ONSEMI MC33502

Order this document by MC33502/D

The MC33502 operational amplifier provides rail–to–rail operation on both
the input and output. The output can swing within 50 mV of each rail. This
rail–to–rail operation enables the user to make full use of the entire supply
voltage range available. It is designed to work at very low supply voltages
(1.0 V and ground), yet can operate with a supply of up to 7.0 V and ground.
Output current boosting techniques provide high output current capability
while keeping the drain current of the amplifier to a minimum.
• Low Voltage, Single Supply Operation (1.0 V and Ground to
7.0 V and Ground)
• High Input Impedance: Typically 40 fA Input Current
•
•
•
•
•
•
•
•
•
•
LOW VOLTAGE
RAIL–TO–RAIL DUAL
OPERATIONAL AMPLIFIER
SEMICONDUCTOR
TECHNICAL DATA
Typical Unity Gain Bandwidth @ 5.0 V = 5.0 MHz, @ 1.0 V = 4.0 MHz
High Output Current (ISC = 50 mA @ 5.0 V, 10 mA @ 1.0 V)
Output Voltage Swings within 50 mV of Both Rails @ 1.0 V
Input Voltage Range Includes Both Supply Rails
8
High Voltage Gain: 100 dB Typical @ 1.0 V
1
P SUFFIX
PLASTIC PACKAGE
CASE 626
No Phase Reversal on the Output for Over–Driven Input Signals
Input Offset Trimmed to 0.5 mV Typical
Low Supply Current (ID = 1.2 mA/per Amplifier, Typical)
600 Ω Drive Capability
Extended Operating Temperature Range (–40 to 105°C)
8
APPLICATIONS
•
•
•
•
•
•
•
•
•
1
Single Cell NiCd/Ni MH Powered Systems
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
Interface to DSP
Portable Communication Devices
Low Voltage Active Filters
Telephone Circuits
Instrumentation Amplifiers
Audio Applications
PIN CONNECTIONS
Power Supply Monitor and Control
Compatible with VCX Logic
8 VCC
Output 1 1
Simplified Block Diagram
7 Output 2
2
Inputs 1
3
Base
Current
Boost
1
2
VEE 4
6
5
Inputs 2
(Dual, Top View)
Inputs
Input
Stage
Offset
Voltage
Trim
Buffer with 0 V
Level Shift
Saturation
Detector
Output
Stage
Outputs
ORDERING INFORMATION
Base
Current
Boost
Device
MC33502P
This device contains 98 active transistors per amplifier.
This document contains information on a new product. Specifications and information herein
are subject to change without notice.
MOTOROLA ANALOG IC DEVICE DATA
MC33502D
Operating
Temperature Range
TA = – 40° to +105°C
 Motorola, Inc. 1998
Package
Plastic DIP
SO–8
Rev 0
1
MC33502
MAXIMUM RATINGS
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁ
Rating
Symbol
Value
Unit
VS
7.0
V
VESD
2000
V
Voltage at Any Device Pin
VDP
VS ±0.3
V
Input Differential Voltage Range
VIDR
VCC to VEE
V
Common Mode Input Voltage Range
Supply Voltage (VCC to VEE)
ESD Protection Voltage at any Pin
H man Body
Bod Model
Human
VCM
VCC to VEE
V
Output Short Circuit Duration
tS
(Note 1)
s
Maximum Junction Temperature
TJ
150
°C
Storage Temperature Range
Tstg
–65 to 150
°C
Maximum Power Dissipation
PD
(Note 1)
mW
NOTES: 1. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not
exceeded.
