Order this document by MRF136/D SEMICONDUCTOR TECHNICAL DATA The RF MOSFET Line ! . . . designed for wideband large–signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push–pull configuration. • Guaranteed 28 Volt, 150 MHz Performance MRF136 MRF136Y Output Power = 15 Watts Output Power = 30 Watts Narrowband Gain = 16 dB (Typ) Broadband Gain = 14 dB (Typ) Efficiency = 60% (Typical) Efficiency = 54% (Typical) 15 W, 30 W, to 400 MHz N–CHANNEL MOS BROADBAND RF POWER FETs • Small–Signal and Large–Signal Characterization • 100% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR MRF136 D • Space Saving Package For Push–Pull Circuit Applications — MRF136Y CASE 211–07, STYLE 2 MRF136 • Excellent Thermal Stability, Ideally Suited For Class A Operation G S • Facilitates Manual Gain Control, ALC and Modulation Techniques MRF136Y D G S (FLANGE) G CASE 319B–02, STYLE 1 MRF136Y D MAXIMUM RATINGS Rating Symbol Value MRF136 MRF136Y Unit Drain–Source Voltage VDSS 65 65 Vdc Drain–Gate Voltage (RGS = 1.0 MΩ) VDGR 65 65 Vdc Gate–Source Voltage ± 40 VGS Vdc Drain Current — Continuous ID 2.5 5.0 Adc Total Device Dissipation @ TC = 25°C Derate above 25°C PD 55 0.314 100 0.571 Watts W/°C Storage Temperature Range Tstg – 65 to +150 °C TJ 200 °C Operating Junction Temperature THERMAL CHARACTERISTICS Characteristic Thermal Resistance, Junction to Case Symbol RθJC Max MRF136 MRF136Y 3.2 1.75 Unit °C/W Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed. REV 6 RF DEVICE DATA MOTOROLA Motorola, Inc. 1994 MRF136 MRF136Y 1 ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted.) Characteristic Symbol Min Typ Max Unit Drain–Source Breakdown Voltage (VGS = 0, ID = 5.0 mA) V(BR)DSS 65 — — Vdc Zero–Gate Voltage Drain Current (VDS = 28 V, VGS = 0) IDSS — — 2.0 mAdc Gate–Source Leakage Current (VGS = 40 V, VDS = 0) IGSS — — 1.0 µAdc Gate Threshold Voltage (VDS = 10 V, ID = 25 mA) VGS(th) 1.0 3.0 6.0 Vdc Forward Transconductance (VDS = 10 V, ID = 250 mA) gfs 250 400 — mmhos Input Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Ciss — 24 — pF Output Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Coss — 27 — pF Reverse Transfer Capacitance (VDS = 28 V, VGS = 0, f = 1.0 MHz) Crss — 5.5 — pF MRF136 NF — 1.0 — dB Common Source Power Gain (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) Gps 13 16 — dB Common Source Power Gain (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) Gps 12 14 — dB Drain Efficiency (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA) η 50 60 — % Drain Efficiency (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA) η 50 54 — % Electrical Ruggedness (Figure 1) MRF136 (VDD = 28 Vdc, Pout = 15 W, f = 150 MHz, IDQ = 25 mA, VSWR 30:1 at all Phase Angles) ψ Electrical Ruggedness (Figure 2) MRF136Y (VDD = 28 Vdc, Pout = 30 W, f = 150 MHz, IDQ = 100 mA, VSWR 30:1 at all Phase Angles) ψ OFF CHARACTERISTICS (1) ON CHARACTERISTICS (1) DYNAMIC CHARACTERISTICS (1) FUNCTIONAL CHARACTERISTICS (2) Noise Figure (VDS = 28 Vdc, ID = 500 mA, f = 150 MHz) No Degradation in Output Power No Degradation in Output Power NOTES: 1. For MRF136Y, each side measured separately. 