Order this document by MC33502/D The MC33502 operational amplifier provides rail–to–rail operation on both the input and output. The output can swing within 50 mV of each rail. This rail–to–rail operation enables the user to make full use of the entire supply voltage range available. It is designed to work at very low supply voltages (1.0 V and ground), yet can operate with a supply of up to 7.0 V and ground. Output current boosting techniques provide high output current capability while keeping the drain current of the amplifier to a minimum. • Low Voltage, Single Supply Operation (1.0 V and Ground to 7.0 V and Ground) • High Input Impedance: Typically 40 fA Input Current • • • • • • • • • • LOW VOLTAGE RAIL–TO–RAIL DUAL OPERATIONAL AMPLIFIER SEMICONDUCTOR TECHNICAL DATA Typical Unity Gain Bandwidth @ 5.0 V = 5.0 MHz, @ 1.0 V = 4.0 MHz High Output Current (ISC = 50 mA @ 5.0 V, 10 mA @ 1.0 V) Output Voltage Swings within 50 mV of Both Rails @ 1.0 V Input Voltage Range Includes Both Supply Rails 8 High Voltage Gain: 100 dB Typical @ 1.0 V 1 P SUFFIX PLASTIC PACKAGE CASE 626 No Phase Reversal on the Output for Over–Driven Input Signals Input Offset Trimmed to 0.5 mV Typical Low Supply Current (ID = 1.2 mA/per Amplifier, Typical) 600 Ω Drive Capability Extended Operating Temperature Range (–40 to 105°C) 8 APPLICATIONS • • • • • • • • • 1 Single Cell NiCd/Ni MH Powered Systems D SUFFIX PLASTIC PACKAGE CASE 751 (SO–8) Interface to DSP Portable Communication Devices Low Voltage Active Filters Telephone Circuits Instrumentation Amplifiers Audio Applications PIN CONNECTIONS Power Supply Monitor and Control Compatible with VCX Logic 8 VCC Output 1 1 Simplified Block Diagram 7 Output 2 2 Inputs 1 3 Base Current Boost 1 2 VEE 4 6 5 Inputs 2 (Dual, Top View) Inputs Input Stage Offset Voltage Trim Buffer with 0 V Level Shift Saturation Detector Output Stage Outputs ORDERING INFORMATION Base Current Boost Device MC33502P This device contains 98 active transistors per amplifier. This document contains information on a new product. Specifications and information herein are subject to change without notice. MOTOROLA ANALOG IC DEVICE DATA MC33502D Operating Temperature Range TA = – 40° to +105°C Motorola, Inc. 1998 Package Plastic DIP SO–8 Rev 0 1 MC33502 MAXIMUM RATINGS ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁÁ ÁÁÁ Rating Symbol Value Unit VS 7.0 V VESD 2000 V Voltage at Any Device Pin VDP VS ±0.3 V Input Differential Voltage Range VIDR VCC to VEE V Common Mode Input Voltage Range Supply Voltage (VCC to VEE) ESD Protection Voltage at any Pin H man Body Bod Model Human VCM VCC to VEE V Output Short Circuit Duration tS (Note 1) s Maximum Junction Temperature TJ 150 °C Storage Temperature Range Tstg –65 to 150 °C Maximum Power Dissipation PD (Note 1) mW NOTES: 1. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded. 2. ESD data available upon request. DC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Input Offset Voltage (VCM = 0 to VCC) VCC = 1.0 V TA = 25°C TA = –40° to 105°C VCC = 3.0 V TA = 25°C TA = –40° to 105°C VCC = 5.0 V TA = 25°C TA = –40° to 105°C Symbol Min Typ Max VIO Unit mV –5.0 –7.0 0.5 – 5.0 7.0 –5.0 –7.0 0.5 – 5.0 7.0 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ –5.0 –7.0 0.5 – 5.0 7.0 ∆VIO/∆T – 8.0 – µV/°C Input Bias Current (VCC = 1.0 to 5.0 V) I IIB I – 40 – fA Common Mode Input Voltage Range VICR VEE – VCC V Large Signal Voltage Gain VCC = 1.0 V (TA = 25°C) RL = 10 kΩ RL = 1.0 kΩ VCC = 3.0 V (TA = 25°C) RL = 10 kΩ RL = 1.0 kΩ VCC = 5.0 V (TA = 25°C) RL = 10 kΩ RL = 1.0 kΩ AVOL Input Offset Voltage Temperature Coefficient (RS = 50 Ω) TA = –40° to 105°C 2 kV/V 25 5.0 100 50 – – 50 25 500 100 – – 50 25 500 200 – – MOTOROLA ANALOG IC DEVICE DATA MC33502 DC ELECTRICAL CHARACTERISTICS (continued) (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, RL to VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Symbol Output Voltage Swing, High (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 1.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VCC = 3.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 3.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VCC = 5.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 5.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VOH Output Voltage Swing, Low (VID = ±0.2 V) VCC = 1.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 1.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VCC = 3.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 3.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VCC = 5.0 V (TA = 25°C) RL = 10 kΩ RL = 600 Ω VCC = 5.0 V (TA = –40° to 105°C) RL = 10 kΩ RL = 600 Ω VOL Min Typ Max Unit V 0.9 0.85 0.95 0.88 – – 0.85 0.8 – – – – 2.9 2.8 2.93 2.84 – – 2.85 2.75 – – – – 4.9 4.75 4.92 4.81 – – ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ 4.85 4.7 – – – – V 0.05 0.1 0.02 0.05 – – 0.1 0.15 – – – – 0.05 0.1 0.02 0.08 – – 0.1 0.15 – – – – 0.05 0.15 0.02 0.1 – – 0.1 0.2 – – – – ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Common Mode Rejection (Vin = 0 to 5.0 V) CMR 60 75 – dB VOL 60 75 – µV/V Output Short Circuit Current (Vin Diff = ±1.0 V) VCC = 1.0 V Source Sink VCC = 3.0 V Source Sink VCC = 5.0 V Source Sink ISC Power Supply Current (Per Amplifier, VO = 0 V) VCC = 1.0 V VCC = 3.0 V VCC = 5.0 V VCC = 1.0 V (TA = –40 to 105°C) VCC = 3.0 V (TA = –40 to 105°C) VCC = 5.0 V (TA = –40 to 105°C) ID mA 6.0 10 13 13 26 26 15 40 32 64 60 140 ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ MOTOROLA ANALOG IC DEVICE DATA 20 40 40 70 140 140 – – – – – – 1.2 1.5 1.65 – – – 1.75 2.0 2.25 2.0 2.25 2.5 mA 3 MC33502 AC ELECTRICAL CHARACTERISTICS (VCC = 5.0 V, VEE = 0 V, VCM = VO = VCC/2, TA = 25°C, unless otherwise noted.) ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ ÁÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁÁ ÁÁÁ Characteristic Symbol Min Typ Max 2.0 2.0 3.0 3.0 6.0 6.0 3.0 3.5 4.0 4.0 4.5 5.0 6.0 7.0 8.0 Unit Slew Rate (VS = ±2.5 V, VO = –2.0 to 2.0 V, RL = 2.0 kΩ, AV = 1.0) Positive Slope Negative Slope SR Unity Gain Bandwidth VCC = 1.0 V VCC = 3.0 V VCC = 5.0 V BW Gain Margin (RL =10 kΩ, CL = 0 pF) Am – 6.5 – dB Phase Margin (RL = 10 kΩ, CL = 0 pF) φm – 60 – Deg Channel Separation (f = 1.0 Hz to 20 kHz, RL = 600 Ω) CS – 120 – dB Power Bandwidth (VO = 4.0 Vpp, RL = 1.0 kΩ, THD ≤1.0%) BWP – 200 – kHz Total Harmonic Distortion (VO = 4.5 Vpp, RL = 600 Ω, AV = 1.0) f = 1.0 kHz f = 10 kHz THD – – 0.004 0.01 – – Differential Input Resistance (VCM = 0 V) Rin – >1.0 – Differential Input Capacitance (VCM = 0 V) Cin – 2.0 – Equivalent Input Noise Voltage (VCC = 1.0 V, VCM = 0 V, VEE = Gnd, RS = 100 Ω) f = 1.0 kHz f = 10 kHz en V/µs MHz % terraΩ pF nV/√Hz – – 30 60 – – Figure 1. Representative Block Diagram VCC IN– IN+ Offset Voltage Trim VCC VCC Out VCC Output Voltage Saturation Detector Clamp Body Bias 4 MOTOROLA ANALOG IC DEVICE DATA MC33502 GENERAL INFORMATION The MC33502 dual operational amplifier is unique in its ability to provide 1.0 V rail–to–rail performance on both the input and output by using a SMARTMOS process. The amplifier output swings within 50 mV of both rails and is able to provide 50 mA of output drive current with a 5.0 V supply, and 10 mA with a 1.0 V supply. A 5.0 MHz bandwidth and a slew rate of 3.0 V/µs is achieved with high speed depletion mode NMOS (DNMOS) and vertical PNP transistors. This device is characterized over a temperature range of –40°C to 105°C. CIRCUIT INFORMATION Input Stage One volt rail–to–rail performance is achieved in the MC33502 at the input by using a single pair of depletion mode NMOS devices (DNMOS) to form a differential amplifier with a very low input current of 40 fA. The normal input common mode range of a DNMOS device, with an ion implanted negative threshold, includes ground and relies on the body effect to dynamically shift the threshold to a positive value as the gates are moved from ground towards the positive supply. Because the device is manufactured in a p–well process, the body effect coefficient is sufficiently large to ensure that the input stage will remain substantually saturated when the inputs are at the positive rail. This also applies at very low supply voltages. The 1.0 V rail–to–rail input stage consists of a DNMOS differential amplifier, a folded cascode, and a low voltage balanced mirror. The low voltage cascoded balanced mirror provides high 1st stage gain and base current cancellation without sacrificing signal integrity. Also, the input offset voltage is trimmed to less than 1.0 mV because of the limited available supply voltage. The body voltage of the input DNMOS differential pair is internally trimmed to minimize the input offset voltage. A common mode feedback path is also employed to enable the offset voltage to track