2. ESD data available upon request.
DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless
otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Characteristic
Input Offset Voltage (VCM = 0 to VCC)
VCC = 1.0 V
TA = 25°C
TA = –40° to 105°C
VCC = 3.0 V
TA = 25°C
TA = –40° to 105°C
VCC = 5.0 V
TA = 25°C
TA = –40° to 105°C
Symbol
Min
Typ
Max
VIO
Unit
mV
–5.0
–7.0
0.5
–
5.0
7.0
–5.0
–7.0
0.5
–
5.0
7.0
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
–5.0
–7.0
0.5
–
5.0
7.0
∆VIO/∆T
–
8.0
–
µV/°C
Input Bias Current (VCC = 1.0 to 5.0 V)
I IIB I
–
40
–
fA
Common Mode Input Voltage Range
VICR
VEE
–
VCC
V
Large Signal Voltage Gain
VCC = 1.0 V (TA = 25°C)
RL = 10 kΩ
RL = 1.0 kΩ
VCC = 3.0 V (TA = 25°C)
RL = 10 kΩ
RL = 1.0 kΩ
VCC = 5.0 V (TA = 25°C)
RL = 10 kΩ
RL = 1.0 kΩ
AVOL
Input Offset Voltage Temperature Coefficient (RS = 50 Ω)
TA = –40° to 105°C
2
kV/V
25
5.0
100
50
–
–
50
25
500
100
–
–
50
25
500
200
–
–
MOTOROLA ANALOG IC DEVICE DATA
MC33502
DC ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless
otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Characteristic
Symbol
Output Voltage Swing, High (VID = ±0.2 V)
VCC = 1.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 1.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 3.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 3.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 5.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 5.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VOH
Output Voltage Swing, Low (VID = ±0.2 V)
VCC = 1.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 1.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 3.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 3.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 5.0 V (TA = 25°C)
RL = 10 kΩ
RL = 600 Ω
VCC = 5.0 V (TA = –40° to 105°C)
RL = 10 kΩ
RL = 600 Ω
VOL
Min
Typ
Max
Unit
V
0.9
0.85
0.95
0.88
–
–
0.85
0.8
–
–
–
–
2.9
2.8
2.93
2.84
–
–
2.85
2.75
–
–
–
–
4.9
4.75
4.92
4.81
–
–
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
4.85
4.7
–
–
–
–
V
0.05
0.1
0.02
0.05
–
–
0.1
0.15
–
–
–
–
0.05
0.1
0.02
0.08
–
–
0.1
0.15
–
–
–
–
0.05
0.15
0.02
0.1
–
–
0.1
0.2
–
–
–
–
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Common Mode Rejection (Vin = 0 to 5.0 V)
CMR
60
75
–
dB
VOL
60
75
–
µV/V
Output Short Circuit Current (Vin Diff = ±1.0 V)
VCC = 1.0 V
Source
Sink
VCC = 3.0 V
Source
Sink
VCC = 5.0 V
Source
Sink
ISC
Power Supply Current (Per Amplifier, VO = 0 V)
VCC = 1.0 V
VCC = 3.0 V
VCC = 5.0 V
VCC = 1.0 V (TA = –40 to 105°C)
VCC = 3.0 V (TA = –40 to 105°C)
VCC = 5.0 V (TA = –40 to 105°C)
ID
mA
6.0
10
13
13
26
26
15
40
32
64
60
140
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
MOTOROLA ANALOG IC DEVICE DATA
20
40
40
70
140
140
–
–
–
–
–
–
1.2
1.5
1.65
–
–
–
1.75
2.0
2.25
2.0
2.25
2.5
mA
3
MC33502
AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, TA = 25°C, unless otherwise noted.)