2. For MRF136Y measured in push–pull configuration. MRF136 MRF136Y 2 MOTOROLA RF DEVICE DATA R4 + C8 D1 BIAS ADJUST R3 VDD = + 28 V RFC1 L2 R1 C1 C11 C9 – C7 R2 RFC2 C10 C6 L3 RF OUTPUT L1 RF INPUT C3 C4 C2 C5 DUT L1 — 2 Turns, 0.29″ ID, #18 AWG, 0.10″ Long L2 — 2 Turns, 0.23″ ID, #18 AWG, 0.10″ Long L3 — 2–1/4 Turns, 0.29″ ID, #18 AWG, 0.125″ Long RFC1 — 20 Turns, 0.30″ ID, #20 AWG Enamel Closewound RFC2 — Ferroxcube VK–200 — 19/4B R1 — 27 Ω, 1 W Thin Film R2 — 10 kΩ, 1/4 W R3 — 10 Turns, 10 kΩ R4 — 1.8 kΩ, 1/2 W Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided C1, C2 — Arco 406, 15– 115 pF or Equivalent C3 — Arco 404, 8 – 60 pF or Equivalent C4 — 43 pF Mini–Unelco or Equivalent C5 — 24 pF Mini–Unelco or Equivalent C6 — 680 pF, 100 Mils Chip C7 — 0.01 µF Ceramic C8 — 100 µF, 40 V C9 — 0.1 µF Ceramic C10, C11 — 680 pF Feedthru D1 — 1N5925A Motorola Zener Figure 1. 150 MHz Test Circuit (MRF136) R6 R4 BIAS ADJUST D1 C11 RFC1 C2 C3 R2 R5 C6 R1 T1 C1 A C8 VDD = + 28 V C7 D G RF INPUT RFC2 C5 T2 RF OUTPUT S B G D DUT R3 C9 C10 C4 C1 — 5.0 pF C2, C3, C4, C6, C7, C9, C11 — 0.1 µF Ceramic C5, C8 — 680 pF Feedthru C10 — 15 pF D1 — 1N4740 Motorola Zener RFC1 — 17 Turns, #24 AWG Wound on R5 RFC2 — Ferroxcube VK–200–19/4B or Equivalent R1 — 10 kΩ, 1/4 W R2, R3 — 560 Ω, 1/2 W R4 — 10 Turns, 10 kΩ R5 — 56 kΩ, 1 W R6 — 1.6 kΩ, 1/4 W T1 — Primary Winding — 3 Turns #28 Enameled Wire. T1 — Secondary Winding — 2 Turns #28 Enameled Wire. T1 — Both windings wound through a Fair/Rite Balun 65 core. T1 — Part #2865002402. T2 — 1:1 Transformer Wound Bifilar — 2 Turns Twisted Pair T1 — #24 Enameled Wire through a Indiana General Balun Q1 T1 — core. Part #18006–1–Q1. Primary winding center tapped. Board Material — 0.062″ G10, 1 oz. Cu Clad, Double Sided Figure 2. 30 – 150 MHz Test Circuit (MRF136Y) MOTOROLA RF DEVICE DATA MRF136 MRF136Y 3 20 16 f = 100 MHz 150 MHz 9 200 MHz Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 18 10 14 12 10 8 6 VDD = 28 V IDQ = 25 mA 4 2 7 200 MHz 5 4 3 VDD = 13.5 V IDQ = 25 mA 2 400 600 800 Pin, INPUT POWER (MILLWATTS) 200 0 0 1000 Figure 3. Output Power versus Input Power 200 400 600 800 Pin, INPUT POWER (MILLWATTS) 1000 Figure 4. Output Power versus Input Power 20 24 f = 400 MHz IDQ = 25 mA VDD = 28 V Pout , OUTPUT POWER (WATTS) 18 Pout , OUTPUT POWER (WATTS) 150 MHz 6 1 0 0 16 f = 100 MHz 8 14 12 10 8 VDD = 13.5 V 6 4 21 Pin = 600 mW 18 15 400 mW 12 200 mW 