over the input common mode voltage. The total operational amplifier quiescent current drop is 1.3 mA/amp. MOTOROLA ANALOG IC DEVICE DATA Output Stage An additional feature of this device is an “on demand” base current cancellation amplifier. This feature provides base drive to the output power devices by making use of a buffer amplifier to perform a voltage–to–current conversion. This is done in direct proportion to the load conditions. This “on demand” feature allows these amplifiers to consume only a few micro–amps of current when the output stage is in its quiescent mode. Yet it provides high output current when required by the load. The rail–to–rail output stage current boost circuit provides 50 mA of output current with a 5.0 V supply (For a 1.0 V supply output stage will do 10 mA) enabling the operational amplifier to drive a 600 Ω load. A buffer is necessary to isolate the load current effects in the output stage from the input stage. Because of the low voltage conditions, a DNMOS follower is used to provide an essentially zero voltage level shift. This buffer isolates any load current changes on the output stage from loading the input stage. A high speed vertical PNP transistor provides excellent frequency performance while sourcing current. The operational amplifier is also internally compensated to provide a phase margin of 60 degrees. It has a unity gain of 5.0 MHz with a 5.0 V supply and 4.0 MHz with a 1.0 V supply. LOW VOLTAGE OPERATION The MC33502 will operate at supply voltages from 0.9 to 7.0 V and ground. When using the MC33502 at supply voltages of less than 1.2 V, input offset voltage may increase slightly as the input signal swings within approximately 50 mV of the positive supply rail. This effect occurs only for supply voltages below 1.2 V, due to the input depletion mode MOSFETs starting to transition between the saturated to linear region, and should be considered when designing high side dc sensing applications operating at the positive supply rail. Since the device is rail–to–rail on both input and output, high dynamic range single battery cell applications are now possible. 5 MC33502 Figure 3. Drive Output Source/Sink Saturation Voltage versus Load Current 0 200 Vsat , OUTPUT SATURATION VOLTAGE (V) VCC 400 600 600 VCC = 5.0 V VEE = 0 V RL to VCC/2 400 200 0 100 1.0 k 10 k VEE 100 k 1.0 M 0 TA = –55°C Source Saturation –1.0 0.5 10 M TA = 25°C Figure 4. Input Current versus Temperature 4.0 8.0 VEE 12 16 20 24 Figure 5. Gain and Phase versus Frequency 100 0 100 Gain 80 Phase 10 A VOL, GAIN (dB) I IB , INPUT CURRENT (pA) TA = –55°C VCC – VEE = 5.0 V 0 TA = 125°C IO, OUTPUT CURRENT (mA) 1000 1.0 0.1 0.01 50 75 100 Phase Margin = 60° 90 40 135 20 25 45 60 0.001 0 1.0 125 VCC = 2.5 V VEE = –2.5 V RL = 10 k 10 180 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) Figure 6. Transient Response Figure 7. Slew Rate 20 mV/DIV VCC = 0.5 V VEE = –0.5 V ACL = 