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁ
Characteristic
Symbol
Min
Typ
Max
2.0
2.0
3.0
3.0
6.0
6.0
3.0
3.5
4.0
4.0
4.5
5.0
6.0
7.0
8.0
Unit
Slew Rate (VS = ±2.5 V, VO = –2.0 to 2.0 V, RL = 2.0 kΩ, AV = 1.0)
Positive Slope
Negative Slope
SR
Unity Gain Bandwidth
VCC = 1.0 V
VCC = 3.0 V
VCC = 5.0 V
BW
Gain Margin (RL =10 kΩ, CL = 0 pF)
Am
–
6.5
–
dB
Phase Margin (RL = 10 kΩ, CL = 0 pF)
φm
–
60
–
Deg
Channel Separation (f = 1.0 Hz to 20 kHz, RL = 600 Ω)
CS
–
120
–
dB
Power Bandwidth (VO = 4.0 Vpp, RL = 1.0 kΩ, THD ≤1.0%)
BWP
–
200
–
kHz
Total Harmonic Distortion (VO = 4.5 Vpp, RL = 600 Ω, AV = 1.0)
f = 1.0 kHz
f = 10 kHz
THD
–
–
0.004
0.01
–
–
Differential Input Resistance (VCM = 0 V)
Rin
–
>1.0
–
Differential Input Capacitance (VCM = 0 V)
Cin
–
2.0
–
Equivalent Input Noise Voltage (VCC = 1.0 V, VCM = 0 V, VEE = Gnd,
RS = 100 Ω)
f = 1.0 kHz
f = 10 kHz
en
V/µs
MHz
%
terraΩ
pF
nV/√Hz
–
–
30
60
–
–
Figure 1. Representative Block Diagram
VCC
IN–
IN+
Offset
Voltage
Trim
VCC
VCC
Out
VCC
Output
Voltage
Saturation
Detector
Clamp
Body
Bias
4
MOTOROLA ANALOG IC DEVICE DATA
MC33502
GENERAL INFORMATION
The MC33502 dual operational amplifier is unique in its
ability to provide 1.0 V rail–to–rail performance on both the
input and output by using a SMARTMOS process. The
amplifier output swings within 50 mV of both rails and is able
to provide 50 mA of output drive current with a 5.0 V supply,
and 10 mA with a 1.0 V supply. A 5.0 MHz bandwidth and a
slew rate of 3.0 V/µs is achieved with high speed depletion
mode NMOS (DNMOS) and vertical PNP transistors. This
device is characterized over a temperature range of –40°C
to 105°C.
CIRCUIT INFORMATION
Input Stage
One volt rail–to–rail performance is achieved in the
MC33502 at the input by using a single pair of depletion
mode NMOS devices (DNMOS) to form a differential
amplifier with a very low input current of 40 fA. The normal
input common mode range of a DNMOS device, with an ion
implanted negative threshold, includes ground and relies on
the body effect to dynamically shift the threshold to a positive
value as the gates are moved from ground towards the
positive supply. Because the device is manufactured in a
p–well process, the body effect coefficient is sufficiently large
to ensure that the input stage will remain substantually
saturated when the inputs are at the positive rail. This also
applies at very low supply voltages. The 1.0 V rail–to–rail
input stage consists of a DNMOS differential amplifier, a
folded cascode, and a low voltage balanced mirror. The low
voltage cascoded balanced mirror provides high 1st stage
gain and base current cancellation without sacrificing signal
integrity. Also, the input offset voltage is trimmed to less than
1.0 mV because of the limited available supply voltage. The
body voltage of the input DNMOS differential pair is internally
trimmed to minimize the input offset voltage. A common
mode feedback path is also employed to enable the offset
voltage to track over the input common mode voltage. The
total operational amplifier quiescent current drop is
1.3 mA/amp.
MOTOROLA ANALOG IC DEVICE DATA
Output Stage
An additional feature of this device is an “on demand” base
current cancellation amplifier. This feature provides base
drive to the output power devices by making use of a buffer
amplifier to perform a voltage–to–current conversion. This is
done in direct proportion to the load conditions. This “on
demand” feature allows these amplifiers to consume only a
few micro–amps of current when the output stage is in its
quiescent mode. Yet it provides high output current when
required by the load. The rail–to–rail output stage current
boost circuit provides 50 mA of output current with a 5.0 V
supply (For a 1.0 V supply output stage will do 10 mA)
enabling the operational amplifier to drive a 600 Ω load. A
buffer is necessary to isolate the load current effects in the
output stage from the input stage. Because of the low voltage
conditions, a DNMOS follower is used to provide an
essentially zero voltage level shift. This buffer isolates any
load current changes on the output stage from loading the
input stage. A high speed vertical PNP transistor provides
excellent frequency performance while sourcing current. The
operational amplifier is also internally compensated to
provide a phase margin of 60 degrees. It has a unity gain of
5.0 MHz with a 5.0 V supply and 4.0 MHz with a 1.0 V supply.
LOW VOLTAGE OPERATION
The MC33502 will operate at supply voltages from 0.9 to
7.0 V and ground. When using the MC33502 at supply
voltages of less than 1.2 V, input offset voltage may
increase slightly as the input signal swings within
approximately 50 mV of the positive supply rail. This effect
occurs only for supply voltages below 1.2 V, due to the input
depletion mode MOSFETs starting to transition between the
saturated to linear region, and should be considered when
designing high side dc sensing applications operating at the
positive supply rail. Since the device is rail–to–rail on both
input and output, high dynamic range single battery cell
applications are now possible.