9 6 IDQ = 25 mA f = 100 MHz 3 2 0 0 1 2 Pin, INPUT POWER (WATTS) 3 0 12 4 Figure 5. Output Power versus Input Power 14 18 22 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 6. Output Power versus Supply Voltage 24 24 21 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) Pin = 900 mW 18 600 mW 15 12 300 mW 9 6 IDQ = 25 mA f = 150 MHz 3 0 12 14 18 22 16 20 24 VDD, SUPPLY VOLTAGE (VOLTS) Pin = 1 W 18 15 0.7 W 12 0.4 W 9 6 IDQ = 25 mA f = 200 MHz 3 26 Figure 7. Output Power versus Supply Voltage MRF136 MRF136Y 4 21 28 0 12 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 28 Figure 8. Output Power versus Supply Voltage MOTOROLA RF DEVICE DATA 16 IDQ = 25 mA f = 400 MHz 18 16 Pin = 3 W 14 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) 20 2W 12 10 1W 8 6 4 VDD = 28 V IDQ = 25 mA Pin = CONSTANT 14 12 10 8 0 12 4 14 16 18 20 22 24 VDD, SUPPLY VOLTAGE (VOLTS) 26 0 –7 28 I D, DRAIN CURRENT (MILLAMPS) 2 1.8 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 1.6 1.4 1.2 1 VDS = 10 V 0.8 0.6 0.4 0.2 0 1 2 3 4 5 VDS, GATE–SOURCE VOLTAGE (VOLTS) 6 –5 7 1.04 –4 –3 –2 –1 0 1 VGS, GATE–SOURCE VOLTAGE (VOLTS) VDS = 28 V 1.03 2 3 ID = 750 mA 1.02 500 mA 1.01 1 0.99 0.98 250 mA 0.97 0.96 25 mA 0.95 0.94 – 25 25 0 75 125 50 100 TC, CASE TEMPERATURE (°C) 150 175 Figure 12. Gate–Source Voltage versus Case Temperature* MRF136/MRF136Y Figure 11. Drain Current versus Gate Voltage (Transfer Characteristics)* MRF136/MRF136Y 100 10 60 I D, DRAIN CURRENT (AMPS) VGS = 0 V f = 1 MHz 180 C, CAPACITANCE (pF) –6 Figure 10. Output Power versus Gate Voltage MRF136 VGS, GATE-SOURCE VOLTAGE (NORMALIZED) Figure 9. Output Power versus Supply Voltage MRF136 Coss 40 Ciss 20 Crss 0 400 150MHz MHz TYPICAL DEVICE SHOWN, VGS(th) = 3 V 6 2 2 0 400 MHz 0 4 8 12 16 20 24 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) MRF136Y 5 MRF136 3 2 TC = 25°C 1 0.3 0.2 28 Figure 13. Capacitance versus Drain–Source Voltage* MRF136/MRF136Y 0.1 1 2 3 5 20 30 50 70 10 VDS, DRAIN–SOURCE VOLTAGE (VOLTS) 100 Figure 14. DC Safe Operating Area MRF136/MRF136Y *Data shown applies to MRF136 and each half of MRF136Y. MOTOROLA RF DEVICE DATA MRF136 MRF136Y 5 40 16 35 14 30 12 25 POWER GAIN (dB) Pout , OUTPUT POWER (WATTS) MRF136Y TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT (Refer to Figure 2) f = 150 MHz 20 30 MHz 15 VDD = 28 V IDQ = 100 mA 10 8 VDD = 28 V IDQ = 100 mA Pout = 30 W 6 4 5 0 10 2 0 0.5 1 1.5 Pin, INPUT POWER (WATTS) 2 0 2.5 0 Figure 15. Output Power versus Input Power 40 60 100 80 f, FREQUENCY (MHz) 140 120 160 Figure 16. Power Gain versus Frequency 30 100 80 Pout , OUTPUT POWER (WATTS) VDD = 28 V IDQ = 100 mA Pout = 30 W 90 η, EFFICIENCY (%) 20 70 60 50 40 30 20 25 20 VDD = 28 V IDQ = 100 mA Pin = CONSTANT f = 150 MHz 30 MHz TYPICAL DEVICE