1.0 CL = 10 pF RL = 10 k TA = 25°C 1.0 V/DIV (mV) TA, AMBIENT TEMPERATURE (°C) t, TIME (500 µs/DIV) 6 TA = 25°C Sink Saturation 1.0 0 TA = 125°C RL, LOAD RESISTANCE (kΩ) 0 VCC –0.5 φ m, EXCESS PHASE (DEGREES) Vsat , OUTPUT SATURATION VOLTAGE (mV) Figure 2. Output Saturation versus Load Resistance 1.0 M 10 M VCC = 2.5 V VEE = –2.5 V ACL = 1.0 CL = 10 pF RL = 600 Ω TA = 25°C t, TIME (1.0 µs/DIV) MOTOROLA ANALOG IC DEVICE DATA Figure 8. Maximum Power Dissipation versus Temperature Figure 9. Open Loop Voltage Gain versus Temperature 120 1400 110 ∆AVOL , OPEN LOOP GAIN (dB) 1600 1200 SO–8 Pkg 1000 DIP Pkg 800 600 400 200 0 –55 –25 0 25 50 75 100 125 80 70 60 VCC = 2.5 V VEE = –2.5 V RL = 600 Ω 50 40 –25 0 25 50 75 100 TA, AMBIENT TEMPERATURE (°C) Figure 10. Output Voltage versus Frequency Figure 11. Common Mode Rejection versus Frequency 125 120 CMR, COMMON MODE REJECTION (dB) VO, OUTPUT VOLTAGE (Vpp ) 90 TA, AMBIENT TEMPERATURE (°C) 8.0 7.0 6.0 5.0 4.0 VCC = 2.5 V VEE = –2.5 V AV = 1.0 RL = 600 Ω TA = 25°C 3.0 2.0 1.0 0 10 PSR, POWER SUPPLY REJECTION (dB) 100 30 20 –55 100 1.0 k 10 k 100 k VCC = 2.5 V VEE = –2.5 V TA = 25°C 20 100 1.0 k 10 k 100 k Figure 13. Output Short Circuit Current versus Output Voltage VCC = 2.5 V VEE = –2.5 V 80 VCC = 0.5 V VEE = –0.5 V Either VCC or VEE TA = 25°C 0 10 40 Figure 12. Power Supply Rejection versus Frequency 100 20 60 f, FREQUENCY (kHz) 120 40 80 f, FREQUENCY (kHz) 140 60 100 0 10 1.0 M 100 1.0 k f, FREQUENCY (kHz) MOTOROLA ANALOG IC DEVICE DATA 10 k 100 k II SC I, OUTPUT SHORT CIRCUIT CURRENT (mA) PDmax, MAXIMUM POWER DISSIPATION (mW) MC33502 1.0 M 100 VCC = 2.5 V VEE = –2.5 V TA = 25°C 80 Sink 60 40 Source 20 0 0 0.5 1.0 1.5 2.0 2.5 |VS| – |VO| (V) 7 Figure 14. Output Short Circuit Current versus Temperature ICC, SUPPLY CURRENT PER AMPLIFIER (mA) II SC I, OUTPUT SHORT CIRCUIT CURRENT (mA) MC33502 100 Sink 80 60 VCC = 2.5 V VEE = –2.5 V 40 20 Source 0 –55 –25 0 25 50 75 100 125 Figure 15. Supply Current per Amplifier versus Supply Voltage with No Load 2.5 2.0 1.5 TA = 125°C 1.0 TA = 25°C 0.5 0 0 Figure 16. Input Offset Voltage Temperature Coefficient Distribution ±2.0 VCC = 3.0 V VO = 1.5 V VEE = 0 V 60 Amplifiers Tested from 2 Wafer Lots 40 30 20 10 0 –50 –40 –30 –20 –10 0 10 20 30 40 VCC = 3.0 V VO = 1.5 V VEE = 0 V TA = 25°C 60 Amplifiers Tested from 2 Wafer Lots 40 30 20 10 0 –5.0 –4.0 –3.0 –2.0 50 –1.0 0 1.0 2.0 3.0 TCVIO, INPUT OFFSET VOLTAGE TEMPERATURE COEFFICIENT (µV/°C) INPUT OFFSET VOLTAGE (mV) Figure 18. Total Harmonic Distortion versus Frequency with 1.0 V Supply Figure 19. Total Harmonic Distortion versus Frequency with 5.0 V Supply THD, TOTAL HARMONIC DISTORTION (%) 10 AV = 1000 1.0 AV = 100 AV = 10 0.1 AV = 1.0 0.01 Vout = 0.5 Vpp RL = 600 Ω 0.001 ±2.5 50 PERCENTAGE OF AMPLIFIERS (%) PERCENTAGE OF AMPLIFIERS (%) ±1.5 Figure 17. Input Offset Voltage Distribution 50 THD, TOTAL HARMONIC DISTORTION (%) ±1.0 VCC, |VEE|, SUPPLY VOLTAGE (V) TA, AMBIENT TEMPERATURE (°C) 10 100 VCC – VEE = 1.0 V 1.0 k f, FREQUENCY (Hz) 8 ±0.5 TA = –55°C 10 k 100 k 4.0 5.0 10 Vout = 0.4 Vpp RL = 600 Ω 1.0 AV = 1000 AV = 100 0.1 AV = 10 0.01 AV = 1.0 0.001 10 100 VCC – VEE = 5.0 V 1.0 k 10 k 100 k f, FREQUENCY (Hz) MOTOROLA ANALOG IC DEVICE DATA MC33502 Figure 21. Gain Bandwidth Product versus Temperature Figure 20. Slew Rate versus Temperature 3.0 VCC – VEE = 5.0 V – Slew Rate 2.0 VCC – VEE = 1.0 V – Slew Rate 1.0 0 –55 –25 0 25 50 75 100 125 φ m , PHASE MARGIN ( ° ) VCC – VEE = 5.0 V VCC – VEE = 1.0 V VCC – VEE = 5.0 V VCC – VEE = 1.0 V RL = 600 Ω CL = 0 TA = 25°C 100 k 1.0 M 80 –25 0 25 50 75 100 80 60 Phase Margin 40 40 20 20 Gain Margin –25 0 25 50 75 100 f, FREQUENCY (Hz) TA, AMBIENT TEMPERATURE (°C) Figure 24. Gain and Phase Margin versus Differential Source Resistance Figure 25. Feedback Loop Gain and Phase versus Capacitive Load 60 60 Phase Margin 50 50 VCC – VEE = 5.0 V RL = 600 Ω CL = 100 pF TA = 25°C 40 30 20 20 Gain Margin 10 100 1.0 k 10 k 10 100 k RT, DIFFERENTIAL SOURCE RESISTANCE (Ω) MOTOROLA ANALOG IC DEVICE DATA 0 1.0 M 0 125 60 60 70 70 125 100 VCC – VEE = 5.0 V RL = 600 Ω CL = 100 pF 60 0 –55 10 M VCC – VEE = 5.0 V RL = 600 Ω TA = 25°C Phase Margin 50 AV , GAIN MARGIN (dB) φ m , PHASE MARGIN ( ° ) AVOL, GAIN (dB) 0 –55 VCC – VEE = 5.0 V f = 100 kHz 100 –40 10 k φ m , PHASE MARGIN ( ° ) 1.0 Figure 23. Gain and Phase Margin versus Temperature 0 0 10 2.0 Figure 22. Voltage Gain and Phase versus Frequency 20 30 3.0 TA, AMBIENT TEMPERATURE (°C) 40 40 4.0 TA, AMBIENT TEMPERATURE (°C) 60 –20 5.0 50 40 40 30 30 20 20 Gain Margin 10 10 0 3.0 AV , GAIN MARGIN (dB) VCC – VEE = 5.0 V + Slew Rate 10 30 100 300 1000 0 3000 CL, CAPACITIVE LOAD (pF) 9 AV , GAIN MARGIN (dB) SR, SLEW RATE (V/ µs) VCC – VEE = 1.0 V + Slew Rate GBW, GAIN BANDWIDTH PRODUCT (MHz) 4.0 MC33502 Figure 26. Channel Separation versus Frequency Figure 27. Output Voltage Swing versus Supply Voltage 8.0 AV = 100 60 40 20 en, EQUIVALENT INPUT NOISE VOLTAGE (nV/ Hz) VCC – VEE = 5.0 V RL = 600 Ω VO = 4.0 Vpp TA = 25°C 100 300 10 k 30 k 100 k 6.0 4.0 2.0 0 300 k RL= 600 Ω TA = 25°C 0 ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0 f, FREQUENCY (Hz) VCC, |VEE|, SUPPLY VOLTAGE (V) Figure 28. Equivalent Input Noise Voltage versus Frequency Figure 29. Gain and Phase Margin versus Supply Voltage ±3.5 100 70 φm , PHASE MARGIN ( ° ) VCC – VEE = 5.0 V TA = 25°C 60 50 40 30 20 100 RL = 600 Ω CL = 0 TA = 25°C 80 80 Phase Margin 60 60 40 40 20 A V , GAIN MARGIN (dB) AV = 10 80 0 30 VCC – VEE , USEABLE SUPPLY VOLTAGE (V) VO, OUTPUT VOLTAGE (Vpp ) 100 20 Gain Margin 10 0 10 100 10 k 1.0 k 0 100 k 2 3 4 5 6 Figure 30. Useable Supply Voltage versus Temperature Figure 31. Open Loop Gain versus Supply Voltage 7 120 AVOL ≥ 10 dB RL = 600 Ω 1.2 0.8 0.4 –25 0 25 50 75 TA, AMBIENT TEMPERATURE (°C) 10 1 VCC – VEE, SUPPLY VOLTAGE (V) 1.6 0 –55 0 0 f, FREQUENCY (Hz) A VOL , OPEN LOOP GAIN (dB) CS, CHANNEL SEPARATION (dB) 120 100 125 100 80 60 40 RL = 600 Ω TA = 25°C 20 0 0 1.0 2.0 3.0 4.0 5.0 6.0 VCC – VEE, SUPPLY VOLTAGE (V) MOTOROLA ANALOG IC DEVICE DATA MC33502 Figure 32. 