5
MC33502
Figure 3. Drive Output Source/Sink Saturation
Voltage versus Load Current
0
200
Vsat , OUTPUT SATURATION VOLTAGE (V)
VCC
400
600
600
VCC = 5.0 V
VEE = 0 V
RL to VCC/2
400
200
0
100
1.0 k
10 k
VEE
100 k
1.0 M
0
TA = –55°C
Source
Saturation
–1.0
0.5
10 M
TA = 25°C
Figure 4. Input Current versus Temperature
4.0
8.0
VEE
12
16
20
24
Figure 5. Gain and Phase versus Frequency
100
0
100
Gain
80
Phase
10
A VOL, GAIN (dB)
I IB , INPUT CURRENT (pA)
TA = –55°C
VCC – VEE = 5.0 V
0
TA = 125°C
IO, OUTPUT CURRENT (mA)
1000
1.0
0.1
0.01
50
75
100
Phase Margin = 60°
90
40
135
20
25
45
60
0.001
0
1.0
125
VCC = 2.5 V
VEE = –2.5 V
RL = 10 k
10
180
100
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
Figure 6. Transient Response
Figure 7. Slew Rate
20 mV/DIV
VCC = 0.5 V
VEE = –0.5 V
ACL = 1.0
CL = 10 pF
RL = 10 k
TA = 25°C
1.0 V/DIV (mV)
TA, AMBIENT TEMPERATURE (°C)
t, TIME (500 µs/DIV)
6
TA = 25°C
Sink
Saturation
1.0
0
TA = 125°C
RL, LOAD RESISTANCE (kΩ)
0
VCC
–0.5
φ m, EXCESS PHASE (DEGREES)
Vsat , OUTPUT SATURATION VOLTAGE (mV)
Figure 2. Output Saturation
versus Load Resistance
1.0 M
10 M
VCC = 2.5 V
VEE = –2.5 V
ACL = 1.0
CL = 10 pF
RL = 600 Ω
TA = 25°C
t, TIME (1.0 µs/DIV)
MOTOROLA ANALOG IC DEVICE DATA
Figure 8. Maximum Power Dissipation
versus Temperature
Figure 9. Open Loop Voltage Gain
versus Temperature
120
1400
110
∆AVOL , OPEN LOOP GAIN (dB)
1600
1200
SO–8 Pkg
1000
DIP Pkg
800
600
400
200
0
–55
–25
0
25
50
75
100
125
80
70
60
VCC = 2.5 V
VEE = –2.5 V
RL = 600 Ω
50
40
–25
0
25
50
75
100
TA, AMBIENT TEMPERATURE (°C)
Figure 10. Output Voltage versus Frequency
Figure 11. Common Mode Rejection
versus Frequency
125
120
CMR, COMMON MODE REJECTION (dB)
VO, OUTPUT VOLTAGE (Vpp )
90
TA, AMBIENT TEMPERATURE (°C)
8.0
7.0
6.0
5.0
4.0
VCC = 2.5 V
VEE = –2.5 V
AV = 1.0
RL = 600 Ω
TA = 25°C
3.0
2.0
1.0
0
10
PSR, POWER SUPPLY REJECTION (dB)
100
30
20
–55
100
1.0 k
10 k
100 k
VCC = 2.5 V
VEE = –2.5 V
TA = 25°C
20
100
1.0 k
10 k
100 k
Figure 13. Output Short Circuit Current
versus Output Voltage
VCC = 2.5 V
VEE = –2.5 V
80
VCC = 0.5 V
VEE = –0.5 V
Either VCC or VEE
TA = 25°C
0
10
40
Figure 12. Power Supply Rejection
versus Frequency
100
20
60
f, FREQUENCY (kHz)
120
40
80
f, FREQUENCY (kHz)
140
60
100
0
10
1.0 M
100
1.0 k
f, FREQUENCY (kHz)
MOTOROLA ANALOG IC DEVICE DATA
10 k
100 k
II SC I, OUTPUT SHORT CIRCUIT CURRENT (mA)
