signal Series Equivalent
Input Impedance, Zin†
MRF136
Zin & ZOL* are given
from drain–to–drain and
gate–to–gate respectively.
400
225
VDD = 28 V, IDQ = 100 mA,
Pout = 30 W
400
Zin
150
225
ZOL*
150
100
100
50
f = 30 MHz
50
f = 30 MHz
f
MHz
Zin{
Ohms
ZOL*
Ohms
30
50
100
150
225
400
59.3 – j24
48 – j33.5
20.5 – j34.2
4.77 – j25.4
3 – j9.5
2.34 – j3.31
40.1 – j8.52
37 – j11.9
29 – j16.5
20.6 – j19
13 – j16.7
10.2 – j14.3
Feedback loops: 560 ohms in series with 0.1 µF
Drain to gate, each side of push–pull FET
ZOL* = Conjugate of the optimum load impedance into which the device operates at a given
output power, voltage and frequency.
Figure 23. Input and Outut Impedance
MRF136Y
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y
7
MRF136
f
(MHz)
S11
2.0
|S11|
0.988
5.0
10
S21
±
φ
S12
±
φ
– 11
|S21|
41.19
173
|S12|
0.006
0.970
– 27
40.07
164
0.923
– 52
35.94
149
20
0.837
– 88
27.23
30
0.784
– 111
40
0.751
50
0.733
60
S22
±
φ
±
φ
67
|S22|
0.729
– 12
0.014
62
0.720
– 31
0.026
54
0.714
– 58
129
0.040
36
0.690
– 96
20.75
117
0.046
27
0.684
– 118
– 125
16.49
108
0.048
22
0.680
– 131
– 135
13.41
103
0.050
19
0.679
– 139
0.720
– 1 42
11.43
99
0.050
16
0.678
– 145
70
0.709
– 147
9.871
96
0.050
14
0.679
– 149
80
0.707
– 152
8.663
93
0.051
13
0.683
– 153
90
0.706
– 155
7.784
91
0.051
13
0.682
– 155
100
0.708
– 157
7.008
88
0.051
13
0.680
– 157
110
0.711
– 159
6.435
86
0.051
14
0.681
– 158
120
0.714
– 161
5.899
85
0.051
15
0.682
– 159
130
0.717
– 163
5.439
82
0.052
16
0.684
– 160
140
0.720
– 164
5.068
80
0.052
17
0.684
– 161
150
0.723
– 165
4.709
80
0.052
18
0.686
– 161
160
0.727
– 166
4.455
78
0.052
18
0.690
– 161
170
0.732
– 167
4.200
77
0.052
18
0.694
– 162
180
0.735
– 168
3.967
75
0.052
19
0.699
– 162
190
0.738
– 169
3.756
74
0.052
19
0.703
– 163
200
0.740
– 170
3.545
73
0.052
20
0.706
– 163
225
0.746
– 171
3.140
69
0.053
22
0.717
– 163
250
0.742
– 172
2.783
67
0.053
25
0.724
– 163
275
0.744
– 173
2.540
64
0.054
27
0.724
– 163
300
0.751
– 174
2.323
60
0.055
29
0.736
– 163
325
0.757
– 175
2.140
58
0.058
32
0.749
– 163
350
0.760
– 176
1.963
54
0.059
35
0.758
– 163
375
0.762
– 177
1.838
52
0.062
38
0.768
– 163
400
0.774
– 179
1.696
50
0.065
41
0.783
– 163
425
0.775
– 179
1.590
48
0.068
43
0.793
– 163
450
0.781
+ 179
1.493
46
0.071
46
0.805
– 163
475
0.787
+ 177
1.415
43
0.074
47
0.813
– 164
500
0.792
+ 176
1.332
40
0.079
48
0.825
– 164
525
0.797
+ 175
1.259
38
0.083
50
0.831
– 164
550
0.801
+ 175
1.185
37
0.088
51
0.843
– 164
575
0.810
+ 174
1.145
36
0.094
52
0.855
– 164
600
0.816
+ 173
1.091
34
0.101
52
0.869
– 165
625
0.818
+ 171
1.041
32
0.106
53
0.871
– 165
650
0.825
+ 170
0.994
30
0.112
53
0.884
– 165
675
0.834
+ 169
0.962
29
0.119
53
0.890
– 165
700
0.837
+ 168
0.922
27
0.127
53
0.906
– 166
725
0.836
+ 167
0.879
25
0.133
52
0.909
– 167
750
0.841
+ 166
0.838
25
0.140
53
0.917
– 167
775
0.844
+ 165
0.824
24
0.148
52
0.933
– 167
800
0.846
+ 163
0.785
21
0.154
50
0.941
– 168
Table 1. Common Source Scattering Parameters
VDS = 28 V, ID = 0.5 A
MRF136 MRF136Y
8
MOTOROLA RF DEVICE DATA
+90°
+j50
+120°
+j25
+60°
+j100
+j150
+j10
f = 800 MHz
+150°
+j250
f = 800 MHz
+30°
S12
600
400
+j500
10
0
25
50
100 150 250
180°
500
0.18
400
0.16
0.10
0.12
0.06
0.08
0.02
70
0°
0.04
– j500
150
– j10
0.14
S11
70
– j250
– 30°
–150°
– j150
– j100
– j25
– 60°
–120°
–90°
– j50
Figure 24. S11, Input Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 25. S12, Reverse Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
+90°
+j50
70
+120°
+60°
+j25
+j100
100
+150°
S21
180°
8
6
4
150
+j10
400
f = 800 MHz
2
+j250
+j500
0°
– 30°
–150°
– 60°
–120°
+j150
+30°
0
10
25
50
100 150
250
500
f = 800 MHz
150
400
70
– j10
– j500
– j250
S22
– j150
– j100
– j25
– 90°
– j50
Figure 26. S21, Forward Transmission Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
Figure 27. S22, Output Reflection Coefficient
versus Frequency
VDS = 28 V ID = 0.5 A
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y
9
DESIGN CONSIDERATIONS
The MRF136 and MRF136Y are RF power N–Channel
enhancement mode field–effect transistors (FETs) designed
especially for HF and VHF power amplifier applications.