SHOWN, VGS(th) = 3 V 15 10 5 10 0 0 20 40 60 80 100 f, FREQUENCY (MHz) 120 140 0 –6 160 Figure 17. Drain Efficiency versus Frequency –4 –2 0 2 VGS, GATE–SOURCE VOLTAGE (VOLTS) 4 6 Figure 18. Output Power versus Gate Voltage 40 40 35 35 Pout , OUTPUT POWER (WATTS) Pout , OUTPUT POWER (WATTS) TYPICAL 400 MHz PERFORMANCE 30 25 20 15 VDD = 28 V IDQ = 100 mA f = 400 MHz 10 5 0.5 1 1.5 2 2.5 Pin, INPUT POWER (WATTS) 3 Figure 19. Output Power versus Input Power MRF136 MRF136Y 6 25 TYPICAL DEVICE SHOWN, VGS(th) = 3 V 20 15 10 f = 400 MHz 5 0 0 30 VDD = 28 V IDQ = 100 mA Pin = CONSTANT 3.5 0 –4 –3 –1 1 –2 0 2 VGS, GATE–SOURCE VOLTAGE (VOLTS) 3 4 Figure 20. Output Power versus Gate Voltage MOTOROLA RF DEVICE DATA 400 200 Zin{ 150 400 200 ZOL* f = 100 MHz 150 f = 100 MHz VDD = 28 V, IDQ = 25 mA, Pout = 15 W f MHz Zin{ OHMS 100 150 200 400 7.5 – j9.73 4.11 – j7.56 2.66 – j6.39 2.39 – j2.18 VDD = 28 V, IDQ = 25 mA, Pout = 15 W {27 Ω Shunt Resistor Gate–to–Ground f MHz ZOL* OHMS 100 150 200 400 13.7 – j16.8 9.08 – j15.38 4.74 – j8.92 4.28 – j4.17 ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency. Figure 22. Large–Signal Series Equivalent Output Impedance, ZOL* MRF136 Figure 21. Large–Signal Series Equivalent Input Impedance, Zin† MRF136 Zin & ZOL* are given from drain–to–drain and gate–to–gate respectively. 400 225 VDD = 28 V, IDQ = 100 mA, Pout = 30 W 400 Zin 150 225 ZOL* 150 100 100 50 f = 30 MHz 50 f = 30 MHz f MHz Zin{ Ohms ZOL* Ohms 30 50 100 150 225 400 59.3 – j24 48 – j33.5 20.5 – j34.2 4.77 – j25.4 3 – j9.5 2.34 – j3.31 40.1 – j8.52 37 – j11.9 29 – j16.5 20.6 – j19 13 – j16.7 10.2 – j14.3 Feedback loops: 560 ohms in series with 0.1 µF Drain to gate, each side of push–pull FET ZOL* = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency. Figure 23. Input and Outut Impedance MRF136Y MOTOROLA RF DEVICE DATA MRF136 MRF136Y 7 MRF136 f (MHz) S11 2.0 |S11| 0.988 5.0 10 S21 ± φ S12 ± φ – 11 |S21| 41.19 173 |S12| 0.006 0.970 – 27 40.07 164 0.923 – 52 35.94 149 20 0.837 – 88 27.23 30 0.784 – 111 40 0.751 50 0.733 60 S22 ± φ ± φ 67 |S22| 0.729 – 12 0.014 62 0.720 – 31 0.026 54 0.714 – 58 129 0.040 36 0.690 – 96 20.75 117 0.046 27 0.684 – 118 – 125 16.49 108 0.048 22 0.680 – 131 – 135 13.41 103 0.050 19 0.679 – 139 0.720 – 1 42 11.43 99 0.050 16 0.678 – 145 70 0.709 – 147 9.871 96 0.050 14 0.679 – 149 80 0.707 – 152 8.663 93 0.051 13 0.683 – 153 90 0.706 – 155 7.784 91 0.051 13 0.682 – 155 100 0.708 – 157 7.008 88 0.051 13 0.680 – 157 110 0.711 – 159 6.435 86 0.051 14 0.681 – 158 120 0.714 – 161 5.899 85 0.051 15 0.682 – 159 130 0.717 – 163 5.439 82 0.052 16 0.684 – 160 140 0.720 – 164 5.068 80 0.052 17 0.684 – 161 150 0.723 – 165 4.709 80 0.052 18 0.686 – 161 160 0.727 – 166 4.455 78 0.052 18 0.690 – 161 170 0.732 – 167 4.200 77 