PDmax, MAXIMUM POWER DISSIPATION (mW)
MC33502
1.0 M
100
VCC = 2.5 V
VEE = –2.5 V
TA = 25°C
80
Sink
60
40
Source
20
0
0
0.5
1.0
1.5
2.0
2.5
|VS| – |VO| (V)
7
Figure 14. Output Short Circuit Current
versus Temperature
ICC, SUPPLY CURRENT PER AMPLIFIER (mA)
II SC I, OUTPUT SHORT CIRCUIT CURRENT (mA)
MC33502
100
Sink
80
60
VCC = 2.5 V
VEE = –2.5 V
40
20
Source
0
–55
–25
0
25
50
75
100
125
Figure 15. Supply Current per Amplifier
versus Supply Voltage with No Load
2.5
2.0
1.5
TA = 125°C
1.0
TA = 25°C
0.5
0
0
Figure 16. Input Offset Voltage
Temperature Coefficient Distribution
±2.0
VCC = 3.0 V
VO = 1.5 V
VEE = 0 V
60 Amplifiers Tested
from 2 Wafer Lots
40
30
20
10
0
–50 –40
–30
–20
–10
0
10
20
30
40
VCC = 3.0 V
VO = 1.5 V
VEE = 0 V
TA = 25°C
60 Amplifiers Tested
from 2 Wafer Lots
40
30
20
10
0
–5.0 –4.0 –3.0 –2.0
50
–1.0
0
1.0
2.0
3.0
TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C)
INPUT OFFSET VOLTAGE (mV)
Figure 18. Total Harmonic Distortion
versus Frequency with 1.0 V Supply
Figure 19. Total Harmonic Distortion
versus Frequency with 5.0 V Supply
THD, TOTAL HARMONIC DISTORTION (%)
10
AV = 1000
1.0
AV = 100
AV = 10
0.1
AV = 1.0
0.01
Vout = 0.5 Vpp
RL = 600 Ω
0.001
±2.5
50
PERCENTAGE OF AMPLIFIERS (%)
PERCENTAGE OF AMPLIFIERS (%)
±1.5
Figure 17. Input Offset Voltage Distribution
50
THD, TOTAL HARMONIC DISTORTION (%)
±1.0
VCC, |VEE|, SUPPLY VOLTAGE (V)
TA, AMBIENT TEMPERATURE (°C)
10
100
VCC – VEE = 1.0 V
1.0 k
f, FREQUENCY (Hz)
8
±0.5
TA = –55°C
10 k
100 k
4.0
5.0
10
Vout = 0.4 Vpp
RL = 600 Ω
1.0
AV = 1000
AV = 100
0.1
AV = 10
0.01
AV = 1.0
0.001
10
100
VCC – VEE = 5.0 V
1.0 k
10 k
100 k
f, FREQUENCY (Hz)
MOTOROLA ANALOG IC DEVICE DATA
MC33502
Figure 21. Gain Bandwidth Product
versus Temperature
Figure 20. Slew Rate versus Temperature
3.0
VCC – VEE = 5.0 V
– Slew Rate
2.0
VCC – VEE = 1.0 V
– Slew Rate
1.0
0
–55
–25
0
25
50
75
100
125
φ m , PHASE MARGIN ( ° )
VCC – VEE = 5.0 V
VCC – VEE
= 1.0 V
VCC – VEE
= 5.0 V
VCC – VEE = 1.0 V
RL = 600 Ω
CL = 0
TA = 25°C
100 k
1.0 M
80
–25
0
25
50
75
100
80
60
Phase Margin
40
40
20
20
Gain Margin
–25
0
25
50
75
100
f, FREQUENCY (Hz)
TA, AMBIENT TEMPERATURE (°C)
Figure 24. Gain and Phase Margin versus
Differential Source Resistance
Figure 25. Feedback Loop Gain and Phase
versus Capacitive Load
60
60
Phase Margin
50
50
VCC – VEE = 5.0 V
RL = 600 Ω
CL = 100 pF
TA = 25°C
40
30
20
20