Motorola RF MOS FETs feature planar design for optimum
manufacturability.
Motorola Application Note AN211A, FETs in Theory and
Practice, is suggested reading for those not familiar with the
construction and characteristics of FETs.
The major advantages of RF power FETs include high gain,
low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can
be varied over a wide range with a low power dc control signal,
thus facilitating manual gain control, ALC and modulation.
bipolar RF power devices, facilitates the incorporation of
manual gain control, AGC/ALC and modulation schemes into
system designs. A full range of power output control may
require dc gate voltage excursions into the negative region.
DC BIAS
The MRF136 and MRF136Y are enhancement mode FETs
and, therefore, do not conduct when drain voltage is applied
without gate bias. A positive gate voltage causes drain current
to flow (see Figure 11). RF power FETs require forward bias
for optimum gain and power output. A Class AB condition with
quiescent drain current (IDQ) in the 25 –100 mA range is
sufficient for many applications. For special requirements
such as linear amplification, IDQ may have to be adjusted to
optimize the critical parameters.
The MOS gate is a dc open circuit. Since the gate bias circuit
does not have to deliver any current to the FET, a simple
resistive divider arrangement may sometimes suffice for this
function. Special applications may require more elaborate
gate bias systems.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for MRF136 and MRF136Y.
See Motorola Application Note AN721, Impedance Matching
Networks Applied to RF Power Transistors. Both small signal
scattering parameters (MRF136 only) and large signal
impedance parameters are provided. Large signal impedances should be used for network designs wherever possible.
While the s parameters will not produce an exact design
solution for high power operation, they do yield a good first
approximation. This is particularly useful at frequencies
outside those presented in the large signal impedance plots.
RF power FETs are triode devices and are therefore not
unilateral. This, coupled with the very high gain, yields a
device capable of self oscillation. Stability may be achieved
using techniques such as drain loading, input shunt resistive
loading, or feedback. S parameter stability analysis can
provide useful information in the selection of loading and/or
feedback to insure stable operation. The MRF136 was
characterized with a 27 ohm input shunt loading resistor, while
the MRF136Y was characterized with a resistive feedback
loop around each of its two active devices.
For further discussion of RF amplifier stability and the use
of two port parameters in RF amplifier design, see Motorola
Application Note AN215A on page 6–204 in the RF Device
Data (DL110 Rev 1).
GAIN CONTROL
Power output of the MRF136 and MRF136Y may be
controlled from rated values down to the milliwatt region (>20
dB reduction in power output with constant input power) by
varying the dc gate voltage. This feature, not available in
LOW NOISE OPERATION
Input resistive loading will degrade noise performance, and
noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate
impedance optimized for lowest noise is recommended.
MRF136 MRF136Y
10
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
A
U
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
M
Q
M
1
DIM
A
B
C
D
E
H
J
K
M
Q
R
S
U
4
R
2
S
B
3
D
K
STYLE 2:
PIN 1.
2.
3.
4.
J
C
H
E
INCHES
MIN
MAX
0.960
0.990
0.370
0.390
0.229
0.281
0.215
0.235
0.085
0.105
0.150
0.108
0.004
0.006
0.395
0.405
40 _
50 _
0.113
0.130
0.245
0.255
0.790
0.810
0.720
0.730
MILLIMETERS
MIN
MAX
24.39
25.14
9.40
9.90
5.82
7.13
5.47
5.96
2.16
2.66
3.81
4.57
0.11
0.15
10.04
10.28
40 _
50 _
2.88
3.30
6.23
6.47
20.07
20.57
18.29
18.54
SOURCE
GATE
SOURCE
DRAIN
SEATING
PLANE
CASE 211–07
ISSUE N
MRF136
–A–
L
IDENTIFICATION
NOTCH
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
Q 2 PL
0.15 (0.006)
4
T A
M
3
1
2
D
F 4 PL
0.38 (0.015)
B
0.38 (0.015)
J
H
T A
M
M
M
T A
N
M
M
N
N
M
DIM
A
B
C
D
E
F
H
J
K
L
N
Q
–N–
K
M
INCHES
MIN
MAX
0.965
0.985
0.355
0.375
0.230
0.260
0.055
0.065
0.102
0.114
0.055
0.065
0.160
0.170
0.004
0.006
0.120
0.140
0.725 BSC
0.225
0.241
0.125
0.135
MILLIMETERS
MIN
MAX
24.51
25.02
9.02
9.52
5.84
6.60
1.40
1.65
2.59
2.90
1.40
1.65
4.06
4.31
0.10
0.15
3.05
3.55
18.42 BSC
5.72
6.12
3.18
3.42
M
C
E
–T–
SEATING
PLANE
STYLE 1:
PIN 1.
2.
3.
4.
GATE (INPUT)
GATE (INPUT)
DRAIN (OUTPUT)
DRAIN (OUTPUT)
SOURCE IS FLANGE
CASE 319B–02
ISSUE C
MRF136Y
MOTOROLA RF DEVICE DATA
MRF136 MRF136Y
11
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,
and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such
unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.
Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England.
JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan.
ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong.
MRF136 MRF136Y
12
◊
*MRF136/D*
MRF136/D
MOTOROLA RF DEVICE
DATA