1.0 V Oscillator RT 470 k 1.0 V CT 1.0 nF 1.0 Vpp + FO 1.0 kHz – R1a 360 k R1b 360 k R2 220 k F O + NJ ƪ 2R C In T T 1 ) ƫNj 2(R1a R1b) R2 Figure 33. 1.0 V Voiceband Filter C2 400 pF Rf 100 k 0.5 V R2 10 k + VO – C1 80 nF –0.5 V Af R1 10 k f f H A MOTOROLA ANALOG IC DEVICE DATA + L f 1 2pR1C1 [ 200 Hz fL fH + 2pR1 C [ 4.0 kHz + f f 1 )Rf R2 + 11 11 MC33502 Figure 34. Power Supply Application 5.0 V Vref 15 V 15 13 2 16 4 3 1 FB 11 Output A 14 Output B MC34025 22 k 5 4.7 4.7 8 12 6 0.1 10 470 pF 7 9 From Current Sense 100 k 1.0 k + MC33502 – 3320 Provides current sense amplification and eliminates leading edge spike. 1.0 k Figure 35. 1.0 V Current Pump IO IL VO 1.0 V VL R3 1.0 k R4 1.0 k RL 75 R5 2.4 k R1 1.0 k 8 + 7 – 4 5 6 MC33502 R2 3.3 k For best performance, use close tolerance resistors. IO IL 435 mA 463 µA ∆IO/∆IL –120 x 10–6 212 mA 12 492 µA MOTOROLA ANALOG IC DEVICE DATA MC33502 OUTLINE DIMENSIONS P SUFFIX PLASTIC PACKAGE CASE 626–05 ISSUE K 8 5 NOTES: 1. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL. 2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS). 3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. –B– 1 4 F –A– NOTE 2 DIM A B C D F G H J K L M N L C J –T– N SEATING PLANE D M K MILLIMETERS MIN MAX 9.40 10.16 6.10 6.60 3.94 4.45 0.38 0.51 1.02 1.78 2.54 BSC 0.76 1.27 0.20 0.30 2.92 3.43 7.62 BSC ––– 10_ 0.76 1.01 INCHES MIN MAX 0.370 0.400 0.240 0.260 0.155 0.175 0.015 0.020 0.040 0.070 0.100 BSC 0.030 0.050 0.008 0.012 0.115 0.135 0.300 BSC ––– 10_ 0.030 0.040 G H 0.13 (0.005) T A M M B M D SUFFIX PLASTIC PACKAGE CASE 751–06 (SO–8) ISSUE T D A 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. DIMENSIONS ARE IN MILLIMETER. 3. DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. 5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. C 5 0.25 H E M B M 1 4 h B e X 45 _ q A C SEATING PLANE L 0.10 A1 B 0.25 M C B S A S MOTOROLA ANALOG IC DEVICE DATA DIM A A1 B C D E e H h L q MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.35 0.49 0.19 0.25 4.80 5.00 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ 13 MC33502 Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. 14 MOTOROLA ANALOG IC DEVICE DATA MC33502 Mfax is a trademark of Motorola, Inc. How to reach us: USA / EUROPE / Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4–32–1 Nishi–Gotanda, Shagawa–ku, Tokyo, Japan. 03–5487–8488 Customer Focus Center: 1–800–521–6274 Mfax: [email protected] – TOUCHTONE 1–602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, Motorola Fax Back System – US & Canada ONLY 1–800–774–1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298 – http://sps.motorola.com/mfax/ HOME PAGE: http://motorola.com/sps/ ◊ DATA MOTOROLA ANALOG IC DEVICE MC33502/D 15