Gain Margin
10
100
1.0 k
10 k
10
100 k
RT, DIFFERENTIAL SOURCE RESISTANCE (Ω)
MOTOROLA ANALOG IC DEVICE DATA
0
1.0 M
0
125
60
60
70
70
125
100
VCC – VEE = 5.0 V
RL = 600 Ω
CL = 100 pF
60
0
–55
10 M
VCC – VEE = 5.0 V
RL = 600 Ω
TA = 25°C
Phase Margin
50
AV , GAIN MARGIN (dB)
φ m , PHASE MARGIN ( ° )
AVOL, GAIN (dB)
0
–55
VCC – VEE = 5.0 V
f = 100 kHz
100
–40
10 k
φ m , PHASE MARGIN ( ° )
1.0
Figure 23. Gain and Phase Margin
versus Temperature
0
0
10
2.0
Figure 22. Voltage Gain and Phase
versus Frequency
20
30
3.0
TA, AMBIENT TEMPERATURE (°C)
40
40
4.0
TA, AMBIENT TEMPERATURE (°C)
60
–20
5.0
50
40
40
30
30
20
20
Gain Margin
10
10
0
3.0
AV , GAIN MARGIN (dB)
VCC – VEE = 5.0 V
+ Slew Rate
10
30
100
300
1000
0
3000
CL, CAPACITIVE LOAD (pF)
9
AV , GAIN MARGIN (dB)
SR, SLEW RATE (V/ µs)
VCC – VEE = 1.0 V
+ Slew Rate
GBW, GAIN BANDWIDTH PRODUCT (MHz)
4.0
MC33502
Figure 26. Channel Separation
versus Frequency
Figure 27. Output Voltage Swing
versus Supply Voltage
8.0
AV = 100
60
40
20
en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz)
VCC – VEE = 5.0 V
RL = 600 Ω
VO = 4.0 Vpp
TA = 25°C
100
300
10 k
30 k
100 k
6.0
4.0
2.0
0
300 k
RL= 600 Ω
TA = 25°C
0
±0.5
±1.0
±1.5
±2.0
±2.5
±3.0
f, FREQUENCY (Hz)
VCC, |VEE|, SUPPLY VOLTAGE (V)
Figure 28. Equivalent Input Noise Voltage
versus Frequency
Figure 29. Gain and Phase Margin
versus Supply Voltage
±3.5
100
70
φm , PHASE MARGIN ( ° )
VCC – VEE = 5.0 V
TA = 25°C
60
50
40
30
20
100
RL = 600 Ω
CL = 0
TA = 25°C
80
80
Phase Margin
60
60
40
40
20
A V , GAIN MARGIN (dB)
AV = 10
80
0
30
VCC – VEE , USEABLE SUPPLY VOLTAGE (V)
VO, OUTPUT VOLTAGE (Vpp )
100
20
Gain Margin
10
0
10
100
10 k
1.0 k
0
100 k
2
3
4
5
6
Figure 30. Useable Supply Voltage
versus Temperature
Figure 31. Open Loop Gain
versus Supply Voltage
7
120
AVOL ≥ 10 dB
RL = 600 Ω
1.2
0.8
0.4
–25
0
25
50
75
TA, AMBIENT TEMPERATURE (°C)
10
1
VCC – VEE, SUPPLY VOLTAGE (V)
1.6
0
–55
0
0
f, FREQUENCY (Hz)
A VOL , OPEN LOOP GAIN (dB)
CS, CHANNEL SEPARATION (dB)
120
100
125
100
80
60
40
RL = 600 Ω
TA = 25°C
20
0
0
1.0
2.0
3.0
4.0
5.0
6.0
VCC – VEE, SUPPLY VOLTAGE (V)
MOTOROLA ANALOG IC DEVICE DATA
MC33502
Figure 32. 1.0 V Oscillator
RT
470 k
1.0 V
CT
1.0 nF
1.0 Vpp
+
FO
1.0 kHz
–
R1a
360 k
R1b
360 k
R2
220 k
F
O
+
NJ ƪ
2R C In
T T
1
)
ƫNj
2(R1a
R1b)
R2
Figure 33. 1.0 V Voiceband Filter
C2
400 pF
Rf
100 k
0.5 V
R2
10 k
+
VO
–
C1
80 nF
–0.5 V