0.052 18 0.694 – 162 180 0.735 – 168 3.967 75 0.052 19 0.699 – 162 190 0.738 – 169 3.756 74 0.052 19 0.703 – 163 200 0.740 – 170 3.545 73 0.052 20 0.706 – 163 225 0.746 – 171 3.140 69 0.053 22 0.717 – 163 250 0.742 – 172 2.783 67 0.053 25 0.724 – 163 275 0.744 – 173 2.540 64 0.054 27 0.724 – 163 300 0.751 – 174 2.323 60 0.055 29 0.736 – 163 325 0.757 – 175 2.140 58 0.058 32 0.749 – 163 350 0.760 – 176 1.963 54 0.059 35 0.758 – 163 375 0.762 – 177 1.838 52 0.062 38 0.768 – 163 400 0.774 – 179 1.696 50 0.065 41 0.783 – 163 425 0.775 – 179 1.590 48 0.068 43 0.793 – 163 450 0.781 + 179 1.493 46 0.071 46 0.805 – 163 475 0.787 + 177 1.415 43 0.074 47 0.813 – 164 500 0.792 + 176 1.332 40 0.079 48 0.825 – 164 525 0.797 + 175 1.259 38 0.083 50 0.831 – 164 550 0.801 + 175 1.185 37 0.088 51 0.843 – 164 575 0.810 + 174 1.145 36 0.094 52 0.855 – 164 600 0.816 + 173 1.091 34 0.101 52 0.869 – 165 625 0.818 + 171 1.041 32 0.106 53 0.871 – 165 650 0.825 + 170 0.994 30 0.112 53 0.884 – 165 675 0.834 + 169 0.962 29 0.119 53 0.890 – 165 700 0.837 + 168 0.922 27 0.127 53 0.906 – 166 725 0.836 + 167 0.879 25 0.133 52 0.909 – 167 750 0.841 + 166 0.838 25 0.140 53 0.917 – 167 775 0.844 + 165 0.824 24 0.148 52 0.933 – 167 800 0.846 + 163 0.785 21 0.154 50 0.941 – 168 Table 1. Common Source Scattering Parameters VDS = 28 V, ID = 0.5 A MRF136 MRF136Y 8 MOTOROLA RF DEVICE DATA +90° +j50 +120° +j25 +60° +j100 +j150 +j10 f = 800 MHz +150° +j250 f = 800 MHz +30° S12 600 400 +j500 10 0 25 50 100 150 250 180° 500 0.18 400 0.16 0.10 0.12 0.06 0.08 0.02 70 0° 0.04 – j500 150 – j10 0.14 S11 70 – j250 – 30° –150° – j150 – j100 – j25 – 60° –120° –90° – j50 Figure 24. S11, Input Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A Figure 25. S12, Reverse Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A +90° +j50 70 +120° +60° +j25 +j100 100 +150° S21 180° 8 6 4 150 +j10 400 f = 800 MHz 2 +j250 +j500 0° – 30° –150° – 60° –120° +j150 +30° 0 10 25 50 100 150 250 500 f = 800 MHz 150 400 70 – j10 – j500 – j250 S22 – j150 – j100 – j25 – 90° – j50 Figure 26. S21, Forward Transmission Coefficient versus Frequency VDS = 28 V ID = 0.5 A Figure 27. S22, Output Reflection Coefficient versus Frequency VDS = 28 V ID = 0.5 A MOTOROLA RF DEVICE DATA MRF136 MRF136Y 9 DESIGN CONSIDERATIONS The MRF136 and MRF136Y are RF power N–Channel enhancement mode field–effect transistors (FETs) designed especially for HF and VHF power amplifier applications. Motorola RF MOS FETs feature planar design for optimum manufacturability. Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs. The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation. bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region. DC BIAS The MRF136 and MRF136Y are enhancement mode FETs and, therefore, do not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 11). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the 25 –100 mA range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters. The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems. AMPLIFIER DESIGN Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136 and MRF136Y. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters (MRF136 only) and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots. RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor, while the MRF136Y was characterized with a resistive feedback loop around each of its two active devices. For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see Motorola Application Note AN215A on page 6–204 in the RF Device Data (DL110 Rev 1). GAIN CONTROL Power output of the MRF136 and MRF136Y may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate voltage. This feature, not available in LOW NOISE OPERATION Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended. MRF136 MRF136Y 10 MOTOROLA RF DEVICE DATA PACKAGE DIMENSIONS A U NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. M Q M 1 DIM A B C D E H J K M Q R S U 4 R 2 S B 3 D K STYLE 2: PIN 1. 2. 3. 4. J C H E INCHES MIN MAX 0.960 0.990 0.370 0.390 0.229 0.281 0.215 0.235 0.085 0.105 0.150 0.108 0.004 0.006 0.395 0.405 40 _ 50 _ 0.113 0.130 0.245 0.255 0.790 0.810 0.720 0.730 MILLIMETERS MIN MAX 24.39 25.14 9.40 9.90 5.82 7.13 5.47 5.96 2.16 2.66 3.81 4.57 0.11 0.15 10.04 10.28 40 _ 50 _ 2.88 3.30 6.23 6.47 20.07 20.57 18.29 18.54 SOURCE GATE SOURCE DRAIN SEATING PLANE CASE 211–07 ISSUE N MRF136 –A– L IDENTIFICATION NOTCH NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. Q 2 PL 0.15 (0.006) 4 T A M 3 1 2 D F 4 PL 0.38 (0.015) B 0.38 (0.015) J H T A M M M T A N M M N N M DIM A B C D E F H J K L N Q –N– K M INCHES MIN MAX 0.965 0.985 0.355 0.375 0.230 0.260 0.055 0.065 0.102 0.114 0.055 0.065 0.160 0.170 0.004 0.006 0.120 0.140 0.725 BSC 0.225 0.241 0.125 0.135 MILLIMETERS MIN MAX 24.51 25.02 9.02 9.52 5.84 6.60 1.40 1.65 2.59 2.90 1.40 1.65 4.06 4.31 0.10 0.15 3.05 3.55 18.42 BSC 5.72 6.12 3.18 3.42 M C E –T– SEATING PLANE STYLE 1: PIN 1. 2. 3. 4. GATE (INPUT) GATE (INPUT) DRAIN (OUTPUT) DRAIN (OUTPUT) SOURCE IS FLANGE CASE 319B–02 ISSUE C MRF136Y MOTOROLA RF DEVICE DATA MRF136 MRF136Y 11 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. Literature Distribution Centers: USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. EUROPE: Motorola Ltd.; European Literature Centre; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England. JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141, Japan. ASIA PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong. MRF136 MRF136Y 12 ◊ *MRF136/D* MRF136/D MOTOROLA RF DEVICE DATA