Af
R1
10 k
f
f
H
A
MOTOROLA ANALOG IC DEVICE DATA
+
L
f
1
2pR1C1
[ 200 Hz
fL
fH
+ 2pR1 C [ 4.0 kHz
+
f f
1
)Rf
R2
+ 11
11
MC33502
Figure 34. Power Supply Application
5.0 V
Vref
15 V
15
13
2
16
4
3
1
FB
11
Output A
14
Output B
MC34025
22 k
5
4.7
4.7
8
12
6
0.1
10
470 pF
7
9
From
Current Sense
100 k
1.0 k
+
MC33502
–
3320
Provides current sense
amplification and eliminates
leading edge spike.
1.0 k
Figure 35. 1.0 V Current Pump
IO
IL
VO
1.0 V
VL
R3
1.0 k
R4
1.0 k
RL
75
R5
2.4 k
R1
1.0 k
8
+
7
–
4
5
6
MC33502
R2
3.3 k
For best performance, use close tolerance resistors.
IO
IL
435 mA
463 µA
∆IO/∆IL
–120 x 10–6
212 mA
12
492 µA
MOTOROLA ANALOG IC DEVICE DATA
MC33502
OUTLINE DIMENSIONS
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
8
5
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
–B–
1
4
F
–A–
NOTE 2
DIM
A
B
C
D
F
G
H
J
K
L
M
N
L
C
J
–T–
N
SEATING
PLANE
D
M
K
MILLIMETERS
MIN
MAX
9.40
10.16
6.10
6.60
3.94
4.45
0.38
0.51
1.02
1.78
2.54 BSC
0.76
1.27
0.20
0.30
2.92
3.43
7.62 BSC
–––
10_
0.76
1.01
INCHES
MIN
MAX
0.370
0.400
0.240
0.260
0.155
0.175
0.015
0.020
0.040
0.070
0.100 BSC
0.030
0.050
0.008
0.012
0.115
0.135
0.300 BSC
–––
10_
0.030
0.040
G
H
0.13 (0.005)
T A
M
M
B
M
D SUFFIX
PLASTIC PACKAGE
CASE 751–06
(SO–8)
ISSUE T
D
A
8
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETER.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
C
5
0.25
H
E
M
B
M
1
4
h
B
e
X 45 _
q
A
C
SEATING
PLANE
L
0.10
A1
B
0.25
M
C B
S
A
S
MOTOROLA ANALOG IC DEVICE DATA
DIM
A
A1
B
C
D
E
e
H
h
L
q
MILLIMETERS
MIN
MAX
1.35
1.75
0.10
0.25
0.35
0.49
0.19
0.25
4.80
5.00
3.80
4.00
1.27 BSC
5.80
6.20
0.25
0.50
0.40
1.25
0_
7_
13
MC33502
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Affirmative Action Employer.
14
MOTOROLA ANALOG IC DEVICE DATA
MC33502
Mfax is a trademark of Motorola, Inc.
How to reach us:
USA / EUROPE / Locations Not Listed: Motorola Literature Distribution;
P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141,
4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488
Customer Focus Center: 1–800–521–6274
Mfax: [email protected] – TOUCHTONE 1–602–244–6609
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
Motorola Fax Back System
– US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
– http://sps.motorola.com/mfax/
HOME PAGE: http://motorola.com/sps/
◊ DATA
MOTOROLA ANALOG IC DEVICE
MC33502/D
15